Теория категорий. Часть 2

Математика
14 лекций

Страница курса: http://halgebra.math.msu.su/wi...

Говорят, что задана категория, если задан класс объектов, которые могут быть множествами (а могут и не быть), и для каждых двух объектов задано множество морфизмов (стрелок) между этими объектами, которые могут являться (а могут и не являться) отображениями, сохраняющими некоторые свойства. Подобная общность позволяет, например, направить стрелки в противоположную сторону и получить категорию, двойственную к исходной. Кроме того, такая общность позволяет изучать сразу несколько категорий одновременно. Примерами категорий являются категория множеств, в которой морфизмы - это все отображения между множествами; категория групп, в которой морфизмы - это гомомоморфизмы групп; категория топологических пространств, в которой морфизмы - это непрерывные отображения. Частично упорядоченное множество - это тоже категория, объектами которой являются его элементы, а от элемента к элементу, большему или равному ему, существует стрелка. Теорию категорию можно считать следующим уровнем абстракции по сравнению с традиционной абстрактной алгеброй. Эта теория находит применение в самых различных областях математики, информатики и теоретической физики. В курсе будут рассматриваться следующие темы: категории, функторы, естественные преобразования, пределы и копределы, сопряжённые функторы, абелевы категории, моноидальные категории, заплетённые и симметрические моноидальные категории, монады и алгебры над ними, 2-категории и бикатегории.

2024
лекции
спецкурс
Механико-математический факультет
Математика
спецкурс
Теория категорий. Часть 2 | Открытые видеолекции учебных курсов МГУ