Список всех тем лекций
Лекция 1. Solvable and Nilpotent Lie algebras.
Organization issues
Solvable and Nilpotent Lie algebras
Лекция 2. Solvable and Nilpotent Lie algebras. Continuation.
Proof of a g solvability
Corollary
Examples
Lie's Theorem
Corollary
Apply Lie's theorem to adjoint representation of g
Lemma
Engel's theorem
Corollary (Second Engel's theorem)
Лекция 3. Semisimple Lie algebra.
Definitions
Proposition of semisimplicity
Lemma
Proposition of a unique maximal solvable ideal
Theorem
Theorem about radical
(Levi's decomposition)
Example
Лекция 4. Invariant bilinear forms.
Definition of invariant bilinear form
Theorem
Theorem (Cartan's criteria of semisimplicity)
The first proof of proposition
The second proof of proposition
Claim
Proof of Lemma
Лекция 5. Semisimple Lie algebras.
Лекция 6. Generalization for any semisimple Lie algebra.
Лекция 7. Root decomposition. Abstract root system.
Лекция 8. Continuation of the previous lecture. Classification of root systems.
Лекция 9. Weyl chambers and simple reflections.
Лекция 10. Classification of root systems. Serre's relations and Serre's theorem.
Лекция 11. Weight subspaces, representations of highest weight, Verma modules.
Лекция 12. Classification of finite-dimensional representations of semisimple Lie algebras.
Лекция 13. Integrable representations. Characters of representations.
Лекция 14. Young tableaux and representations of gl(n).
Лекция 15. Brief introduction to Kac-Moody Lie algebras.
Лекция 16. Affine Lie algebras.
