Курс посвящен методу форсинга, или вынуждения. Без этого метода в современной математике совершенно невозможно обойтись, поскольку многие фундаментальные проблемы (такие как первая проблема Гильберта о континуум-гипотезе, проблема Суслина о топологической характеризации пространства вещественных чисел, проблема Уайтхеда о свободных группах и многие другие) долгое время оставались нерешенными именно потому, что они в принципе не могут быть решены в рамках аксиом ZFC теории множеств, лежащих в фундаменте всей современной математики.
Метод форсинга был изобретен для решения проблемы истинности континуум-гипотезы (о (не)существовании несчетного множества, мощность которого строго меньше мощности вещественной прямой), однако впоследствии выяснилось, что это универсальный метод построения моделей теории множеств, в которых верны те или иные утверждения, многие из которых будут обсуждаться на спецкурсе.
В курсе метод будет изложен «с нуля», но со строгим обоснованием. В качестве несложной иллюстрации будет полностью со всей строгостью доказана недоказуемость и неопровержимость континуум-гипотезы, после чего будут доказаны общие теоремы о границах применимости метода и приведены дальнейшие примеры его применения.
Часть спецкурса будет посвящена открытым проблемам, включая те, решением которых занимается автор в настоящее время. Никаких предварительных знаний не требуется.