

ТЕРМОДИНАМИКА ГРУНТОВ ::

КОРОЛЕВ ВЛАДИМИР АЛЕКСАНДРОВИЧ

ГЕОЛФАК МГУ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ ПРОФ. РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ. СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU.

ЕСЛИ ВЫ ОБНАРУЖИЛИ
ОШИБКИ ИЛИ ОПЕЧАТКИ
ТО СООБЩИТЕ ОБ ЭТОМ,
НАПИСАВ СООБЩЕСТВУ
VK.COM/TEACHINMSU.

БЛАГОДАРИМ ЗА ПОДГОТОВКУ КОНСПЕКТА СТУДЕНТКУ ФИЗИЧЕСКОГО ФАКУЛЬТЕТА МГУ **ЧЕРЕМНОВУ МАРИЮ АЛЕКСАНДРОВНУ**

Содержание

1	Лен	кция 1. История формирования и развития термодинамики	6				
	1.1	Цель и задачи курса	6				
	1.2	Литература	6				
	1.3	Первый период формирования термодинамики (с античности до сере-					
		дины XIX века)	7				
	1.4	Второй исторический период (1850-1870-е гг.)	Ĝ				
	1.5	Третий период (70-е годы – конец XIX века). Статистическая термоди-					
		намика	10				
	1.6	Четвертый период (с 30х годов XX века по настоящее время). Термо-					
		динамика необратимых процессов	11				
	1.7	Применение термодинамики в геологии	11				
2	Лен	кция 2. Методологические основы применения термодинамики					
	в и	нженерной геологии	1 4				
	2.1	Геологические среды как термодинамические системы	14				
	2.2	Пространственная неоднородность обобщенных координат	16				
	2.3	Понятие об обобщенных потенциалах и взаимодействиях в ИГС	19				
	2.4	Градиент потенциала как причина процесса	20				
	2.5	Работа в ИГС	21				
3	Лен	Лекция 3. Законы термодинамики и их применение в инженерной					
	гео	логии	2 4				
	3.1	Первый закон термодинамики	24				
	3.2	Практическое применение закона в инженерной геологии	25				
	3.3	Второй закон термодинамики	28				
	3.4	Энтропия	29				
	3.5	Метод термодинамических потенциалов Гиббса и его применение в ин-					
		женерной геологии	31				
4	Лен	кция 4. Термодинамика необратимых процессов и ее примене-					
	ние	в инженерной геологии	33				
	4.1	Постулат о локальном равновесии	33				
	4.2	Балансовое уравнение: поток обобщенной координаты и её производство	33				
	4.3	Применение уравнений неравновесной термодинамики при моделиро-					
		вании процессов в инженерной геологии	36				

5	Лекция 5. Термодинамика фазового (компонентного) состава грун-						
	тов		40				
	5.1	Межфазная поверхность в грунтах	40				
	5.2	Термодинамика твердой фазы грунта	41				
	5.3	Термодинамика порового раствора грунта	42				
	5.4	Термодинамика газовой фазы грунта	45				
	5.5	Термодинамика биотической составляющей грунтов	47				
	5.6	Диаграммы фазового состава грунта	47				
6	Лекция 6. Термодинамика воды в грунтах						
	6.1	Задача о влагопереносе	51				
	6.2	Понятие о потенциале влаги в грунтах	51				
	6.3	Практические способы определения химического потенциала воды в					
		грунтах	53				
	6.4	Использование кривой ОГХ	56				
	6.5	Закономерности формирования давления влаги в грунтах	56				
7	Лекция 7. Термодинамика адсорбции воды грунтами. Термодина-						
	мик	ка химических и физико-химических процессов в грунтах	60				
	7.1	Теплота смачивания	60				
	7.2	Свободная энергия адсорбции (работа адсорбции)	60				
	7.3	Расчет удельной поверхности грунта по адсорбции воды	62				
	7.4	Расчет термодинамических параметров по изотермам адсорбции	62				
	7.5	Термодинамика адсорбции воды разными грунтами	64				
	7.6	Расчет термодинамических условий химических реакций в грунтах	65				
	7.7	Описание равновесного распределения компонентов грунта на основе					
		термодинамической модели	66				
8	Лек	кция 8. Термодинамика процессов переноса в грунтах	70				
	8.1	Общие положения термодинамики процессов переноса в грунтах	70				
	8.2	Краевые условия	70				
	8.3	Основные уравнения переноса	72				
	8.4	Изотермический массоперенос в грунтах	72				
	8.5	Неизотермический влагоперенос в грунтах	75				
9	Лек	кция 9. Термодинамика диффузии и осмоса в грунтах. Термо-					
	дин	амика физико-механических процессов в грунтах	81				
	9.1	Диффузия	81				

	9.2	Осмос	82
	9.3	Термодинамика упругого деформирования грунта	84
10	Лек	ция 10. Термодинамика неупругого деформирования грунтов.	
	Tep	модинамические критерии прочности и разрушения грунтов	90
	10.1	Отличие деформирования упруго-пластичного грунта от идеального	
		пластичного	90
	10.2	Работа неупругого деформирования грунта	90
	10.3	Энтропия неупругого деформирования грунта	91
	10.4	Термодинамика компрессии и консолидации грунтов	92
	10.5	Прочность. Классические теории прочности	92
	10.6	Энергетические теории прочности (четвертая теория)	95
		Термодинамические критерии прочности	

Лекция 1. История формирования и развития термодинамики

Термодинамика – наука о закономерностях превращения энергии.

Цель и задачи курса

В курсе будут рассматриваться термодинамические закономерности, происходящие в грунтах в ходе различных процессов.

Задачи курса:

- 1) Овладение навыками использования возможностей термодинамики для решения инженерго-геологических задач;
- 2) Освоение методов изучения различных объектов геологической среды, которые будут рассматриваться как термодинамические системы;
- 3) Поиск общности свойств инженерно-геологических систем разного типа, общности форм выражения и описания на основе термодинамики различных явлений, которые могут происходить в инженерно-геологических системах.

Объект познания данного курса – геологическая среда (или верхние горизонты литосферы) и в первую очередь – один из её важнейших элементов – грунт(грунтовые толщи или массивы грунтов).

Предмет познания курса – энергетика взаимодействий компонентов и процессов в грунтах, а также энергетические закономерности взаимодействия грунтов с внешними средами или какими-либо внешними объектами (в том числе техногенными).

В курсе будет отдаваться приоритет энергетической оценке этих взаимодействий, что отличает его от прочих курсов.

Литература

Основная:

- 1) Королев В.А.Термодинамика грунтов./ Учебник, 2-е изд. –М., 2016. -258 с.
- 2) Дмитриев А.П., Гончаров С.А. Термодинамические процессы в горных породах / Учебник для вузов. –М., Недра, 1983, -312 с.

3) Симкин Э.М.Основы термодинамики горных пород. /Уч. пособие. –М.-Ижевск: Ин-т компьютерных исследований, НИЦ «Регулярная и хаотическая динамика», 2011, -220 с.

Дополнительная:

- 1) Базаров И.П.Термодинамика, -М., Высш. шк. 1983.-344с.
- 2) Булатов Н.К., ЛундинА.Б.Термодинамика необратимых физико-химических процессов. –М., Химия, 1984 -336c,
- 3) БулахА.Г. Методы термодинамики в минералогии. -Л. Недра, 1974 -184. с.

Первый период формирования термодинамики (с античности до середины XIX века)

Предыстория термодинамики — начало развития представлений о природе теплоты, накопление опытных фактов и формирование основных понятий. Но первые понятия о тепле (огне) возникли еще в Древней Греции (в работах Платона, Аристотеля и др.). Хотя, конечно, природу теплоты в то время описать еще не могли.

Эолипил Герона Александрийского (10-75 г. н.э.) – прообраз первого парового двигателя. (Рис. 1.1) Эолипил – металлический шар, вращающийся за счет выохода из него по трубочкам горячего пара. Пар же поступает от парового котла, нагреваемого костром.

Рис. 1.1. Прообраз первого парового двигателя

<u>В 1592 г.</u> Г.Галилей (1564-1642) изобрёл первый в истории термоскоп — прообраз современного термометра. Первые термоскопы были воздушные, затем — жидкостные. С их помощью можно было сравнивать температуру тел.

<u>В 1631 г.</u> французский физик Жан Рей и флорентиец Торричелли изобрели первый жидкостный термометр (спиртовой), который спустя почти сто лет затем был усовершенствован Фаренгейтом (1724), Р. Реомюром (1730) и, наконец, Андерсом

Цельсием (1701-1744), предложившим в 1742 г. современную стоградусную температурную шкалу («шкалу Цельсия»).

Две гипотезы о природе **теплоты** в XVIIвеке:

- Гипотеза теплорода (вещественная) флогистон носитель теплоты.
- Корпускулярная гипотеза объясняла тепло движением частиц.

Гипотеза теплорода опровергалась опытами Румфорда (1798) по сверлению металла под водой (за счет выделения тепла при сверлении вода закипела) и опытами Дэви (1799) по плавлению кусков льда путем их трения. Корпускулярная гипотеза же поддерживалась многими учеными (Ф.Бэкон, Р.Гук, И.Ньютон, Гюйгенс, Кеплер, Бойль, М.В.Ломоносов), а также философами: Т.Гоббсом(1655), Д.Локком(1698) и др.

<u>В 1744 г.</u> М.В.Ломоносов разработал корпускулярную теорию теплоты, а в 1748 г. сформулировал **закон сохранения вещества и движения**.

Первые классические работы по калориметрии были выполнены руководителем физической лаборатории Академии наук в Петербурге Георгом Рихманом(1711-1753 гг.), установившим в 1750 г. формулу смешения веществ с разной массой и теплоёмкостью:

$$t_{\text{смеси}} = \frac{t_1 + t_2}{2}$$

Формула здесь приводится в сокращенном виде: без массы. Работы Рихмана дали возможность получить формулу для оценки теплоемкости вещества по затрачиваемому количеству тепловой энергии.

Калориметрические исследования Г.Рихмана затем были продолжены Д.Блэком, Ирвином, Вильке, А.Лавуазье и П.С.Лапласом в работах по теплоёмкости тел. Все эти исследования конца XVIII века подготовили почву для работ по теории теплоты первой половины XIX века, когда наконец была отвергнута теория теплорода. В этот же период появились первые калориметры.

<u>В 1836 г.</u> химик Герман Иванович Гесс (1802-1850) открыл основной закон термохимии, положив начало этому новому направлению науки, изучавшего энергетические взаимодействия, которые происходят в результате химических реакций: «Когда образуется какое-либо химическое соединение, то при этом всегда выделяется одно и то же количество тепла независимо от того, происходит ли образование этого соединения непосредственно или же косвенным путём, или же в несколько приёмов».

<u>В 1822 г.</u> французский физик и математик Жан Батист Фурье (1768-1830) разработал теорию теплопроводности:

$$Q = \chi(T)$$
,

где Q – поток тепла, χ – коэффициент теплопроводности.

Аристотель использовал понятие «энергия» как «деятельность». Это слово произошло от греческого $\varepsilon \rho \gamma o \nu$ ("эргон") - "работа".

Лейбниц ввел понятие «живая сила» E, определив ее как произведение: $E = mv^2$. По сути, он ввел понятие «кинетической энергии».

<u>В 1807 г.</u> Томас Юнг (1773-1829) впервые использовал понятие «энергия» в современном смысле – как меру перехода движения материи из одних форм в другие.

<u>В 1824 г.</u> французский военный инженер Николя Сади Карно (1796-1832) в своей работе определил максимум коэффициента полезного действия тепловой машины и вплотную подошёл к формулировке основной идеи второго закона термодинамики. Идеи Карно затем были развиты в трудах Клапейрона и Г.Гельмгольца(1821-1894), которые занимались количественной оценкой закона сохранения энергии.

$$\mathrm{K}\Pi \Box = rac{A_{\mathrm{полезн}}}{A_{\mathrm{затр}}}$$

Окончательное опровержение гипотезы теплорода произошло лишь в 40-х годах XIX века, когда немецкий врач Юлиус Майер (1814-1895) вычислил в 1842 г. механический эквивалент теплоты: совершая работу в 427 к Γ м, можно получить 1 ккал тепла.

<u>В 1703 г.</u> Амонтон вычислил температуру абсолютного нуля $(-240^{\circ}C)$, а в <u>1779 г.</u> Ламберт уточнил расчет $(-270^{\circ}C)$. В <u>1954 г.</u> на X международном конгрессе мер и весов было установлено: $-273,15^{\circ}C$.

Д.П.Джоуль(1818-1889) провёл <u>в 1843 г.</u> экспериментальное определение механического эквивалента тепла. <u>В 1847 г.</u> – труд Г.Гельмгольца «О сохранении силы», где им на основе работ Ю.Майера и Д.П.Джоуля формулируется и количественно доказывается закон сохранения энергии, позже названный первым началом термодинамики.

Второй исторический период (1850-1870-е гг.)

Становление термодинамики как науки.

Начался с 1850 г. выходом в свет книги немецкого физика Рудольфа Клаузиуса (1822-1888) «О движущей силе теплоты и о законах, которые можно отсюда получить для теории теплоты». Эта книга является первой работой по термодинамике. В

этой работе Р.Клаузиусом впервые был сформулирован **второй закон термодина- мики**, а принцип эквивалентности теплоты и работы был назван «первым началом механической теории теплоты», т.е. **первым законом термодинамики**.

В 1867 г. выходит труд Р.Клаузиуса «Механическая теория теплоты», сыгравший огромную роль в развитии термодинамики. Он же ввел в термодинамику понятие энтропии (1865 г.): «энергия мира постоянна», «энтропия мира стремится к максимуму».

Отсюда возникла проблема «тепловой смерти» Вселенной: поскольку $\frac{1}{T} = \frac{dS}{dQ}$, то $T = \frac{dQ}{dS}$, и если dS > 0 и $dS \to \infty$, то $T \to 0$. Эти соотношения относятся к замкнутым системам. Но в реальности, например, Земля не является замкнутой системой, поэтому это выражение не применимо.

Позже Г.Гельмгольц сформулировал законы сохранения энергии в химических процессах и ввёл в 1881 году понятие **свободной энергии** F — энергии, которую необходимо сообщить телу для приведения его в термодинамическое равновесие с окружающей средой F = U - TS, где U — внутренняя энергия, S — энтропия, T — температура.

Третий период (70-е годы – конец XIX века). Статистическая термодинамика

Период синтеза феноменологических и молекулярно-кинетических представлений, который в конечном итоге привёл к возникновению статистической термодинамики.

Работы Л.Больцмана 1870-х годов по молекулярно-кинетической теории и выход в 1902 г. труда американского физика Джозайя Гиббса (1839-1903) «Основные принципы статистической механики».

Для оценки состояния систем можно использовать два подхода: (Рис. 1.2) макроподход (анализтрует макросостояния тела, т.е. его температуру T, объем V и массу или количество частиц N) и микроподход (тело состоит из множества частиц, для каждой из которых можно задать векторы ее положения в пространстве и импульса).

Статистическая термодинамика устанавливает связь между этими двумя подходами. (Рис. 1.2) Основная идея: если каждому макросостоянию соответствует много микросостояний, то каждое из них вносит в макросостояние свой вклад. Тогда свойства макросостояния можно рассчитать как среднее по всем микросостояниям, т.е. суммируя их вклады с учетом статистического веса.

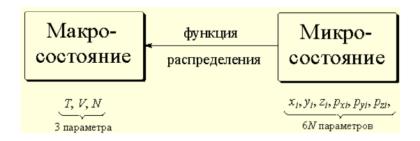


Рис. 1.2. Два подхода оценки состояния систем

Четвертый период (с 30х годов XX века по настоящее время). Термодинамика необратимых процессов

Создание неравновесной термодинамики (термодинамики необратимых процессов) и статистической физики, которые составили важнейший раздел современной теоретической физики. (Рис. 1.3)

Рис. 1.3. Разделы термодинамики

Применение термодинамики в геологии

С начала XX века классическая термодинамика, метод термодинамических потенциалов и правило фаз Гиббса начинают использоваться в геологии (в минералогии и петрографии). Впервые методы термодинамики в этих разделах были применены Ф.Бекке, В.Гольдшмидтом(1888-1947) и П.Эсколой(1883-1964) в 1911-1915 гг., а затем В.И.Вернадским, Д.С.Коржинским, Н.В.Беловым и др.

В кристаллографии применение термодинамики началось с классических работ Г.В.Вульфа(1863-1925) и В.И.Вернадского(1863-1945) в начале XX века по исследованию поверхностной энергии кристаллов.

Применения методов химической термодинамики развивалось в геохимии (особенно геохимии осадкообразования, геохимии гипергенеза, гидрогеохимии) благодаря работам В.И.Вернадского, А.Е.Ферсмана, В.М.Гольдшмидта, А.П.Виноградова и др.

В настоящее время следует отметить работы геохимиков М.В.Борисова, А.Г.Булаха, А.Ю.Бычкова, В.С.Голубева, Д.В.Гричука, В.А.Жарикова, А.А.Маракущева, Г.Б.Наумова, Г.Т.Остапенко, А.И.Перельмана, Л.Л..Перчука, Н.Ф.Челищева, Ю.В.Шварова, А.А.Ярошевского, а также Б.П.Бартона, Р.М.Гаррелса, Г.К.Хельгесона, Р.М.Барера

Попытки изучать на базе методов термодинамики вопросы **энергетики земной коры**, её энергетический баланс в связи с проблемами геодинамики и геофизики предпринимались начиная с работ Д.Джолли, В.И.Вернадского, А.Е.Ферсмана, А.И.Воейкова.

Значительным вкладом в геоэнергетическую теорию явились работы П.Н.Кропоткина, Б.Г.Поляка, Ф.А.Макаренко. К концу 1970-х годов была разработана первая общая схема энергетического баланса Земли с выделением первичных и промежуточных источников энергии.

Рис. 1.4. Схема энергетического взаимодействия геосфер Земли (по $\Pi.\Pi.$ Тимофеевуи $\partial p., 1989$)

Начало применения термодинамики в **геокриологии** (мерзлотоведении) связано с работами Б.Н.Достовалова, А.А.Ананяна, В.А.Кудрявцева, Б.А.Савельева и др.

Большую роль теория термодинамики оказывает в развитии смежного с геологией **почвоведения**, в частности при изучении закономерностей формирования структуры почв, их влагообеспеченности, геохимических и физико-химических особенностей (работы А.А.Роде, П.И.Андрианова, С.В.Нерпина, А.Ф.Чудновского,

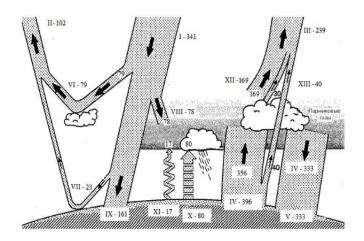


Рис. 1.5. Схема теплового баланса Земли (по К.Тренбертуи др., 2009): I – излучение от Солнца к Земле; II – отраженный в Космос свет; III – поглощенный свет; IV – обратное излучение атмосферы; V – поступление на поверхность; VI – отражение от облаков и атмосферы; VII – отражение от поверхности Земли; VIII – поглощение атмосферой; IX – поглощение поверхностью; X – испарение; XI – конвекция; XII – излучение из атмосферы; XIII – излучение от поверхности в Космос (арабскими цифрами указана мощность тепловых потоков, $Bm/м^2$)

А.М.Глобуса, Б.Н.Мичурина, А.Д.Воронина, И.И.Судницынаи др.)

В **грунтоведении** использование термодинамических понятий (свободной энергии, поверхностной энергии частиц и т.п.) началось с 1930-1940-х годов при изучении адсорбционной (поглотительной) способности грунтов, их капиллярных свойств, процессов гидратации и т.д. в работах М.М.Филатова(1877-1942), В.В.Охотина(1888-1954), В.А.Приклонского(1899-1959), Б.Б.Полынова(1877-1952), В.М.Безрукаи др.

Термодинамические представления активно использовались в грунтоведении, начиная с 1920-1940-х годов при изучении гидрофильности грунтов, в частности — закономерностей адсорбции воды и теплоты смачивания. Эти исследования проводились П.И.Андриановым, Е.М.Сергеевым, Г.Бойюкосом, Н.Янертом, Ф.Д.Овчаренко, З.А.Нерсесовой, Ц.М.Райтбурд, М.В.Слонимской, Р.И.Злочевской, В.А.Королёвым, Ю.И.Тарасевичем, Л.И.Кульчицкими др.

Применение термодинамики разрабатывалось в трудах М.Н.Гольдштейна, С.С.Вяловаи др. при изучении физико-химических и физико-механических свойств грунтов. Описывали процессы деформирования, разрушения, геологические процессы в грунтах на языке термодинамики.

Изучение просадочности и свойств лёссовых пород с позиций их энергетики разрабатывалась Н.И.Кригером, М.П.Лысенко, В.П.Ананьевым, Н.В.Воляникоми др.

Применение термодинамики в технической мелиорации грунтов.

Лекция 2. Методологические основы применения термодинамики в инженерной геологии

Геологические среды как термодинамические системы

Термодинамические инженерно-геологические системы (ТИГС) – макроскопические объекты разных рангов организации (или их совокупность), способные обмениваться между собой или с окружающей внешней (геологической или другой) средой веществоми и (или) энергией.

Граница ТИГС (граничная или контрольная поверхность) может быть выбрана произвольно и определяется целью. Контрольная поверхность может быть задана и аналитически, например:

$$f(x, y, z)_{\text{KII}} = 0$$

Таблица (Рис. 2.1) показывает разные состояния из всех возможных состояний системы, с которыми будет вестись работа в курсе.

Состояни	е систем при				
изоляции (взаимо- действия с окружающей	постоянства свойств во времени	термоди- намического равновесия	изменения энтропии S	Тип системы	Примечание
средой)	1) Нестацио- нарные (свойства	Неравновесные	d _i S > 0	I	идут неравновесные необратимые процессы
I. Неизоли- рованные	= f(t)	Квазирав- новесные	$d_i S = 0$	II	идут "почти" обратимые процессы
системы (dU≠0, dm≠0,	2) Стационарные (свойства = const)	Неравновесные	dS=0 $(diS = 0,$ $deS = 0)$	IIIa	нет дисси-пативных эффектов
$\mathbf{d_e}\mathbf{q_n} \neq 0$)		·	$d_{i}S > 0$ $d_{e}S < 0$	III6	есть диссипа-тивные эффекты
		Равновесные	$d_i S = 0$	IV	нет процессов внутри системы
II. Изолиро- ванные системы	Нестационарны	е неравновесные	$dS > 0$ $(\lim_{t \to \infty} S = S_{max})$	V	идут необратимые реальные процессы
$(dU=0, dm=0, d_eq_n = 0)$	Стационарны	е равновесные	$dS = 0$ $S = S_{max}$	VI	нет самопроизвольных процессов

Рис. 2.1. Виды инженерно-геологических термодинамических систем

Закрытая ТИГС не может обмениваться веществом, но может обмениваться энергией $(dm=0,\,dU\neq 0).$

Открытая ТИГС может обмениваться и веществом, и энергией (для которой $dm \neq 0, dU \neq 0$).

Если внутри системы нет поверхностей раздела, отделяющих друг от друга части системы, различающиеся по свойствам, то такая система — **гомогенная**, в противном случае — **гетерогенная**. Гомогенная часть гетерогенной термодинамической системы называется фазой.

Большинство ТИГС (например, грунты, инженерно-геологические элементы, грунтовые массивы и т.д.) – это многофазные гетерогенные неизолированные системы.

Компоненты ТИГС – составные части системы разного ранга. Количественное содержание компонентов дается разными шкалами:

1) Шкала плотностей масс компонентов (ρ -шкала):

$$\rho_k = m_k/V, \quad (k = 1, 2, \dots, K),$$

где индекс k — плотность компонента вида k в системе, при этом

$$\sum_k \rho_k = \sum_k m_k / V = m / V$$

2) **Шкала объёмных долей** компонентов (δ -шкала):

$$\delta_k = V_k/V$$

при этом $\sum_k \delta_k = 1$.

3) Шкала массовых долей компонентов (у-шкала):

$$\gamma_k = m_k / \sum_k m_k = m_k / m, \quad (k = 1, 2, \dots, K),$$

где γ_k — масса всей системы, при этом $\sum_k \gamma_k = 1$.

 $\gamma_k, \, \rho_k$ и δ_k и т.п. – **интенсивные** параметры состояния.

Параметры – физические величины, характеризующие состояние ТД системы в условиях ТД равновесия. Различают:

- **экстенсивные параметры состояния** (обобщенные координаты, или факторы ёмкости), пропорциональные массе системы;
- о **интенсивные параметры состояния** (обобщенные силы, факторы интенсивности), не зависящие от массы системы.

С практической точки зрения важно установить балансовые соотношения между отдельными компонентами грунта. Дифференциальное балансовое соотношение для количества компонента массы m_k (где k = 1, 2, ..., K – число компонентов системы):

$$dm_k = d_e m_k + d_i m_k$$

где $d_e m_k$ — приращение массы компонента, обусловленное переносом частиц через границы системы; $d_i m_k$ — приращение массы компонента за счёт превращений внутри системы. (Индексы: e(external) — внешний; i(internal) — внутренний.)

Для массы компонентов $m = \sum_k m_k$, составляющих ИГТС:

$$dm = d_e m = \sum_k d_e m_k = const,$$

$$d_i m = \sum_k d_i m_k = 0.$$

T.e. у изолированной системы масса компонентов остается постоянной. Аналогично для **скорости** изменения компонентов:

$$\frac{dm_k}{dt} = \frac{d_e m_k}{dt} + \frac{d_i m_k}{dt},$$

$$\frac{dV}{dt} = \frac{d_eV}{dt}, \quad (k = 1, 2, \dots, K)$$

Пространственная неоднородность обобщенных координат

Величины вида m_k , V ит.п., принадлежащие к скалярным экстенсивным свойствам, – **обобщённые координаты**, обозначаемые q_n , где нижний индекс n = 1, 2, ..., M, служит указателем вида взаимодействия.

Закон сохранение обобщенных координат:

$$(q_n)_{\text{M3OJI}} = const; \quad (dq_n)_{\text{M3OJI}} = 0,$$

или

$$dq_n = d_e q_n + d_i q_n$$
;

$$dq_n = d_e q_n; \quad d_i q_n = 0.$$

Любая обобщенная координата dq_n , отражающая то или иное экстенсивное свойство системы, характеризуется некоторым распределением в пространстве, занимаемом данной инженерно-геологической системой (грунтом, массивом и т.п.), и зависит от размеров и формы системы. Если dq_n равномерно распределена в пространстве, то

система однородная (по данной координате или свойству). Если же dq_n неравномерно распределена в пространстве, то система неоднородная (по данной координате или свойству).

Примеры однородных и неоднородных систем представлены на (Рис. 2.2). Неоднородность иерархична и обусловливает проявление масштабного эффекта.

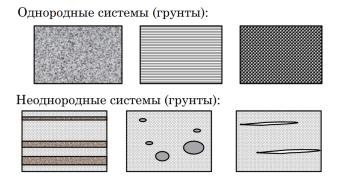


Рис. 2.2. Примеры однородных и неоднородных систем

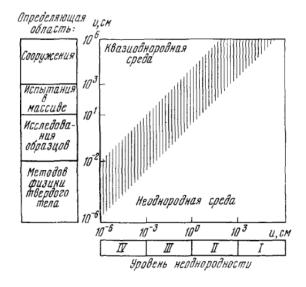


Рис. 2.3. Диаграмма неоднородности горных пород в массиве (по М.В.Рацу, 1973) Заштрихованная область дает зависимость определяющих областей неоднородности от уровня этой неоднородности.

Разбивая систему (грунт) на M произвольных по форме макроскопических областей ($\beta=1,2,\ldots,M$) с объемами $V^{(\beta)}$ и экстенсивными свойствами $q^{(\beta)}$, можно определить **среднюю плотность свойства** q в выделенной области β :

$$q_{(v)}^{(\beta)} = \frac{q^{(\beta)}}{V^{(\beta)}}$$

Предел этого соотношения при $V^{(\beta)} \to 0$ является плотностью данного свойства в некоторой точке системы:

$$q_{(v)} = \frac{\lim_{V(\beta) \to 0} q^{(\beta)}}{V^{(\beta)}}$$

Плотность обобщённой координаты $q_{(v)}$ – интенсивное свойство.

Т.о., в 3-метрном пространстве (грунта) значения обобщенных координат $q_{(v)}$ характеризуются полем плотности:

$$q_{(v)}(\vec{r}) = q(x, y, z)$$

Если поле плотности $q_{(v)}(\vec{r})$ однородно (или неоднородно), то соответствующее экстенсивное свойство равномерно (или неравномерно) распределено по объёму V ИГС. Следовательно, для неоднородных систем будет характерен масштабный эффект, обусловленный наличием неоднородного поля плотности $q_{(v)}(\vec{r})$.

В силу аддитивности экстенсивное свойство q системы является суммой экстенсивных свойств $q^{(\beta)}$ всех областей β , образующих данную ИГС:

$$q = \sum_{eta} q^{(eta)} = \sum_{eta} q^{(eta)}_{(
u)} / V^{(eta)}.$$

Аналогично плотности $q_{(v)}$ свойства q вводятся также понятия **удельных** $q_{(m)}$ и **мольных** $q_{(n)}$ значений обобщённых координат q, связь между которыми в каждой точке пространства ИГС:

$$q_{(v)} = \rho q_{(m)} = Cq_{(n)},$$

где ρ и C – плотность массы и число молей компонента системы соответственно.

В самом общем случае пространственное распределение многих свойств в рассматриваемой ИГС определяется множеством (n) полей плотностей соответствующих обобщенных координат:

$$q_{n(v)} = q_n(x, y, z) = q_{(v)}(\vec{r}), \quad (n = 1, 2, \dots, M).$$

Т.к. поле плотности объема $V_{(v)}(\vec{r}) = 1$, то число полей $q_{n(v)}(\vec{r})$, фактически участвующих в определении состояния ИГС, равно M-1, а, следовательно, общее число факторов, задающих состояние ИГС, с учетом уравнения контрольной поверхности равно M.

Понятие об обобщенных потенциалах и взаимодействиях в ИГС

Обобщённый потенциал переноса P_n – характерное для какого-либо взаимодействия в системе свойство, связанное с возбуждением данного вида взаимодействия. Индекс n здесь означает конкретный вид взаимодействия (n = 1, 2, ..., rде – число взаимодействий разных видов).

Обобщённые потенциалы переноса P_n ИГС – **скалярные интенсивные** свойства системы. С соответствующими обобщёнными координатами q_n они попарно образуют множество сопряжённых свойств объектов.

При этом каждому виду взаимодействия между объектами ИГС сопоставляется пара таких свойств:

$$P_n \sim q_n$$
.

В грунтах могут происходить взаимодействия разной природы. Некоторые из них:

1) **Механическое** (или деформационное) взаимодействие между объектами ИГС выражается либо в изменении их объёма $V=q_{\rm mex}$ под действием давления $p=P_{\rm mex}$, т.е. пара сопряжённых свойств:

$$P_{\text{mex}} \sim q_{\text{mex}} = p \sim V$$
,

либо в изменении деформации $\varepsilon \sim q_{\text{мех}}$ под действием соответствующего механического напряжения $\sigma = P_{\text{мех}}$, т.е. пара сопряжённых свойств:

$$P_{\text{mex}} \sim q_{\text{mex}} = \sigma \sim \varepsilon.$$

2) **Термическое** взаимодействие выражается в переносе энтропии $S = q_{\text{терм}}$ от одного объекта ИГС к другому под действием обобщённого потенциала – температуры \sim , т.е. пара сопряжённых свойств:

$$P_{\text{терм}} \sim q_{\text{терм}} = T \sim S.$$

3) Массообмен выражается в переносе массы компонента $m_k = q_{\text{мас}}$ под действием массового или удельного химического потенциала этого компонента $P_{\text{мас}} = \mu_{\text{к,мас}}$ т.е. пара сопряжённых свойств:

$$P_{ ext{mac}} \sim q_{ ext{mac}} = \mu_{ ext{k,mac}} \sim m_k$$

4) Электрическое взаимодействие состоит в переносе электрического заряда q_k от одного объекта (компонента) к другому под действием электрического потенциала $\varphi = P_{\text{эл}}$ т.е. пара свойств:

$$P_{\text{\tiny ЭЛ}} \sim q_{\text{\tiny ЭЛ}} = \varphi_k \sim q_k$$
.

Т.о., в общем случае обобщённый потенциал переноса P_n рассматриваемой ИГС – скалярная функция точки или скалярное поле в 3-мерном эвклидовом пространстве:

$$P_n = P_n(x, y, z) = P_n(\vec{r}).$$

Если $P_n = P_n(\vec{r})$, то поле обобщенного потенциала стационарное. Если $P_n = P_n(\vec{r},t)$, то поле нестационарное.

Градиент потенциала как причина процесса

Неоднородность данного поля потенциала P_n характеризуется его градиентом

$$gradP_n = \nabla P_n(\vec{r}) = \frac{\partial P_n}{\partial x}\vec{i} + \frac{\partial P_n}{\partial y}\vec{j} + \frac{\partial P_n}{\partial z}\vec{k},$$

являющимся векторной функцией точки или **векторным полем**. Направление вектора ∇P_n в любой точке (\vec{r}) совпадает с направлением, в котором скорость изменения потенциала P_n с перемещением точки s (т.е. производная dP_n/ds) достигает наибольшего значения, а модуль указанного вектора равен этому наибольшему значению скорости.

Из последнего уравнения следует, что если $P_n(\vec{r})$ однородно, то его градиент всюду равен нулю и наоборот.

Самопроизвольный перенос обобщённой координаты q_n в какой-нибудь области ИГС возбуждается лишь с возникновением в ней поля градиента обобщённого потенциала $\nabla P_n(\vec{r}) \neq 0$, сопряженного с данной координатой, и прекращается с исчезновением этого поля (когда $\nabla P_n(\vec{r}) = 0$):

если
$$\nabla P_n(\vec{r}) \neq 0$$
 есть процесс

если
$$\nabla P_n(\vec{r}) = 0$$
 нет процесса

Перенос (процесс) осуществляется всегда вдоль линии градиента. Т.о., градиент $P_n(\vec{r})$ является **движущей силой** самопроизвольного переноса соответстсвующей q_n в рассматриваемой системе.

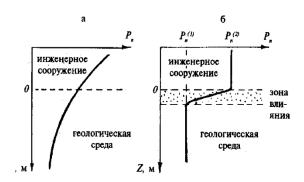


Рис. 2.4. Изменение обобщенного потенциала P_n при переходе от инженерного сооружения к геологической среде при наличии градиента (а) и скачка (б) потенциала.

Работа в ИГС

Количественная оценка различных взаимодействий в системе дается с помощью обобщенной работы:

$$dA_n = P_n d_e q_n,$$

где $d_e q_n$ – элементарное изменение обобщенной координаты за счет такого переноса.

Работа dA_n не является полным дифференциалом, поскольку работа A_n зависит от пути перехода системы из одного состояния в другое, т.е. является функцией процесса, совершаемого системой.

Если $dA_n > 0$, то воздействие вида n направлено на ИГС со стороны внешней среды, а при $dA_n < 0$ – наоборот (правило знаков).

Виды работ:

1) Механическая работа:

$$dA_{\text{Mex}} = -pd_eV$$
,

где d_eV — изменение объема, где p — давление внутри системы; (-p) — механический потенциал системы;

2) Термическая работа:

$$dA_{\text{Tedm}} = Td_eS$$

— совершается при переносе энтропии S через контрольную поверхность под действием температуры , где d_eS — приращение энтропии системы за счёт внешних причин с учётом «эффектов увлечения», причём $d_eS=d_eS_{\rm тепл}+d_eS_{\rm macc}$ (теплообмен и массообмен между системой и окружающей средой).

Часть термической работы, обусловленная теплообменом (самопроизвольным переносом энтропии через контрольную поверхность), называется **теплотой**:

$$dQ = TdS$$
.

Для закрытой системы $(d_e m_k = 0; d_e q_k = 0 \text{ и, следовательно}, d_e S_{\text{macc}} = 0)$:

$$dA_{\text{терм}} = Td_eS_{\text{тепл}} = dQ$$

3) Массовая работа (работа массообмена, включая химические превращения):

$$dA_{\text{Macc}} = \mu_{\text{k,vg}} d_e m$$
,

где $d_e m$ изменение массы компонента $k, \, \mu_{\rm k,yg}$ — удельный химический потенциал k-го компонента, играющий роль потенциала переноса.

$$dA_{ ext{ iny Macc}} = \sum_{k} dA_{ ext{ iny k,yd}} d_e m_k$$

Xимический потенциал k-го компонента (μ_k) — это энергия, которую необходимо затратить для того, чтобы добавить в систему бесконечно малое молярное количество данного компонента.

4) Электрическая работа:

$$dA_{k,2,1} = \varphi d_e q$$
,

где $d_e q$ — изменение электрического заряда, ϕ — электрический потенциал;

$$dA_{\scriptscriptstyle exttt{ЭЛ}} = \sum_{\scriptscriptstyle k} d_e A_{\scriptscriptstyle exttt{k}, \scriptscriptstyle exttt{ЭЛ}} = oldsymbol{arphi} \sum_{\scriptscriptstyle k} d_e q = oldsymbol{arphi} d_e q$$

5) Работа намагничивания:

$$dA_{\text{MAPH}} = -Hd_eJ_H$$

где $d_e J_H$ — изменение намагниченности, H — напряженность магнитного поля.

6) Работа поверхностного натяжения:

$$dA_{\text{nob}} = -\sigma_o d_e s_{\text{nob}}$$

— совершается при переносе (увеличении или уменьшении) площади поверхности $s_{\text{пов}}$ раздела фаз системы через её контрольную поверхность под действием поверхностного натяжения σ_o .

7) Работа **трения** $(dA_{\rm TP})$ совершается при переносе какой-либо (т.е. разной природы) обобщённой координаты q_n от объекта 1 к объекту 2 (необратимый процесс) через контрольную поверхность — теплота диссипации:

$$dA_{\mathrm{TP}} = d_i Q_{\mathrm{дисс}}$$

Общая работа, совершаемая в системе, будет равна сумме всех видов работ:

$$dA = \sum_{k} P_n d_e q_n,$$

где n — вид взаимодействия ($n=1,2,\ldots,M$). Таким образом, различные по природе взаимодействия в системе могут быть охарактеризованы обобщенной работой.

Лекция 3. Законы термодинамики и их применение в инженерной геологии

Первый закон термодинамики

В основу построения термодинамики положены два закона (начала термодинамики), установленных эмпирически:

- **первый закон** термодинамики, имеющий всеобщий характер, отражает количественную сторону процессов превращения энергии системе,
- о **второй закон** устанавливает качественную сторону направленность процессов, происходящих в системах.

Эмпирически установлено, что, несмотря на зависимость каждой в отдельности работы от пути процесса, суммарная работа не зависит от этого пути, а определяется только начальным и конечным состоянием системы, т.е. сумма всех элементарных работ, совершённых системой и над системой, является полным дифференциалом некоторого присущего системе свойства U, называемого внутренней энергией

$$\sum_{n} dA_{n} = dU$$

Это утверждение составляет основное содержание первого закона термодинамики.

Интегрируем полученное уравнение:

$$\Delta U = \sum_{n} A_n,$$

где $\Delta U = U_2 - U_1$ – разность внутренних энергий системы в состояниях 1 и 2.

Величина U – скалярное экстенсивное свойство.

Для ТИГС с учётом выражения для обобщённой работы, уравнение первого закона термодинамики имеет вид:

$$dU = \sum_{n} P_n d_e q_n$$

Т.е. внутренняя энергия ИГС U — функция её обобщённых координат q_n .

Для изолированной ИГС $(d_eq_n=0)$, получаем, что $(dU)_{\rm изол}=0$ и $U_{\rm изол}=const$, откуда вытекает закон сохранения внутренней энергии ИГС: у всякой изолированной ИГС внутренняя энергия остается постоянной:

$$U_{\text{изол}} = const$$

Практическое применение закона в инженерной геологии

Рассмотрим 1-й пример: имеется ТИГС, в которой совершается 3 вида работы: механическая, массовая и термическая (3 степени свободы). (Рис. 3.1)

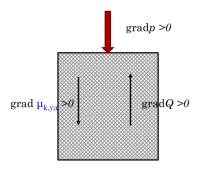


Рис. 3.1. TИГС, в которой совершается 3 вида работы: механическая, массовая и термическая

Для такой системы:

$$dU = dA_{\text{Mex}} + dA_{\text{Mac}} + dA_{\text{TeDM}}$$

$$dU = -pd_eV + \mu_{k,v,d}d_em_k + Td_eS$$

Учитывая, что $Td_eS=dQ$, можно также записать:

$$dU = -pd_{e}V + \mu_{k,y,\eta}d_{e}m_{k} + dQS$$

или, выделяя термическую работу от прочих, имеем:

$$dU = \sum_{n} dA_n + dQ \tag{I}$$

Это выражение (I) называется **уравнением Гиббса**.

Поскольку dU — полный дифференциал, то эта функция может быть произвольное число раз продифференцирована по каждой из обобщённых координат при постоянстве остальных. В этом случае её частные производные первого порядка совпадают с обобщёнными потенциалами, т.е.

$$\left(\frac{\partial U}{\partial q_n}\right)_{q_n+1,\ldots} = P_n, \quad (n=1,2,3,\ldots,M).$$

Для нашей системы (с 3-я степенями свободы) имеем:

$$\left(\frac{\partial U}{\partial S}\right)_{V,m_k} = T, \quad \left(\frac{\partial U}{\partial V}\right)_{S,m_k} = -p, \tag{II,III}$$

$$\left(\frac{\partial U}{\partial m_k}\right)_{S,m_i} = \mu_{k,yz}, \quad (k = 1, 2, \dots, K),$$
 (IV)

т.е. внутренняя энергия – функция независимых обобщенных координат:

$$U = U(S, V, m_k, \ldots).$$

К полученным 4-м уравнениям (I-IV) с 7 неизвестными надо добавить еще 3 уравнения для получения замкнутой системы уравнений. Это т.н. определяющие уравнения (или уравнения состояния) ИГТС, устанавливаемые опытным путем, они связывают P_n и q_n . Для нашего примера:

$$S = f(T) \tag{V}$$

– связь через теплоемкость (C_V) или уравнение теплопроводности

$$V = f(p) \tag{VI}$$

– уравнение деформирования (закон Гука и т.п.)

$$m_k = f(\mu_k) \tag{VII}$$

– уравнение массопереноса (диффузии, осмоса, влагопереноса и т.п.)

Решая эту замкнутую систему уравнений, находим все параметры, т.е. устанавливаем полный энергетический баланс в нашей системе.

Рассмотрим 2-й пример: имеется ТИГС, в которой совершается деформирование массива грунта в поле тяготения и термическая работа. (Рис. 3.2)

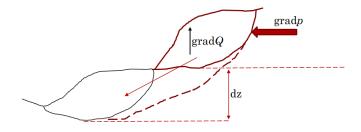


Рис. 3.2. *ТИГС*, в которой совершается деформирование массива грунта в поле тяготения и термическая работа

Элементарная работа перемещения грунта массой m по высоте на величину dz в гравитационном поле равна

$$dA_{\text{rpab}} = -mgdz$$

Обобщённый потенциал здесь – вес тела mg (экстенсивный параметр), а обобщённая координата – изменение высоты (dz) над уровнем сравнения. Тогда уравнение Гиббса имеет вид:

$$dU = Td_eS - pd_eV - mgdz$$

Используя преобразование Лежандра¹, это выражение можно привести к виду:

$$d(U + mgz) = TdS - pdV + gzdm,$$

где сумма (U+mgz) интерпретируется как «полная» энергия системы, т.е. внутренняя и потенциальная.

Рассмотрим 3-й пример: имеется ТИГС, представленной лёссом, в которой совершается только механическая работа. (Рис. 3.3)

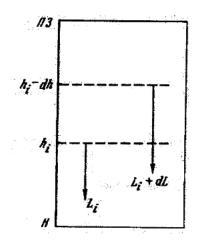


Рис. 3.3. *ТИГС*, представленной лёссом, в которой совершается только механическая работа

 $\Pi 3$ – поверхность Земли, H – глубина

Частицы лёсса на глубине h_i при просадке сместятся на L_i , а на глубине h_i-dh сместятся на $L_i+dL>L_i$. Тогда относительная просадочность δ будет равна:

$$\delta = \frac{dL}{dh}$$
 или $dL = -\delta dh$

Тогда потенциальная энергия частиц лёссовой толщи мощностью H равна:

$$dU = \int_{0}^{H} p(h)\delta dh,$$

$$L(X, y, z, \ldots) = L - xX,$$

$$dL(X, y, z, ...) = -xdX + Ydy + Zdz + ...$$

 $^{^{1}}$ Преобразование Лежандра для перехода от функции нескольких переменных L = L(x, y, z, ...) к функции вида L = L(X, y, z, ...) имеет вид:

где $p(h) = \rho gh$ — давление в основании столба лёсса плотностью ρ и высотой h. Интегрируя это уранение, получим:

$$U = \frac{\rho g \delta H^2}{2}$$

Например, для $\rho = 1.5 \, \text{г/см}^3$, $\delta = 0.03$ и H = 15 м получим, что потенциальная энергия лёсса на площади в $1 \, \text{м}^2$ составит $4.9 \cdot 10^4$ Дж.

Глобальный запас потенциальной энергии лёссов на Земле при их площади распространения $13\cdot 10^6$ км 2 составит около $5,4\cdot 10^{17}$ Дж.

Второй закон термодинамики

Согласно второму закону термодинамики, у всякой изолированной ИГС, находящейся в нестационарном неравновесном состоянии, энтропия с течением времени возрастает, причём до тех пор, пока ИГС не достигнет стационарного равновесного состояния, т.е.

$$(dS_{\text{изол}}) \geqslant 0$$
,

где знак ">" относится к нестационарному неравновесному состоянию, а знак "=" – к её стационарному равновесному состоянию.

Это уравнение – аналитическое выражение второго закона термодинамики.

У неизолированных ИГС энтропия состоит из двух слагаемых:

$$dS = d_e S + d_i S$$
,

обусловленных изменением энтропии за счет внешних d_eS и внутренних d_iS взаимодействий. Всегда $d_iS \geqslant 0$. Но может быть как $d_eS \leqslant 0$, так и $d_eS \geqslant 0$. Поэтому возрастание или убывание энтропии неизолированной ИГС определяется соотношением слагаемых d_eS и d_iS .

Оценка dS позволяет судить о направленности данного процесса в рассматриваемой системе. Измеряется S в Дж/(моль· K).

Статистическое обоснование 2-го закона термодинамики было дано Л.Больцманом: природа в своих процессах стремится от менее вероятных состояний к более вероятным, а энтропия является мерой вероятности (ω – число микросостояний системы): $S = k \ln(\omega) + C$, где $k = 1,38 \cdot 10^{-23} \text{Дж} \cdot \text{K}^{-1}$ – константа Больцмана; C – постоянная интегрирования.

$$R = kN_{\Delta}$$
.

где R — газовая постоянная; N_A — число Авогадро.

Энтропия

Трактовки определения энтропии:

- 1) Термодинамическая трактовка (2-й закон): в самопроизвольных (энергетически выгодных) процессах энтропия стремится к максимуму, а энергия к минимуму.
- 2) Статистическая трактовка (ур-ние Больцмана).
- 3) Калориметрическое вычисление S для обратимого процесса: $dS = \frac{dQ}{T} = C_p \frac{dT}{T}$, где C_p удельная теплоёмкость, а для необратимого процесса dS > dQ/T. Откуда

$$\Delta S = \int \frac{C}{T} dT$$

При T=0 энтропия =0.

4) Энтропия как мера «беспорядка» системы: природа стремится от порядка к беспорядку (хаосу). (Рис. 3.4)

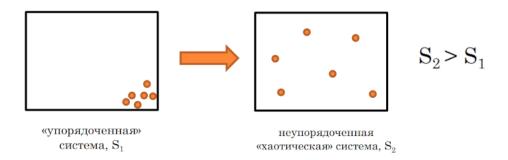


Рис. 3.4. Переход замкнутой системы из упорядоченного состояния в неупорядоченное под действием различных процессов

- 5) Конфигурационная энтропия структурная трактовка. (Рис. 3.5)
 Структурированные системы антиэнтропийны (кристалл). Неструктурированные (беспорядочные) системы энтропийны (элювий, коллювий и т. др. грунты). В природе одновременно идут энтропийные и антиэнтропийные геологические процессы.
- 6) Информационная энтропия по К.Шеннону мера неопределенности системы. Информационная энтропия для независимых случайных событий x с n возможными состояниями (от 1 до n, p функция вероятности) рассчитывается

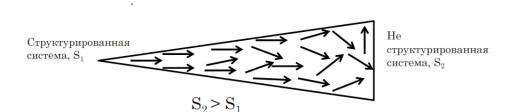


Рис. 3.5. Самопроизвольный переход системы из структурированного в неструктурированное состояние

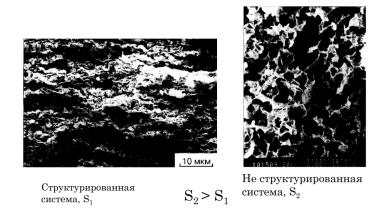


Рис. 3.6. Ориентированная (слева) и неориентированная (справа) структуры смектитовой глины

по формуле:

$$H(x) = -\sum p(i)\log_2 p(i)$$

Эта величина также называется средней энтропией сообщения. Прирост информации равен утраченной неопределенности.

Л.Бриллюэн ввел понятие — **негэнтропия** H(x). Негэнтропия = отрицательная энтропия.

Получение информации о физической системе соответствует понижению энтропии этой системы. Низкая энтропия означает неустойчивое состояние. Энтропия есть мера недостатка информации о действительной структуре системы. Связанная информация = убыванию S = увеличению H.

Метод термодинамических потенциалов Гиббса и его применение в инженерной геологии

Наряду с термодинамическими функциями (U,S) используются и другие характеристические функции – термодинамические потенциалы (введены Гиббсом): (Рис. 3.7)

- о G изобарно-изотермический потенциал (энергия Гиббса): G = F + pV; для хим. реакции $G = -RT \cdot \ln K$
- \circ F изохорно-изотермический потенциал (энергия Гельмгольца или свободная энергия): F=U-TS
- \circ H энтальпия: H=U+pV=TS+F+pV

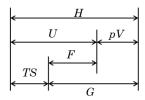


Рис. 3.7. Схема, дающая количественную взаимосвяь между термодинамическими потенциалами

U – внутренняя энергия, p – давление, V – объем, T – температура

Любой потенциал $\Phi(\Phi=U,F,G,H,S)$ обладает свойством полного дифференциала, измеряется в Дж или (для удельных величин) в Дж/кг и Дж/моль.

Он связан с обобщенными координатами (q_n) и обобщенными потенциалами (n) соотношениями Максвелла (соотношения взаимности):

$$\left(rac{\partial \Phi}{\partial q_n}
ight)_{q_i,p_i} = P_n, \quad \left(ext{при} \quad q_i
eq q_n, \quad P_i
eq P_n
ight)$$

$$\left(rac{\partial \Phi}{\partial P_n}
ight)_{q_i,p_i} = -q_n, \quad \left(ext{при} \quad q_i
eq q_n, \quad P_i
eq P_n
ight)$$

Это позволяет установить связь между потенциалами, например:

$$\left(\frac{\partial G}{\partial T}\right)_{p,m_k} = \left(\frac{\partial F}{\partial T}\right)_{V,m_k} = -S$$

На основе этих выражений можно получить дифференциальные уравнения связи между различными сопряжёнными свойствами ТИГС, что и составляет суть метода термодинамических потенциалов.

Например, для ИГС, описываемой уравнением Гиббса и независимыми переменными S, V, m_i, \ldots, m_k , соотношения взаимности:

Условия самопроизвольного протекания процесса в ТИГС: $d\Phi < 0$ или dF < 0; dH < 0; dG < 0; dU < 0.

Условия равновесия в ТИГС: $d\Phi=0$ или dF=0; dH=0; dG=0; dU=0 ($F=F_{min};$ $H=H_{min};$ $G=G_{min};$ $U=U_{min}$).

Кроме того, условие ТД равновесия предполагает равенство во всех частях системы $(1,2,\ldots,N)$ обобщенных потенциалов переноса P_n (или отсутствие их градиентов), т.е. $P_n^{(1)}=P_N^{(2)}$, или

) оооощенных потенциалов переноса
$$P_n$$
 (или отсутствие, или
$$\begin{cases} T^{(1)} = T^{(2)} = \ldots = T^{(N)} & \text{- термическое равновесие} \\ p^{(1)} = p^{(2)} = \ldots = p^{(N)} & \text{- механическое равновесие} \\ \mu_k^{(1)} = \mu_k^{(2)} = \ldots = \mu_k^{(N)} & \text{- массовое равновесие} \\ \ldots \\ P_n^{(1)} = P_n^{(2)} \end{cases}$$

Лекция 4. Термодинамика необратимых процессов и ее применение в инженерной геологии

Неравновесная термодинамика – раздел термодинамики, изучающий системы вне состояния термодинамического равновесия и необратимые процессы.

Постулат о локальном равновесии

Т.к. 1 и 2 законы термодинамики не зависят от переменной времени (t), то для характеристики кинетики процессов переноса обобщенных координат необходимо пользоваться аппаратом термодинамики необратимых процессов и балансовыми уравнениями вида:

$$\left(rac{\partial q_n}{\partial t}
ight)_{V,\Omega} = \left(rac{\partial d_e q_n}{\partial t}
ight)_{V,\Omega} + \left(rac{\partial d_i q_n}{\partial t}
ight)_{V,\Omega},$$

где индексы V и Ω означают постоянство объема и площади контрольной поверхности.

При этом в термодинамике необратимых процессов принимается **постулат о ло-кальном равновесии**: хотя система в целом и является неравновесной, но для её локальных частей, рассматриваемых как равновесные, в каждый момент времени могут применяться уравнения равновесной термодинамики.

Балансовое уравнение: поток обобщенной координаты и её производство

Поток J_{q_n} обобщенной координаты q_n через контрольную поверхность ИГС:

$$J_{q_n} = -\left(rac{\partial_e q_n}{\partial t}
ight)_{V,\Omega} = -\int\limits_V \left(rac{\partial_e q_{n(V)}}{\partial t}
ight)_{V,\Omega} dV$$

Производством $\Pi_{q_n} = \sigma_{q_n}$ той же координаты q_n внутри системы:

$$\Pi_{q_n} = \sigma_{q_n} = \left(\frac{\partial_i q_n}{\partial t}\right)_{V,\Omega} = -\int\limits_V \left(\frac{\partial_i q_{n(V)}}{\partial t}\right)_{V,\Omega} dV$$

Тогда балансовое уравнение можно представить в виде:

$$\left(rac{\partial q_n}{\partial t}
ight)_{V,\Omega} = -J_{q_n} + \Pi_{q_n}$$

Переходя к балансу плотностей обобщенных координат:

$$\left(rac{\partial q_{n(V)}}{\partial t}
ight) = \left(rac{\partial_e q_{n(V)}}{\partial t}
ight) + \left(rac{\partial_i q_{n(V)}}{\partial t}
ight)_{V,\Omega} = -J_{q_n(V)} + oldsymbol{\sigma}_{q_n},$$

где $J_{q_n(V)}$ – отрицательный локальный поток координаты q_n , $\sigma_{q_n} = \Pi_{q_n(V)}$ – локальное производство обобщённой координаты q_n .

Здесь потоки J_{q_n} различных q_n могут быть >0, <0 или =0 в зависимости от конкретных особенностей ИГС.

Из определений потока и производства обобщенной координаты:

$$\left(rac{\partial q_n}{\partial t}
ight)_{V,\Omega} = -J_{q_n} + \Pi_{q_n}$$

Для обобщённых координат системы, в целом представленных массой m, объёмом V, электрическим зарядом q, в силу закона сохранения:

$$\Pi_m = \sigma_m = 0, \quad \sigma_V = 0, \quad \sigma_q = 0.$$

Однако для энтропии по 2 закону термодинамики может быть либо больше, либо равно нулю

$$\Pi_S = \sigma_S > 0$$

Для обобщённых координат подсистем q_{n_k} их производства могут принимать любые значения, при этом если $\sigma_{q_n} > 0$ (< 0), то говорят о наличии в ТИГС источников (стоков) соответствующей обобщённой координаты.

Локальное производство энтропии $\sigma_S = dS/dt$ в ИГС с учетом закона диссипации:

$$\sigma_S = \frac{1}{T} \sum_i X_i J_i, \quad (i = 1, 2, \dots, I),$$

гле X_i – обобщенная сила, J_i – обобщенный поток.

В общем случае $X_i = -\nabla P_n$ и $J_i = \vec{J}_{q_n}$, где \vec{J}_{q_n} – вектор поверхностной плотности потока обобщенной координаты q_n .

Произведение вида

$$X_iJ_i=T\sigma_S=\vartheta$$

носит название **локальной диссипативной функции** ϑ .

Связь между величинами X_i и J_i в устанавливается с помощью т.н. феноменологических коэффициентов α_{ij} исходя из линейного закона – постулата о линейном соотношении потоков и сил:

$$J_i = \sum \alpha_{ij} X_i, \quad (i, j = 1, 2, \dots, I),$$

констатирующего, что суммарный поток J_i в системе может быть образован с участием всех силовых полей разной природы.

Примеры простейших вариантов таких линейных законов:

 \circ Закон Ома: $J_{\text{эл}} \sim \chi \cdot grad \phi$

 \circ Закон Фика: $J_m \sim D \cdot gradC$

 \circ Закон Фурье: $Q \sim \lambda \cdot gradT$

 \circ Закон Дарси: $J_{H_2O} \sim K_{\Phi} \cdot gradP$

 \circ Закон Гука: $\sigma \sim E \cdot \varepsilon$

Анализ одного процесса (одного потока J_i) не вызывает затруднений. Но анализ одновременно протекающих процессов – сложная задача. Более того, перенос одной координаты может вызвать перенос другой (например перенос m вызывает перенос Q или $q_{\text{эл}}$ и т.п.). Это называют эффектом увлечения. Его и можно оценить на базе неравновесной термодинамики.

Феноменологические коэффициенты (α_{ij}) – основные параметры процессов переноса. Они должны удовлетворять условиям, вытекающим из 2 закона ТД. Так, например, уравнение для локальной диссипативной функции $(X_iJ_i=T\,\sigma_S=\vartheta)$ можно записать в матричной форме

$$\vartheta = (X_1, X_2, \dots, X_I) \begin{pmatrix} J_1 \\ \vdots \\ J_I \end{pmatrix} = (X_1, X_2, \dots, X_I) (\alpha_{ij}) \begin{pmatrix} X_1 \\ \vdots \\ X_I \end{pmatrix},$$

где (α_{ij}) – матрица феноменологических коэффициентов:

$$(lpha_{ij}) = egin{pmatrix} lpha_{11} & lpha_{12} & \dots & lpha_{1I} \ dots & dots & \ddots & dots \ lpha_{I1} & lpha_{I2} & \dots & lpha_{II} \end{pmatrix}$$

Тогда по условию $\vartheta > 0$ форма записи этого уравнения заведомо положительна и, следовательно, диагональные элементы матрицы (α_{ij}) и все её главные миноры должны быть также > 0, т.е.

$$\alpha_{11} > 0, \ldots, \alpha_{II} > 0,$$

а также

$$\begin{vmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{vmatrix} > 0, \dots, \begin{vmatrix} \alpha_{11} & \dots & \alpha_{1I} \\ \vdots & \ddots & \vdots \\ \alpha_{I1} & \dots & \alpha_{II} \end{vmatrix} > 0.$$

Т.е. феноменологические коэффициента подчинаются правилу знаков и **соотношению взаимности** Онзагера:

$$\alpha_{ij} = \alpha_{ji} \quad (i, j = 1, 2, \dots, I).$$

Применение уравнений неравновесной термодинамики при моделировании процессов в инженерной геологии

Пример 1. Термовлагоперенос в грунте

Рассмотрим передвижение влаги в неполностью насыщенном грунте при наличии gradP и gradT, т.е. перенос влаги (поток I_{ν}) и перенос тепла (поток I_{O}) (Рис. 4.1):

gradP ≠0 gradT ≠0 gradC =0 gradφ =0

$$\longleftarrow Q = I_{Q}$$

$$\longleftarrow I_{H2O} = I_{v}$$

Рис. 4.1. Передвижение влаги в неполностью насыщенном грунте при наличии gradP и gradT

Производство энтропии в системе:

$$T\sigma_S = T\left(\frac{\partial S}{\partial t}\right) = \sum_i X_i I_i = I_V \nabla p + I_Q \nabla T$$

Под действием градиента температуры вода в образце начнет перераспределяться, передвигаясь от более нагретой области к более холодной. В итоге образуется равновесный профиль влажности, обусловленный наличием двух градиентов в образце. (Рис. 4.2)

Выражение для этих потоков:

$$\begin{cases} I_V = \alpha_{11} \nabla p + \alpha_{12} \nabla T \\ I_Q = \alpha_{21} \nabla p + \alpha_{22} \nabla T \end{cases}$$

где α_{11} и α_{22} имеют смысл, соответственно, коэффициентов фильтрации (k_{Φ}) и теплопроводности (λ) ; $\alpha_{21} = \alpha_{12}$ – коэффициент термодиффузии (термоосмоса).

В стационарном состоянии:

$$I_V = 0, \quad I_V = \alpha_{11} \nabla P + \alpha_{12} \nabla T = 0,$$

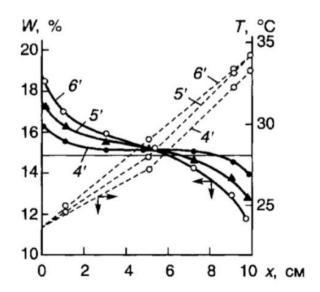


Рис. 4.2. Кинетика изменения поля влажности (W) и температуры (T) в среднемелкозернистом песке при термовлагопереносе (по В.А.Королеву, 1990). Цифры у кривых — время от начала нагрева (час).

T.e.

$$(\alpha_{11}\nabla P)_{I_V=0} = (-\alpha_{12}\nabla T)_{I_V=0}$$

Откуда:

$$lpha_{12} = -\left(rac{lpha_{11}
abla P}{
abla T}
ight)_{I_V=0}$$
 или $pprox -K_{\Phi}\left(rac{
abla P}{
abla T}
ight)_{I_V=0},$

т.е. коэффициент термоосмоса грунта можно найти по K_{Φ} в стационарном состоянии:

$$\left(\frac{\nabla P}{\nabla T}\right)_{I_V=0} = -\left(\frac{\alpha_{12}}{\alpha_{11}}\right)_{I_V=0} = \delta$$

– термоградиентный коэффициент.

Пример 2. Электроосмос в грунте

Рассмотрим передвижение влаги в грунте при наличии $grad\phi$ и gradP (поток электричества $I_{\text{эл}}$ и поток воды I_{ν}) (Рис. 4.3):

Производство энтропии будет равно:

$$T\sigma_{S} = T\left(\frac{\partial S}{\partial t}\right) = \sum_{i} X_{i}I_{i} = I_{\scriptscriptstyle \ni,\Pi} \nabla \varphi - I_{V} \nabla p$$

Выражения для потоков:

$$\left\{egin{aligned} I_V &= lpha_{11}
abla p + lpha_{12}
abla arphi \ I_{\scriptscriptstyle 9,\pi} &= lpha_{21}
abla p + lpha_{22}
abla arphi \end{aligned}
ight.$$

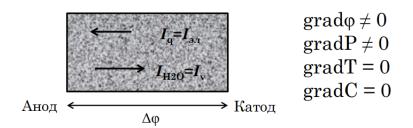


Рис. 4.3. Передвижение влаги в грунте при наличии $\operatorname{grad} \varphi$ и $\operatorname{grad} P$

где α_{11} и α_{22} имеют смысл, соответственно, коэффициентов фильтрации (k_{Φ}) и электропроводности (χ) ; α_{12} – коэффициент электроосмоса; α_{21} – коэффициент потокопроводности, причем $\alpha_{12}=\alpha_{21}$.

В стационарном состоянии:

$$I_V = 0$$
, $I_V = \alpha_{11} \nabla P + \alpha_{12} \nabla \varphi = 0$,

или

$$(\alpha_{11}\nabla P)_{I_V=0} = (-\alpha_{12}\nabla \varphi)_{I_V=0}$$

Откуда:

$$lpha_{12} = -\left(rac{lpha_{11}
abla P}{
abla arphi}
ight)_{l_{V}=0}$$
 или $pprox -K_{\Phi}\left(rac{
abla P}{
abla arphi}
ight)_{l_{V}=0}, \quad lpha_{11} = K_{\Phi}\left(rac{\omega}{l}
ight)$

т.е. коэффициент электроосмоса грунта можно найти по K_{Φ} в стационарном состоянии:

$$\left(\frac{\nabla P}{\nabla \varphi}\right)_{I_V=0} = -\left(\frac{\alpha_{12}}{\alpha_{11}}\right)_{I_V=0} = \psi$$

– электроградиентный коэффициент.

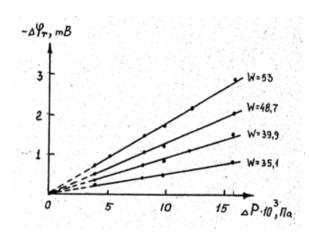
Пример 3.

Для грунта, в котором имеются градиенты потенциалов ∇p , ∇T , $\nabla \varphi$, т.е. одновременно совершаются процессы по переносу объема вещества (фильтрация воды), тепла и электричества, производство энтропии:

$$T\sigma_{S} = T\left(\frac{\partial S}{\partial t}\right) = \sum_{i} X_{i}I_{i} = I_{V}\nabla p + I_{Q}\nabla T + I_{q}\nabla \varphi$$

Тогда система термодинамических уравнений переноса для потоков:

$$\begin{cases} I_V = \alpha_{11} \nabla p + \alpha_{12} \nabla T + \alpha_{13} \nabla \varphi \\ I_Q = \alpha_{21} \nabla p + \alpha_{22} \nabla T + \alpha_{23} \nabla \varphi \\ I_{q_{\mathfrak{I},\Pi}} = \alpha_{31} \nabla p + \alpha_{32} \nabla T + \alpha_{33} \nabla \varphi \end{cases}$$



Кэо·10⁴, -К_{пт}·10⁴, см²/В·с

1.0

0.8

0.6

0.4

0.2

10 20 30 40 50 W,%

Рис. 4.4. Зависимость потенциала те- Рис. 4.5. Зависим чения ($\Delta \phi_{nm}$) в каолинитовой глине (ка- циентов электроосм олин просяновский) от перепада гидро- потокопроводности($_{nm}$) статического давления (ΔP) при различ- ности каолинитовой ной влажности глины (W) просяновский): 1 - 3ле

Рис. 4.5. Зависимость коэффициентов электроосмоса (\mathfrak{so}) и потокопроводности (\mathfrak{nm}) от влажености каолинитовой глины (каолин просяновский): 1 – электроосмос; 2 – потенциал течения

Отсюда следует, что для анализа этих 3 сопряженных потоков из 9 коэффициентов, участвующих в уравнениях, надо знать всего 6: 3 прямых и 3 перекрестных. Если эту систему дополнить 3 уравнениями состояния для соответствующих процессов, то ее решение позволит в полной мере охарактеризовать все 3 рассматриваемых процесса в их взаимосвязи.

Лекция 5. Термодинамика фазового (компонентного) состава грунтов

Межфазная поверхность в грунтах

Фазовый (компонентный) состав грунта в равновесном состоянии может быть описан на основе балансовых уравнений классической термодинамики:

$$dm_k = d_e m_k + d_i m_k$$

$$m_{ ext{rpyhta}} = \sum m_k = m_{ ext{tb}} + m_{ ext{t}} + m_{ ext{t}} + m_{ ext{f}}$$

В состоянии равновесия

$$\mu_{ ext{\tiny TB}} = \mu_{ ext{\tiny K}} = \mu_{ ext{\tiny \Gamma}} = \mu_{6} = \mu_{k}$$
 или $d\mu_{k} = 0$

Основные типы межфазной поверхности в грунтах:

- о Минерал газ
- о Минерал вода
- Минерал минерал (обломок обломок)
- ∘ Вода газ

Всего в грунте можно выделить 6 межфазных поверхносетй, указанных на схеме. (Рис. 5.1)

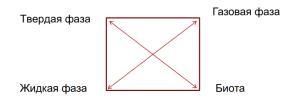


Рис. 5.1. Схема межфазных поверхностей. Каждая из сторон или даигоналей прямоугольника отражают межфазную границу.

40

Термодинамика твердой фазы грунта

Для энергетической характеристики кристаллов различных минералов используют термодинамические параметры: энергия кристаллической решетки U_p , энергия атомизации, а также удельная свободная поверхностная энергия G_s .

Величина U_p равна энергии, выделяющейся при образовании кристалла из газа, состоящего из отдельных ионов, находящихся на бесконечном расстоянии друг от друга в соответствии со схемой процесса:

$$mA_{(\Gamma)} + nB_{(\Gamma)} \rightarrow [A_m A_n]_{(TB)} + U_p,$$

где $A_{(m)}$ и $B_{(m)}$ — соответственно анион и катион. По величине энергии атомизации

Минерал	Химическая	Энергия атоми-	Удельная энер-
•	формула	зации, - \mathbf{E}_{a} ,	гия атомизации
	формула	кДж/моль	- $\mathbf{E}_{\mathbf{m}}$, МДж/кг
Доломит	$MgCa(CO_3)_2$	5568,1	30,19
Кальцит	$CaCO_3$	2848,1	28,46
Сидерит	$FeCO_3$	2634,5	22,74
Гипс	$CaSO_4 \cdot 2H_2O$	4842,6	28,13
Ангидрит	$CaSO_4$	2882,5	21,17
Галит	NaCl	624,8	10,69
Сильвин	KC1	648,6	8,69
Кварц	SiO_2	1879,3	31,27
Форстерит	${ m Mg}_2{ m Si0}_4$	3935,9	27,97
Диопсид	$CaMgSi_2O_6$	5967,1	27,55
Сподумен	α -LiAl(Si ₂ O ₆)	5932,9	31,88
Мусковит		11852,2	29,76
Альбит	a-NaAlSi ₃ O ₈	7742,4	29,52
Лабрадор	-	7832,5	28,98
Анортит	α -CaAl $_2$ Si $_2$ 0 $_8$	7985,8	28,70
Микроклин	$KAlSi_3O_8$	7779,2	27,95
Нефелин	$NaAlSiO_4$	3959,8	27,77
Каолинит	-	17552,1	34,00
Диккит		17549,6	33,98
Галлуазит		17514,8	33,92
Гидрослюда	-	-	28,4-31,2

Рис. 5.2. Энергия атомизации некоторых породообразующих минералов

минералов можно составить следующий возрастающий ряд: оливин < пироксены < амфиболы < полевые шпаты < мусковит < кварц < гидрослюды < монтмориллонит < каолинит, соответствующий реальным процессам последовательной глубинной и экзогенной дифференциации минералов.

В классе минералов **простых солей** увеличение происходит в ряду: *хлориды* < *сульфаты* < *карбонаты*, что соответствует порядку выпадения в осадок наиболее распространённых простых солей.

Наличие межфазной поверхности у грунтов предполагает наличие **поверхност- ного натяжения** σ_0 на этой границе. Величина поверхностной энергии G_s :

$$G_s = s\sigma_0$$

Термодинамическое определение величины σ_0 :

$$\sigma_0 = \left(\frac{\partial U}{\partial s}\right)_{S,V,n_i} = \left(\frac{\partial H}{\partial s}\right)_{S,p,n_i} = \left(\frac{\partial F}{\partial s}\right)_{T,V,n_i} = \left(\frac{\partial G}{\partial s}\right)_{T,p,n_i}$$

$$G = G_s s$$
 или $dG = d(G_s s)$,

тогда

$$\sigma_0 = \frac{\partial G}{\partial s} = G_s + s \left(\frac{\partial G_s}{\partial s} \right)$$

Для гетерогенных (особенно дисперсных) грунтов, в которых велик вклад поверхностной энергии:

$$dU_s = T_s dS + \sigma_0 ds + \sum_s \mu_{is} dn_{is}$$

где индексом *s* отмечен учет изменений в поверхностном слое грунта.

Учет в термодинамических уравнениях поверхностной энергии особенно необходим в дисперсных (в частности, высокодисперсных глинистых) грунтах.

Термодинамика порового раствора грунта

Ионы по своему действию на структуру воды в поровом растворе грунта:

- 1) ионы с отрицательной гидратацией $(K^+, Br^-, J^-, Cs^+$ и др.), для которых эффекты разупорядочения структуры воды являются преобладающими,
- 2) ионы с положительной гидратацией $(Al^{3+}, Mg^{2+}, Li^+, Ca^{2+}, SO_4^{2+}$ и др.), для которых преобладающими являются эффекты упорядочения структуры.

В зависимости от концентрации ионов, области, занятые молекулами воды с искаженной структурой, будут меняться. При переходе от разбавленных к промежуточным и концентрированным растворам область 2 (Рис. 5.3) возрастает, а область 3 практически исчезает в концентрированных растворах. В этом прояляется влияние структурированности молекул воды.

Энтропия гидратации – количественная величина, позволяющая разделять ионы с положительной и отрицательной гидратацией по их действию на структуру воды. (Рис. 5.4)

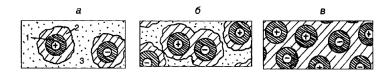


Рис. 5.3. Схема гидратации ионов в разбавленном (a), промежуточном (b) и концентрированном (b) растворе электролита

1 — первая гидратная оболочка, формирующаяся вокруг каждого иона; 2 — зона диффузной части двойного электрического слоя, где концентрация молекул меньше, чем в предыдущем слое; 3 — область свободного раствора

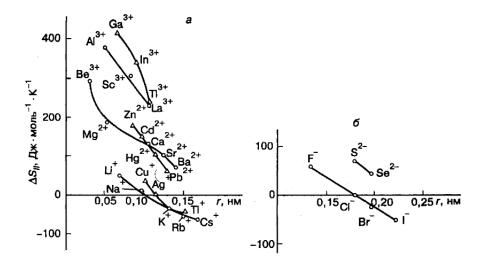


Рис. 5.4. Зависимость энтропии гидратации (ΔS) от радиуса катионов (a) и анионов (б)

Для поровых растворов электролитов в области невысоких давлений при их характеристике используют приближение **идеальных растворов**, а для растворов неэлектролитов – приближение **регулярных растворов**. При этом задача определения термодинамических свойств раствора сводится к нахождению **коэффициентов** активности γ_i компонентов:

$$\gamma_i(p,T,\chi_1,\chi_2,\ldots) = \frac{a_i(p,T,\chi_1,\chi_2,\ldots)}{\chi_i},$$

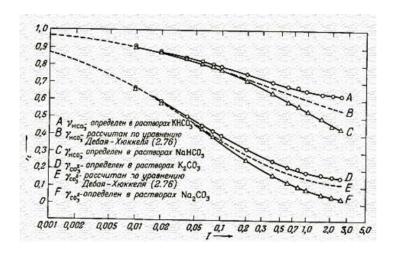
где a_i – активность i-го компонента, χ_i – его мольная концентрация в растворе.

Активность компонентов раствора — эффективная (кажущаяся) концентрация компонентов с учётом различных взаимодействий между ними в растворе, то есть с учётом отклонения поведения системы от модели идеального раствора.

Коэффициент активности (служит мерой отклонения поведения раствора (или

компонента раствора) от идеального):

$$\gamma = \frac{a}{c}$$



Активность (a) — термодинамическая величина, которую вводят для записи в удобной форме значений химических потенциалов μ_i компонентов реального раствора. Так, например для i-го компонента порового раствора грунта его активность a_i определяется соотношением:

$$\mu_i = \mu_i^0 + RT \ln(a_i),$$

где μ_i и μ_i^0 — химический потенциал i-го компонента, соответственно, в данном и стандартном состояниях.

Численное значение a_i таким образом, зависит от выбора стандартного состояния, от которого ведут отсчет химического потенциала μ_i . В стандартном состоянии $a_i = 1$.

В ряде случаев химическая термодинамика поровых растворов грунта может быть описана на основе теории разбавленных растворов и статистической теории Дебая-Гюккеля.

Каждый ион с зарядом z_ie (где — заряд электрона; z_i — валентность иона) рассматривается как центральный, окруженный ионной атмосферой с таким же по величине зарядом, но противоположным по знаку и радиусом r_i характеризуемым «дебаевским радиусом экранирования»:

$$r_i = \left(\frac{8\pi e^2 I}{kT}\right)^2,$$

44

где $I=0,5\sum\Delta_iz_i^2$ — **ионная сила** раствора, Δ_i — объемная концентрация *i*-го иона в растворе, k — постоянная Больцмана.

Ионная сила раствора – мера интенсивности электрического поля, создаваемого ионами в растворе:

$$I = \frac{1}{2} \sum C_i Z_i^2$$

где C_i – молярные концентрации отдельных ионов (моль/л), Z_i – заряды ионов

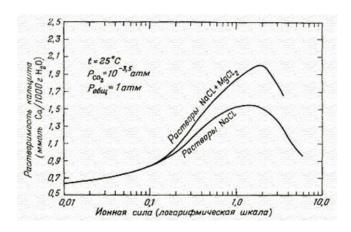


Рис. 5.6. Рассчитанная зависимость растворимости кальцита от ионной силы в растворах NaCl и $NaCl^+$ $MgCl_2$ (для NaCl и $MgCl_2$ принято отношение их количеств, типичное для морской воды)

Термодинамика газовой фазы грунта

Термодинамическое уравнение состояния идеального газа в грунте описывается уравнением Клапейрона-Менделеева:

$$pV = \frac{mRT}{M},$$

где p — давление газа; V — его объем, ограниченный порами грунта; m — масса газа; — его молекулярный вес; R — газовая постоянная; T — абсолютная температура.

Для идеального газа энтропия и внутренняя энергия не зависят от давления и объёма, т.е.

$$\left(\frac{\partial H}{\partial P}\right)_T = \left(\frac{\partial H}{\partial V}\right)_T = 0, \quad \left(\frac{\partial U}{\partial P}\right)_T = \left(\frac{dU}{dV}\right)_T = 0$$

и определяются только их температурой:

$$dH = C_p dT$$
 и $dU = C_v dT$

где C_p — изобарная теплоёмкость газа; C_v — изохорная теплоёмкость газа, причём $C_p - C_v = R$.

Термодинамическое поведение смесей идеальных газов в грунтах определяется аддитивностью их парциальных давлений, а также приведённых объёмов и описывается законом Дальтона:

$$p = \sum_{i=1}^{n} p_i$$

где p — общее давление газовой смеси в порах грунта; p_i — парциальное давление i-го компонента

От p-T условий зависит давление пара (p) в порах грунта и сухость воздуха (p/p_s) . Рассматривают с помощью диаграмм (Рис. 5.7), (Рис. 5.8), (Рис. 5.9), (Рис. 5.10)

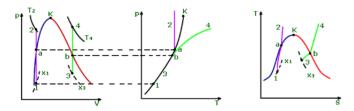


Рис. 5.7. Изохорный процесс (v = const)

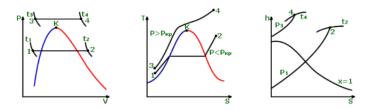


Рис. 5.8. Изобарный процесс (p = const)

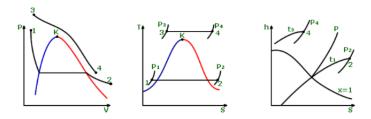


Рис. 5.9. Изотермический процесс (T = onst)

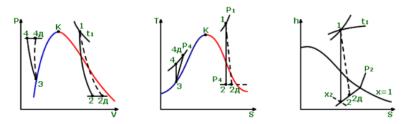


Рис. 5.10. $A \partial u a \delta a m н u \ddot{u} n pou e c c (dQ = 0)$

Термодинамика биотической составляющей грунтов

Микроорганизмы в грунтах – открытые системы, обменивающиеся с окружающей средой энергией и веществом. Внутри самой этой системы также осуществляются превращения энергии и вещества. Для таких систем справедлив 1 закон термодинамики:

$$dQ = dU + dA$$

Диаграммы фазового состава грунта

Один из самых простых графических способов отражения в целом фазового состава грунта представлен на (Рис. 5.11), (Рис. 5.12).

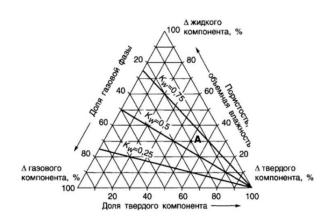


Рис. 5.11. Диаграмма фазового состава грунта с нанесенными значениями коэффициента (степени) влажности K_w A – реальное соотношение в грунте всех трех фаз

Рис. 5.12. Диаграмма фазового состава грунта с нанесенными значениями коэффициента пористости (ε) и весовой влажности (W)

Объёмные доли одновременно всех фаз грунта не могут быть произвольными:

для грунта, состоящего из трёх фаз ($\Delta_{\rm r}$, $\Delta_{\rm ж}$ и $\Delta_{\rm r}$), независимыми являются только любые две фазы.

Для грунтов, у которых общее число фаз n>2, правило фаз, устанавливающее соотношение между n и числом независимых фаз ω :

$$\omega = n - 1$$

Свойства Φ трёхфазного грунта оказываются также зависимыми от соотношения содержания любых двух фаз:

$$\Phi = f(\Delta_{\scriptscriptstyle \rm T}, \Delta_{\scriptscriptstyle \rm K}), \quad \Phi = f(\Delta_{\scriptscriptstyle \rm T}, \Delta_{\scriptscriptstyle \rm \Gamma}), \quad \Phi = f(\Delta_{\scriptscriptstyle \rm K}, \Delta_{\scriptscriptstyle \rm \Gamma})$$

Для четырехкомпонентного грунта треугольная диаграмма будет объемной (Рис. 5.13). Для какого-либо отдельного типа дисперсного грунта также можно по-

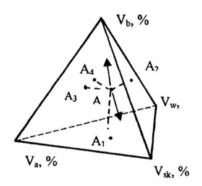


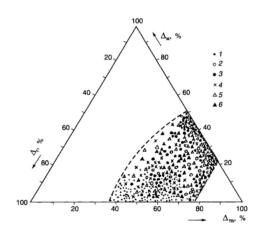
Рис. 5.13. Объемная диаграмма фазового состава четырехкомпонентного грунта

строить диаграмму фазового состава, на которой будут отражены все возможные соотношения трех фаз грунта. Пример – (картинка далее).

Выводы:

- 1) Компонентный (фазовый) состав грунта описывается балансовыми уравнениями и законами сохранения (компонентов)
- 2) Изменения химического состава компонентов описываются уравнениями химической термодинамики
- 3) Для учета отклонений реальных концентраций от идеальных (теоретических) вводится понятие активности
- 4) Каждая фаза (компонент) грунта может быть охарактеризована соответствующими термодинамическими уравнениями

- 5) Эти уравнения могут описывать как состав компонента, так и его энергетические превращения
- 6) Фазовый состав грунта, подчиняющийся правилу фаз, удобно анализировать с помощью треугольных диаграмм.



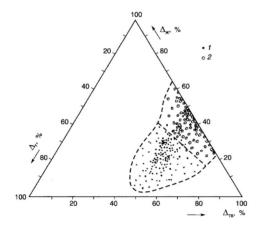


Рис. 5.14. Компонентный состав песча- Рис. 5.15. Компонентный состав лёссоных грунтов разного генезиса 1 — эоловые, 2 — флювиогляиальные, 3 — 1 — просадочных, 2 — непросадочных морские, 4 – алювиальные, 5 – делювиальные, 6 - озерные

видных суглинков

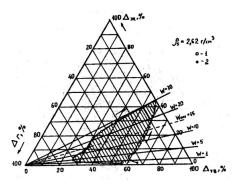


Рис. 5.16. Диаграмма фазового состава флювиогляциального чистого среднемелкозернистого песка (fglII, Московская обл.) в рыхлом (1) и плотном (2) слоэкении; W - весовая влажность

Лекция 6. Термодинамика воды в грунтах

Задача о влагопереносе

Вода в грунтах энергетически неоднородна. Рассмотрим условия равновесия воды в системе из двух контактирующих грунтов (подсистемы 1 и 2) (Рис. 6.1):

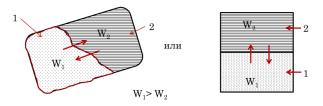


Рис. 6.1. Система из двух контактирующих грунтов

Куда будет передвигаться вода? Из подсистемы 1 в 2 или наоборот? До каких пор будет идти процесс? Когда наступит равновесие?

В нашем случае условия термодинамического равновесия в системе:

$$T_1 = T_2$$
 $gradT = \nabla T = 0$ $P_1 = P_2$ $gradP = \nabla P = 0$ \vdots $P_{n(1)} = P_{n(2)}$ $gradP_n = \nabla P_n = 0$

Величина влажности W не является потенциалом переноса, следовательно нельзя писать, что в состоянии равновесия $W_1=W_2$ или что gradW=0. $W=m_{\scriptscriptstyle \rm B}/m_{\scriptscriptstyle \rm TB}-0$ относится к обобщенным координатам. Сопряженным с W обобщенным потенциалом является потенциал воды $(\psi_{\scriptscriptstyle \rm B})$ или химический потенциал воды $\mu_{\scriptscriptstyle \rm B}$

Следовательно, условия равновесия:

$$\psi_{\scriptscriptstyle \mathrm{B}(1)}=\psi_{\scriptscriptstyle \mathrm{B}(2)}$$
 или $\mu_{\scriptscriptstyle \mathrm{B}(1)}=\mu_{\scriptscriptstyle \mathrm{B}(2)}$ или $\mathit{grad}\,\mu_{\scriptscriptstyle \mathrm{B}}=0$

T.o., $\mathit{grad}\,\mu_{\scriptscriptstyle B}$ – движущая сила влагопереноса в грунтах.

Понятие о потенциале влаги в грунтах

Работа по переносу влаги $m_{\rm B}$ вгрунте:

$$dA_{\scriptscriptstyle \mathrm{B}} = \mu_{\scriptscriptstyle \mathrm{B}} dm_{\scriptscriptstyle \mathrm{B}}$$

Откуда

$$\mu_{\scriptscriptstyle
m B} = rac{dA_{\scriptscriptstyle
m B}}{dm_{\scriptscriptstyle
m B}}$$

$$dA_{ ext{ iny B}} = \sum dA_{ ext{ iny A}(ext{ iny i})} = dA_{ ext{ iny A} ext{ iny C}} + dA_{ ext{ iny K} ext{ iny I}} + dA_{ ext{ iny C} ext{ iny M}} + dA_{ ext{ iny C} ext{ iny B}} + \dots$$

Известно, что $\sum dA_{\mathrm{a(i)}} = dG$ — изменение энергии Гиббса.

Таким образом, имеем:

$$\mu_{\scriptscriptstyle
m B} = rac{\sum dA_{\scriptscriptstyle
m B}}{dm_{\scriptscriptstyle
m B}} = \left(rac{\partial G}{\partial m_{\scriptscriptstyle
m B}}
ight)_{P,T} = rac{1}{
ho_{\scriptscriptstyle
m B}} \left(rac{\partial G}{\partial V_{\scriptscriptstyle
m B}}
ight) \quad {
m T.K.} \quad m_{\scriptscriptstyle
m B} =
ho_{\scriptscriptstyle
m B} V_{\scriptscriptstyle
m B}$$

$$\mu_{\scriptscriptstyle \mathrm{B}} = \frac{1}{\rho_{\scriptscriptstyle \mathrm{B}}} \left(\frac{\partial G}{\partial V_{\scriptscriptstyle \mathrm{B}}} \right) = \frac{1}{\rho_{\scriptscriptstyle \mathrm{B}}} P_{\scriptscriptstyle \mathrm{B}},$$

где $P_{\scriptscriptstyle \rm B}$ — давление влаги (т.е. давление, удерживающее воду вблизи твердой поверхности грунта), $\rho_{\scriptscriptstyle \rm B}$ — плотность воды.

Давление влаги $(P_{\scriptscriptstyle \rm B})$:

$$P_{\scriptscriptstyle \mathrm{B}} = -rac{\partial A_{\scriptscriptstyle \mathrm{B}}}{\partial V_{\scriptscriptstyle \mathrm{B}}} = -rac{\partial G}{\partial V_{\scriptscriptstyle \mathrm{B}}}[\mathrm{M}\Pi\mathrm{a}],$$

где $V_{\scriptscriptstyle \rm B}$ – объем воды в грунте

Химический потенциал воды в грунте ($\mu_{\scriptscriptstyle B}$):

$$\mu_{\scriptscriptstyle
m B} = -rac{\partial A_{\scriptscriptstyle
m B}}{\partial m_{\scriptscriptstyle
m D}} = -rac{\partial G}{\partial m_{\scriptscriptstyle
m D}} [{
m Дж/кг}],$$

где $m_{\rm B}$ — масса воды в грунте

Расклинивающее давление влаги $\Pi(h)$ (по Б.В.Дерягину):

$$\Pi(h) = -rac{\partial A_{\scriptscriptstyle \mathrm{B}}}{\partial h_{\scriptscriptstyle \mathrm{B}}} = -rac{\partial G}{\partial h_{\scriptscriptstyle \mathrm{B}}} [\mathrm{H}_{\mathrm{D} \mathrm{O} \mathrm{T} \mathrm{O} \mathrm{H}}],$$

где $h_{\scriptscriptstyle \mathrm{B}}$ – толщина плёнки воды

$$P_{\scriptscriptstyle \mathrm{B}} = \mu_{\scriptscriptstyle \mathrm{B}} \cdot
ho_{\scriptscriptstyle \mathrm{B}} = rac{\Pi(h)}{S_o}$$

где S_o – удельная поверхность грунта.

Замеряя $\mu_{\scriptscriptstyle B}$ при разных значениях влажности грунта, строят зависимость $\mu_{\scriptscriptstyle B}=f(W)$ (Рис. 6.2)

ОГХ грунта и области влаги (Рис. 6.3). $pF = \log(|P_{\text{K-c}}|)$, где $P_{\text{K-c}}$ – капиллярносорбционное давление влаги, выраженное в см водного столба

Вернемся к задаче в начале лекции: (Рис. 6.1). Куда будет направлен поток воды? (Рис. 6.4)

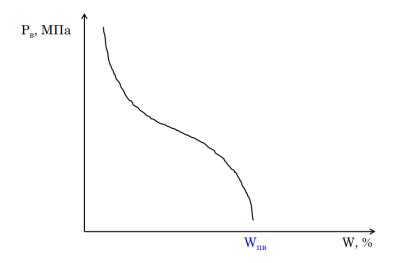


Рис. 6.2. $\Gamma u \partial p o \phi$ изическая характеристика (ОГХ). При $W = W_{ne}$ величина $_{e} = 0$

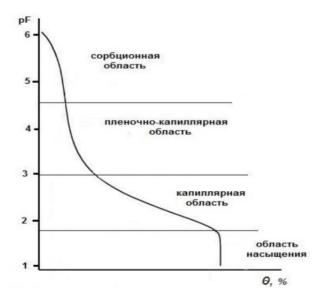


Рис. 6.3. ОГХ грунта и области влаги

Практические способы определения химического потенциала воды в грунтах

Тензиометрический способ определения основан на применении тензиометра (Рис. 6.5) – устройства, содержащего жидкую воду, приведенную в контакт с внешним объемом грунта через полупроницаемую мембрану. Если тензиометр контактирует с грунтом, то в состоянии равновесия выполняется равенство:

$$\mu_{\scriptscriptstyle B}$$
(система "грунт-вода") $=\mu_{\scriptscriptstyle B}$ (тензиометр)

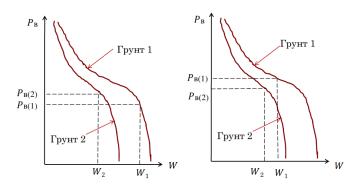


Рис. 6.4. Зависимости давления влаги от влажности грунта для 1 подсистемы (слева) и 2 подсистемы (справа).

Для грунта 1 (левый график): $P_{6(2)} > P_{6(1)}$ m.e. поток будет направлен от (1) к (2) Для грунта 2 (правый график): $P_{6(2)} < P_{6(1)}$ m.e. поток будет направлен от (2) к (1)

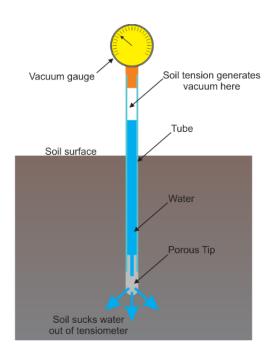


Рис. 6.5. Устройство тензиометра

Мембранный пресс (Рис. 6.6) – стальная камера, в которой создается и поддерживается повышенное давление воздуха. Одна из стенок камеры, расположенная горизонтально, – тонкопористая мембрана, во влажном состоянии пропускающую воду, но не пропускающую воздух. Образец грунта находится внутри камеры на мембране (воздух сверху – вода снизу).

При повышении давления воздуха в камере с образцом вода из образца вытекает через мембрану за пределы камеры до тех пор, пока давление (потенциал) почвенной

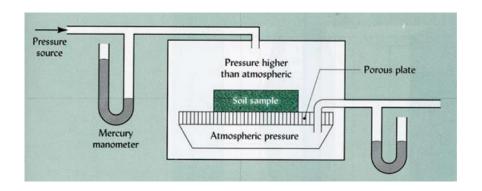


Рис. 6.6. Схема мембранного пресса Ричардса

влаги не станет равным заданному давлению воздуха. В этом состоянии:

$$\mu_{\scriptscriptstyle W}$$
(система "грунт-вода") $=\mu_{\scriptscriptstyle R}=\mu_{\scriptscriptstyle W}^0$

Метод центрифугирования основан на определении остаточной влажности образца при известной разной скорости центрифугирования, создающей различную величину давления на влагу при ее удалении из образца грунта. При этом можно одновременно с построением зависимости $\mu_w = f(W)$ определить и функцию влагопроводности грунта, которая аппроксимируется уравнением линейной регрессии вида

$$\log \frac{1}{K_{\text{\tiny BJI}}} = a(pF) - b,$$

где $K_{\text{вл}}$ — коэффициент влагопроводности грунта, см/сут; a, b — коэффициенты; pF — логарифм давления влаги

Психрометрический (гигрометрический) метод основан на измерении с помощью психрометра давления пара воды, находящегося в равновесии с грунтом. Часто в качестве психрометра используется термопарный прибор, калиброванный по растворам электролита с известной активностью воды. Показания термопары в таком приборе отвечают определенной величине μ_w в калибровочном растворе электролита (обычно – KCl).

В состоянии равновесия:

$$\mu_{\scriptscriptstyle W}$$
(система "грунт-вода") $=\mu_{\scriptscriptstyle W}$ (раствор КСІ),

Это уравнение можно также свести к выражению:

$$\mu_{\scriptscriptstyle W}$$
(система "грунт-вода") $=\mu_{\scriptscriptstyle W}^{\,o}+rac{RT}{M_{\scriptscriptstyle W}}\lnrac{p}{p_{\scriptscriptstyle S}},$

где p/p_s — равновесное относительное давление паров воды; μ_w^o — стандартный потенциал влаги; M_w — молекулярный вес воды.

Контактный способ – основан на использовании грунта (или материала) с известной тарировочной функцией $\mu_w = f(W)$. Если анализируемый грунт привести в контакт с таким оттарированным грунтом, то в состоянии равновесия их потенциалы будут равны, а влажности – разные, т.е:

$$\mu_{\text{B(Tap)}} = \mu_{\text{B(oбp)}}$$

Используя серию образцов при разной влажности можно построить искомую кривую $\mu_W = f(W)$ для анализируемого грунта. (Рис. 6.7)

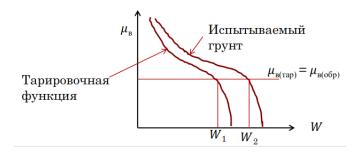


Рис. 6.7. Зависимость химического потенциала воды от влажности анализируемого грунта

Использование кривой ОГХ

Определение функции распределения пор по размерам:

$$Z_{\text{nop}} = f(d),$$

где $Z_{\text{пор}}$ – содержание пор данного размера, %; d – диаметр пор.

Из формулы Жюрена для капиллярного поднятия:

$$h = 0.15/r$$

где h — высота капиллярного поднятия, r — радиус капилляра, можно рассчитать радиус пор:

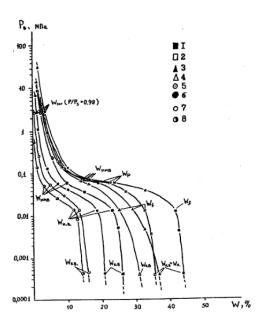
$$r = 0,15/h$$
 или $r = k \cdot 0,15/P_{\scriptscriptstyle \mathrm{B}}$

Закономерности формирования давления влаги в грунтах

Вид функции $\mu_{\scriptscriptstyle W}=f(W)$ или $P_{\scriptscriptstyle \rm B}=f(W)$ зависит от многих факторов: химикоминерального состава грунта, структурных особенностей, физических свойств

(плотность-пористость грунта), состава обменных катионов, концентрации электролита порового раствора, внешних факторов.

На примерах (Рис. 6.8), (Рис. 6.9) видно: чем менее дисперсный грунт, тем ниже и левее относительно друг друга располагаются кривые ОГХ.



300 W, %

ных и лёссовых грунтов (кривые обезво- грунтов (кривые обезвоживания): живания):

стый крупнозернистый

Рис. 6.8. Зависимость давления влаги Рис. 6.9. Зависимость давления влаги (6) (P_6) от весовой влажности (W) песча- от весовой влажности (W) глинистых

1-3 — тяжелые глины: 1 — Na-аскангель; 1 — тяжёлый лёссовидный суглинок; 2 2 — Cа-аскангель (там же); 3 — кил – лёгкий лёссовидный суглинок; 3 – лёг- крымский; 4-6 – глины тяжёлые пылевакий лёссовидный суглинок; 4 – супесь тые: 4 – глина аптскаягидрослюдистая; лёссовидная; 5 – песок флювиогляциаль- 5 – каолин глуховецкий; 6 – синяя кемный чистый средне-мелкозернистый; 6 брийская гидрослюдистая глина; 7 - су-– песок чистый мелко-среднезернистый; глинок тяжелый полиминеральный верх-7 – песок озёрный чистый крупнозерни- нечетвертичный; 8 – суглинок средний, стый; 8 – песок элювиальный гравели- «ипрскаяглина»; 9 – суглинок лёгкий перигляциальный верхнечетвертичный

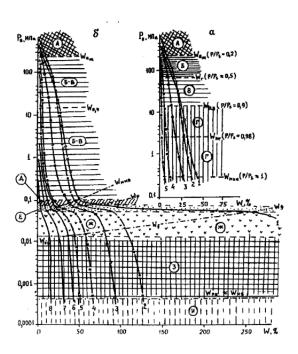


Рис. 6.10. Взаимосвязь областей влаги в дисперсных грунтах с давлением влаги (P_6) и весовой влажностью (W) при равновесии с парами воды (a) и контактирующим водным раствором электролита (b).

Области влаги: A — «островной» или мономолекулярной адсорбции; B — бимолекулярной адсорбции; B — полимолекулярной адсорбции; Γ — капиллярной конденсации; \mathcal{L} — «осмотически-поглощённой влаги; E — «осмотической» и капиллярно-стыковой влаги; \mathcal{K} — собственно капиллярной воды; \mathcal{J} — капиллярной и «механически-захваченной» влаги; \mathcal{U} — свободной воды.

Грунты: 1-4 – тяжеёлые глины: 1 – Nа-аскангель, 2 – Cа-аскангель, 3 – κ ил; 4 – ϵ идрослюдистая глина ; 5 – ϵ каолин глуховецкий; 6 – ϵ суглинок; 7 – ϵ супесь; 8 – ϵ песок ϵ крупнозернистый

Другой вид диаграммы, отражающий взаимосвязь давления влаги и характеристических влажностей грунтов – треугольная диаграмма фазового состава (Рис. 6.11), (Рис. 6.12)

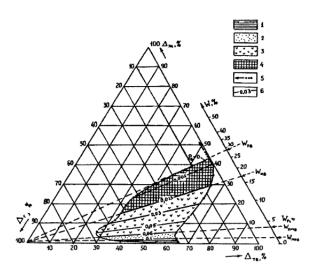


Рис. 6.11. Фазовая диаграмма содержания различных категорий влаги в чистом средне-мелкозернистом песке ($\rho_s = 2,62 \epsilon/c m^3$).

Области влаги: 1 – полимолекулярной адсорбции; 2 – капиллярно-стыковой влаги; 3 – собственно капиллярной воды; 4 – капиллярной и «механически-захваченной» влаги; 5 – свободной воды; 6 – изотермы давления влаги $_{6}(M\Pi a)$ при температуре 20°

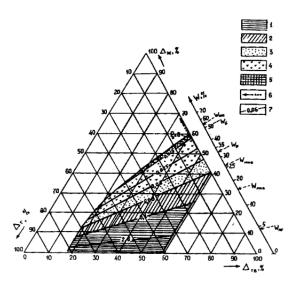


Рис. 6.12. Фазовая диаграмма содержания различных категорий влаги в каолинитовой глине (каолин глуховецкий, $\rho_s = 2,64 \ensuremath{\varepsilon}/cm^3$) при равновесии с контактирующим раствором электролита концентрации < 0,1н.

Области влаги: 1 – полимолекулярной адсорбции; 2 – «осмотически»-поглощённой плёночной влаги; 3 – «осмотической» и капиллярно-стыковой влаги; 4 – собственно капиллярной воды; 5 – капиллярной и «механически-захваченной» воды; 6 – свободной воды; 7 – изотермы давления влаги $_{6}(M\Pi a)$ при температуре 20°

Лекция 7. Термодинамика адсорбции воды грунтами. Термодинамика химических и физико-химических процессов в грунтах

Теплота смачивания

При гидратации грунта водой выделяется энергия — **теплота смачивания** $Q_{\text{см}}$. Она характеризует потерю молекулами воды части своей кинетической энергии при переходе их из фазы пара в адсорбционную пленку (т.е. в связанное состояние). Поэтому по величине $Q_{\text{см}}$ можно характеризовать «степень связывания» грунтом молекул воды.

Интегральная теплота смачивания (адсорбции):

$$Q_i = rac{Q}{m_{\scriptscriptstyle \Gamma}}, \quad Дж/{\scriptscriptstyle \Gamma}$$

Удельная теплота смачивания (адсорбции):

$$q = \frac{Q}{S_0}$$
, Дж/см²

Дифференциальная теплота смачивания (адсорбции):

$$Q_{\scriptscriptstyle W} = rac{dQ}{dm_{\scriptscriptstyle
m B}}, \quad$$
Дж/моль

Величина Q_w возрастает в ряду: $K^{+3} > K^{+2} > K^{+1}$

Правило Думанского: $Q/W_{\rm cB}=const=335~{\rm Дж/r},$ где $W_{\rm cB}$ — количество связанной воды в грунте (при $W=W_{mg}$)

Свободная энергия адсорбции (работа адсорбции)

Дифференциальное изменение **свободной энергии** ΔF при адсорбции воды грунтом равно дифференциальной **работе адсорбции** и определяется выражением:

$$\left(\frac{\partial \Delta F}{\partial W}\right)_T = \Delta \mu_{\scriptscriptstyle \rm B}$$

Ее можно найти по экспериментальной изотерме адсорбции (Рис. 7.1) при данной температуре:

$$-\Delta\mu_{\scriptscriptstyle\rm B} = RT \ln \frac{p_{\scriptscriptstyle S}}{p}$$

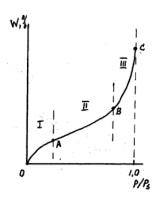


Рис. 7.1. Общий вид изотермы адсорбции воды грунтом

I – формируется вода монослойной адсорбции, II – вода полислойной адсорбции, III – вода капиллярной конденсации

Как следует из последнего уравнения, дифференциальная работа адсорбции грунтом воды совпадает со **свободной энергией системы**. Следовательно, по этому показателю могут быть найдены термодинамические параметры, характеризующие энергетическое состояние воды в грунте. В частности, **расклинивающее давление** воды при данной толщине адсорбционной плёнки $(h_{\rm B})$:

$$\Pi(h_{\scriptscriptstyle \mathrm{B}}) = -\frac{RT}{v} \ln \frac{p}{p_{\scriptscriptstyle \mathrm{S}}}$$

где *v* – молярный объём воды

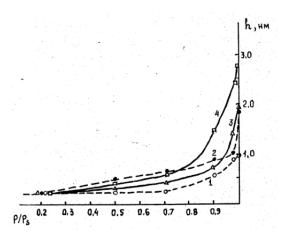


Рис. 7.2. Зависимость толщины пленки связанной воды (h) от равновесного давления пара (p/p_s) для внешней поверхности частиц Na-монтмориллонита (1), Ca-монтмориллонита (2), каолинита (3) и гидрослюды (4)

Расчет удельной поверхности грунта по адсорбции воды

Зная **ёмкость монослоя** (W_m) , можно рассчитать удельную поверхность грунта:

$$S_0 = W_m N_a \omega / M$$
 или $S_0 = W_m 3616$, M^2 / Γ

где ω — площадь, занимаемая на поверхности грунта одной молекулой воды (10,8 \mathring{A}^2); M — молекулярная масса воды = 1

Расчет термодинамических параметров по изотермам адсорбции

В основе расчета термодинамических функций, характеризующих адсорбцию грунтом воды, — изотермы адсорбции, снятые при любых 2 температурах.

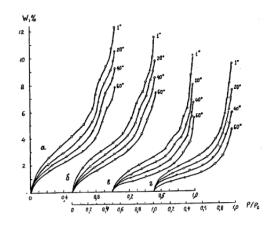


Рис. 7.3. Изотермы адсорбции воды при температурах $1-60^{\circ}$ на полиминеральных глинах: a – озёрно-ледниковая ленточная глина; b – морская гжельская глина; b – морская аптская глина; b – морская глина

Дифференциальная изостерическая теплота адсорбции:

$$Q_w = RT^2 \left(\frac{\partial \ln p}{\partial T} \right)_w$$

Т.е. для данной величины адсорбции Q_w может быть найдена по 2 изотермам:

$$Q_{w} = \frac{RT_{1}T_{2}\ln(p/p_{s})}{T_{2} - T_{1}}$$

Изостера – функция вида $\Delta \mu_{\scriptscriptstyle
m B} = f(T)_{\scriptscriptstyle
m W}$

Определив по 2 изотермам зависимость Q_w от W и зависимость $\Delta \mu_{\rm B}$ от W, можно найти закономерность для дифференциальной **энтропии адсорбции**:

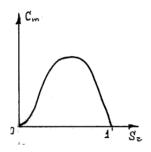
$$\frac{\partial \Delta S}{\partial W} = -\frac{(Q_w - Q_L) - \Delta \mu_{\scriptscriptstyle B}}{T}$$

где Q_L — теплота конденсации воды (10600 ккал/моль).

Преобразуя изотермы адсорбции в координатах $W = f(\Delta \mu_{\text{в}})$ и графически дифференцируя их, можно найти значения истинной удельной изотермической массоёмкости (или влагоёмкости)

$$C_m = \left(\frac{\partial W}{\partial \Delta \mu_{\scriptscriptstyle \mathrm{B}}}\right)_T,$$

которая в теории массопереноса – аналог удельной теплоемкости.



C_m·10³, 1/M

16
12
8
4
0
0.3
0.34
0.38
0.42
0.46
0.5
W_n, r/c_n³

Рис. 7.4. Общий вид зависимости диф- Рис. 7.5. Зависимость объемной диф- ференциальной влагоёмкости от степени ференциальной влагоемкости глинистых влажности грунта S_r грунтов от их объемной влажности:

Рис. 7.5. Зависимость объемной дифференциальной влагоемкости глинистых грунтов от их объемной влажности: 1 - супесь легкая; 2 - супесь тяжее-лая; 3 - каолинитовая глина; 4,5 - супесь естественного (4) и нарушенного (5) сложения; $6,7,8 - \text{гидрослюдисто-монтмориллонитовая глина при плотности: <math>1,56,1,46$ и 1,35 г/см³

С помощью $\Delta\mu_{\rm B}$, могут быть построены изостеры адсорбции вида $\Delta\mu_{\rm B}=f(T)_w,$ графическое дифференцирование которых позволяет найти **температурный ко-** эффициент химического потенциала воды в грунте:

$$K_T = \left(rac{\partial \Delta \mu_{\scriptscriptstyle
m B}}{\partial T}
ight)_{\scriptscriptstyle W},$$

позволяющий судить о взаимном влиянии переноса тепла и влаги.

Может быть рассчитан термоградиентный коэффициент:

$$\delta = C_m \left(\frac{\partial \Delta \mu_{\scriptscriptstyle ext{B}}}{\partial T} \right)_w = C_m K_T,$$

характеризующий в стационарном состоянии перепад удельного влагосодержания в грунте при перепаде температуры в один градус, где C_m – дифференциальная влагоёмкость (массоёмкость) грунта.

Термодинамика адсорбции воды разными грунтами

На (Рис. 7.6), (Рис. 7.7), (Рис. 7.8), (Рис. 7.9) показаны примеры зависимости дифференциальной теплоты Q_w , свободной энергии $\Delta \mu_{\rm B}$ и энтропии адсорбции $\partial \Delta S/\partial W$ воды от равновесной влажности W для различных грунтов. По мере увеличения толщины пленки адсорбирующейся влаги, образуются: на первом этапе — монослой, затем формируются второй, третий слои и т.д. Первый, второй, третий и т.д. перегибы на графиках будут отражать энергетику процессов образования последовательных слоев формирующейся связанной воды.

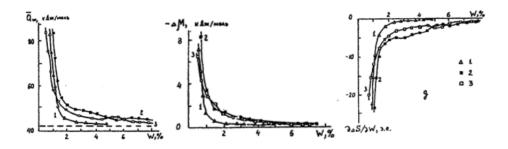


Рис. 7.6. Зависимость дифференциальной теплоты Q_w , свободной энергии $\Delta \mu_{\rm s}$ и энтропии адсорбции $\partial \Delta S/\partial W$ воды от равновесной влажности W каолинитовых и гидрослюдистых глин: 1 – каолин глуховецкий; 2 – синяя кембрийская глина; 3 – сарматская глина;

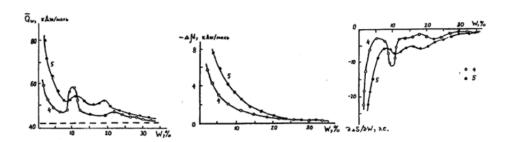


Рис. 7.7. Зависимость дифференциальной теплоты Q_w , свободной энергии $\Delta \mu_e$ и энтропии адсорбции $\partial \Delta S/\partial W$ воды от равновесной влажности W монтмориллонитовых глин: 4 – Na-аскангель; 5 – Ca-аскангель

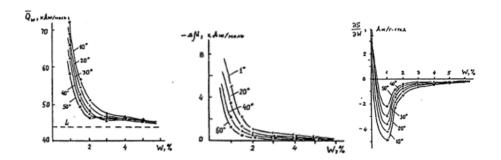


Рис. 7.8. Зависимость дифференциальной теплоты Q_w , свободной энергии $\Delta \mu_e$ и энтропии адсорбции $\partial \Delta S/\partial W$ воды от равновесной влажности W лёссовых грунтов из района г.Алма-Атыпри различной температуре (°C)

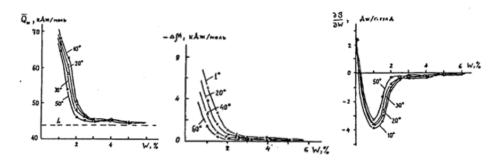


Рис. 7.9. Зависимость дифференциальной теплоты Q_w , свободной энергии $\Delta \mu_e$ и энтропии адсорбции $\partial \Delta S/\partial W$ воды от равновесной влажности Wnëccoвых грунтов из района г.Душанбепри различной температуре (°C)

Расчет термодинамических условий химических реакций в грунтах

Направленность и вероятности протекания химических реакций в грунтах по энергии Гиббса (ΔG):

Если $\Delta G_T < 0$ – реакция идет вправо

Если $\Delta G_T = 0$ – равновесие

Если $\Delta G_T > 0$ – реакция идет влево

$$\Delta G_T = \Delta H_0 + \Delta aT + \frac{\Delta bT^2}{2} - \Delta cT^{-1} - T \int \frac{C_p dT}{T}$$

где C_p – удельная теплоемкость, $a,\,b,\,c$ – коэффициенты в уравнении теплоемкости.

Т.е. необходимо знать стандартные значения энтальпии ΔH_{298}° , энтропии ΔS_{298}° , энергии Гиббса ΔG_{298}° и коэффициенты $a,\,b,\,c$.

В результате протекания химической реакции по закону Кирхгофа:

$$\Delta C_p$$

$$= \Delta a + \Delta bT + \Delta cT^2$$
,

$$\Delta G_T = -RT \ln K$$
,

где - термодинамическая константа равновесия этой реакции. Откуда:

$$K = \exp \frac{-\Delta G_T}{RT}$$

или для стандартных условий:

$$K_{298} = 10^{(-\Delta G_{298}/1,364)}$$

Если $\Delta K > 1$ – реакция идет вправо

Если $\Delta K = 1$ – равновесие

Если $\Delta K < 1$ – реакция идет влево

Описание равновесного распределения компонентов грунта на основе термодинамической модели

Рассмотрим в качестве примера возможное равновесное распределение компонентов между различными фазами грунта, для которых массообмен протекает по схеме: «твёрдая фаза – поровый раствор – поровый воздух» (Рис. 7.10)

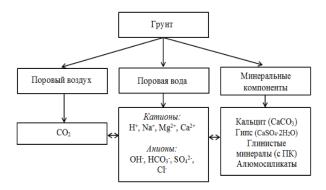


Рис. 7.10. Графическое представление системы, состоящей из порового воздуха, поровой воды и миреральных компонентов.

Минеральная твердая фаза грунта представлена:

- нерастворимыми **алюмосиликатами**, не участвующими в обмене (т.е. их можно не учитывать в модели),
- \circ малорастворимыми **солями**, (кальцитом ($CaCO_3$) и гипсом ($CaSO_4 \cdot 2H_2O$)),
- \circ ионообменной фазой **глиной** с поглощающим комплексом (ПК), обуславливающим определенную величину емкости обмена грунта (СЕС),
- содержание гипса (Γ) кальцита (К) (в моль/л порового раствора),
- \circ содержание поглощенных оснований (в моль/л порового раствора): $S_{Na}, S_{Ca}, S_{Mg}, S_K, \ldots$, их активности (моль/л порового раствора): $\overline{a_{Na}}, \overline{a_{Ca}}, \overline{a_{Mg}}, \ldots$,
- \circ гипс и кальцит грунта могут диссоциировать в поровом растворе, а поглощающий комплекс грунта обусловливает реакции ионного обмена типа $Na \Leftrightarrow Ca$ и $Ca \Leftrightarrow Mg$

Жидкая фаза – поровый раствор грунта содержит наиболее распространённые ионы $(H^+, Na^+, Mg^{2+}, Ca^{2+}, OH^-, HCO_3^-, SO_4^{2-}, Cl^-)$. Их активности в поровом растворе: H, Na, Ca, Mg, \ldots ; их молярные концентрации (моль/л): $m_H, m_{Na}, m_{Ca}, m_{Mg}, \ldots$ Примем, что в поровом растворе грунта могут происходить реакции диссоциации воды и угольной кислоты.

Газовая фаза порового воздуха грунта представлена углекислым газом CO_2 , который может растворяться в поровом водном растворе с образованием угольной кислоты. Прочие газовые компоненты рассматриваются как инертные. Содержание CO_2 оценивается его парциальным давлением (МПа или атм) – p_{CO_2} .

Для математического моделирования равновесий указанных компонентов между фазами грунта необходимо составить замкнутую систему уравнений— термодинамические соотношения для констант соответствующих реакций, протекающих в грунте, а также уравнения закона сохранения обобщённых координат системы.

Равновесие углекислого газа и угольной кислоты в соответствии с реакцией $CO_2 + H_2O \leftrightarrow H_2CO_3$ описывается уравнением (закон Генри):

$$a_{H_2CO_3} = K_{CO_2}p_{CO_2} \tag{1}$$

Для уравнения диссоциации поровой воды и угольной кислоты в грунте

$$H_2O \leftrightarrow H^+ + OH^-$$

 $H_2CO_3 \leftrightarrow H^+ + HCO_3^-$
 $2H_2CO_3 \leftrightarrow 2H^+ + CO_3^{2-}$

термодинамические константы равновесия этих реакций:

$$K_{H_2O} = \frac{a_H a_{OH}}{a_{H_2O}} \tag{2}$$

$$K_{H_2O_3} = \frac{a_H a_{HCO_3}}{a_{H_2CO_3}} \tag{3}$$

$$K_{HO_3} = \frac{a_H a_{CO_3}}{a_{HCO_3}} \tag{4}$$

Для уравнений диссоциации в поровом грунтовом растворе гипса и кальцита

$$CaSO_4 \cdot 2H_2O \leftrightarrow Ca^{2+} + SO_4^{2-} + 2H_2O,$$

$$CaCO_3 \leftrightarrow Ca^{2+} + CO_3^{2-}$$

термодинамические константы растворения K_{Γ} и K_{κ} :

$$K_{\Gamma} = a_{Ca}a_{SO_4}a_{H_2O}^2 \tag{5}$$

$$K_{\kappa} = a_{Ca} a_{CO_3} \tag{6}$$

Для уравнений реакций ионного обмена в грунте:

$$2Na(\Pi K) + Ca^{2+} \leftrightarrow Ca(\Pi K)_2 + 2Na^+$$

$$2Ca(\Pi K)_2 + Mg^{2+} \leftrightarrow Mg(\Pi K)_2 + Ca^{2+}$$

где ПК – поглощающий (обменный) комплекс грунта, обусловленный глинистыми минералами, термодинамические константы ионообменных равновесий:

$$K_{Na-Ca} = \frac{\overline{a_{Na}}\sqrt{a_{Ca}}}{\sqrt{\overline{a_{Ca}}}a_{Na}} \tag{7}$$

$$K_{Ca-Mg} = \frac{a_{Ca}\overline{a_{Mg}}}{\sqrt{a_{Mg}\overline{a_{Ca}}}} \tag{8}$$

где черта над параметром означает активность в ΠK , а параметр без черты – активность в растворе.

К полученным 8 уравнениям равновесия должны быть добавлены уравнения, следующие из **закона сохранения обобщенных координат**.

Прежде всего, это 5 уравнений закона сохранения массы для ионов, не участвующих в обмене с поровым воздухом грунта:

$$T_{Ca} = m_{Ca} + S_{Ca} + \Gamma + K \tag{9}$$

$$T_{Mg} = m_{Mg} + S_{Mg} \tag{10}$$

$$T_{Na} = m_{Na} + S_{Na} \tag{11}$$

$$T = m_{SO_4} + \Gamma \tag{12}$$

$$T_{Cl} = m_{Cl} \tag{13}$$

где T_i — суммарные количества каждого из ионов (i) во всех фазах грунта (в моль/л порового раствора).

Т.к. раствор остается электрически нейтральным:

$$2\left(m_{Ca^{2+}} + m_{Mg^{2+}}\right) + 2m_{H^{+}} + m_{Na^{+}} = 2\left(m_{SO^{2-}} + m_{CO_{3}^{2-}}\right) + m_{HCO_{3}^{-}} + m_{Cl^{-}} + m_{OH^{-}}$$
 (14)

Сохраняется постоянной и емкость поглощения СЕС (обмена):

$$S_{Na} + 2(S_{Ca} + S_{Mg}) = CEC$$
 (15)

Уравнения, позволяющие перейти от концентраций компонентов (m_i) к их активностям (a_i) :

$$a_{H_2O} = 1;$$
 $a_{H_2CO_3} = m_{H_2CO_3};$ $a_{Na} = \frac{S_{Na}}{E}$ $a_{Ca} = \frac{2S_{Ca}}{E};$ $a_{Mg} = \frac{2S_{Mg}}{E}$ (16)

Коэффициенты активности компонентов (по уравнению Дебая-Гюккеля с поправкой Скэтчерда):

$$\gamma_i = Z_i^2 \frac{A\sqrt{I}}{(1 + a_i^0 \sqrt{BI})} - b_i I \tag{17}$$

где $a_i = \gamma_i m_i$; Z_i — заряд иона, I — ионная сила раствора, моль/л, a_i^0 и b_i^0 — индивидуальные для каждого из ионов константы, A, B — константы, зависящие от температуры (при 25° A = 0,509, B = 0,329).

Величина ионной силы раствора в уравнении (17):

$$I = \frac{1}{2} \sum_{n=1}^{i} Z_i^2 m_i \tag{18}$$

Уравнения (1) — (18) — замкнутая система уравнений относительно содержания компонентов в фазах анализируемого грунта. Её решение позволяет описать равновесное распределение компонентов при заданных значениях T, E и p_{CO_2} .

Лекция 8. Термодинамика процессов переноса в грунтах

Общие положения термодинамики процессов переноса в грунтах

В основе термодинамического описания процессов переноса в грунтах лежит балансовое уравнение вида:

$$rac{\partial q_{n(V)}}{\partial t} = rac{\partial_e q_{n(V)}}{\partial t} + rac{\partial_i q_{n(V)}}{\partial t_{V,\Omega}} = -J_{qn(V)} + \sigma_{qn}$$

где $J_{qn(V)}$ – поток обобщенной координаты; σ_{qn} – ее производство.

В более общей форме это уравнение имеет вид:

$$\frac{\partial C}{\partial t} + div(C_v) = -div(\vec{J}) + J_v,$$

где — концентрация какой-либо субстанции; \vec{J} — вектор плотности потока субстанции; J_{ν} — её количество, выделяемое источником $(J_{\nu}>0)$ или поглощаемое стоком $(J_{\nu}<0)$ единицы объёма среды в единицу времени;

$$div(\vec{r}) = \frac{\partial r_x}{\partial x} + \frac{\partial r_y}{\partial y} + \frac{\partial r_z}{\partial z},$$

где
$$\vec{r} = r_x \vec{i} + r_y \vec{j} + r_z \vec{k}$$
;

Слагаемые $div(C_V)$ и div(J) характеризуют, соответственно, конвективный и диффузионный перенос, а слагаемое J_V – мощность внешнего источника (или стока) субстанции.

Краевые условия

Из полученного уравнения следует подобие полей концентраций, температур и скоростей в грунтах в случае подобных **граничных условий**.

Решение соответствующих дифференциальных уравнений переноса осуществляется при некоторых заданных краевых условиях (совокупность начальных и граничных условий).

Начальное условие — поле какого-либо обобщённого потенциала переноса $_n$ в грунте в тот момент, с которого ведётся отсчет времени данного воздействия:

$$P_n(x, y, z, 0) = f(x, y, z)$$

Граничное условие (ГУ) — условие, определяющее процесс переноса обобщённых координат через границу — контрольную поверхность. Граничные условия складываются из сведений об условиях тепло- или массообмена на границе и сведений об изменении параметров источника того или иного воздействия.

Различают четыре рода ГУ.

ГУ **первого рода** имеет место тогда, когда известен закон изменения $_n$ на граничной поверхности во времени:

$$(P_n)_{\text{\tiny IIOB}} = f(t)$$

Частный случай ГУ первого рода, часто применяемый для расчётов:

$$(P_n)_{\text{nob}} = const$$

ГУ второго рода отражает закономерность изменения во времени удельного потока обобщённой координаты J_{q_n} (тепла, массы и т.д.), поступающего к поверхности грунта:

$$(J_{q_n})_{ ext{пов}} = f(t)$$
 или $-K_{ ext{пр}}\left(rac{\partial P_n}{\partial x}
ight)|_{x=+0} = f(t),$

где $K_{\rm np}$ – коэффициент проводимости субстанции; индекс x=+0 указывает на то, что градиент обобщённого потенциала относится к точке тела, расположенной в непосредственной близости от поверхности.

Частный и наиболее простой случай ГУ второго рода:

$$J_{a_n} = const$$

ГУ **третьего рода** задает величины источника того или иного воздействия $(n)_{\text{ист}}$ и интенсивность тепло- или массобменана поверхности:

$$-K_{\text{IIP}}\left(\frac{\partial P_n}{\partial x}\right)|_{x=+0} = \alpha \left[(P_n)_{\text{HCT}} - (P_n)_{\text{IIOB}} \right],$$

где α – соответствующий коэффициент тепло-или массоотдачи.

ГУ четвёртого рода имеет место при соприкосновении двух тел, имеющих разные физические тепло- и массообменные свойства, но одинаковые потенциалы переноса в месте контакта. Например, такое условие реализуется при контакте двух образцов грунта, имеющих разные теплофизические свойства, но одинаковую температуру на поверхностях. Это условие:

$$-K_{\text{np},1}\left(\frac{\partial P_n}{\partial x}\right)|_{x=+0} = K_{\text{np},2}\left(\frac{\partial P_n}{\partial x}\right)|_{x=+0}$$

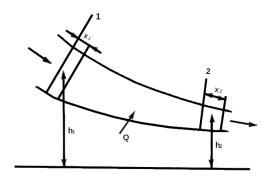


Рис. 8.1. Движение потока жидкости или газа в поровом канале грунта произвольной формы: 1 и 2 – сечения потока Q, h_1 , h_2 – геодезические уровни 1 и 2

Основные уравнения переноса

Основные уравнения переноса в грунтах:

- \circ Закон неразрывности потока: при установившемся движении жидкости $\omega B = const$, где ω средняя скорость движения, B площадь живого сечения
- Уравнение 1-го закона термодинамики для потока:

$$dq = di + \omega d\omega + gdh + da_{\text{TDEH}} + da_{\text{TEXH}}$$

где i – удельная энтальпия потока, $a_{\text{трен}}$ и $a_{\text{техн}}$ – работа трения и техническая

о Уравнение Бернулли:

$$p_1 + \frac{\gamma \omega_1^2}{2} = p_2 + \frac{\gamma \omega_2^2}{2}$$

где p_1 и p_2 – давления в сечениях 1 и 2, $\gamma = 1/\nu$ – плотность жидкости потока. Из уравнения Бернулли следует, что для несжимаемой жидкости полное давление в потоке складывается из статического (p) и динамического $[(\gamma\omega^2)/2]$ давлений.

Изотермический массоперенос в грунтах

В насыщенных грунтах изотермический массоперенос воды описывается **законом** Дарси: «Объём воды, который протекает через слой песка с данными свойствами, пропорционален давлению и обратно пропорционален толщине слоя песка».

$$u = kJ$$

где u — объемная скорость фильтрации, k_{Φ} — коэффициент фильтрации, J — градиент напора

В неполностью водонасыщенных дисперсных грунтах, когда $S_r < 1$, массоперенос осуществляется как в жидкостной (влагоперенос), так и в паровой (газоперенос) фазах.

Потенциал переноса пара в грунте — полный относительный химический потенциал влаги в грунте (μ_{π}):

$$\mu_{\scriptscriptstyle
m II} = \mu_{\scriptscriptstyle
m B} - \mu_{\scriptscriptstyle
m B}^0 = \left(rac{\partial G}{\partial m_{\scriptscriptstyle
m B}}
ight)_{P,T,m_i,z=0},$$

где $\mu_{\rm B}$ — химический потенциал (или парциальная удельная энергия Гиббса) воды в грунте, как компонента системы «твердая фаза — поровая вода — поровый воздух»; $\mu_{\rm B}^0$ — химический потенциал чистой воды в объеме; G — энергия Гиббса всего влажного грунта; $m_{\rm B}$ — масса воды в грунте; P — внешнее давление; T — температура; m_i — масса остальных компонентов грунта; z — условный уровень сравнения в поле тяжести.

Для одномерного потока, например, вдоль оси:

$$J_{\text{ип}} = -K_{\text{ип}} \frac{d\mu_{\text{п}}}{dx}$$

где $K_{\rm un}$ – коэффициент изотермической влагопроводности в паровой фазе (паропроводности), зависящей от структуры порового пространства грунта.

Располагая изотермами адсорбции-десорбции воды и функциями распределением объема пор в грунте, можно оценить: изотермический коэффициент диффузии (диффузивность) паров воды в грунте (D_{wn}) и изотермический коэффициент его паропроводности (K_{un}):

$$D_{\scriptscriptstyle W\Pi} = D_0 f(n) rac{p_{\scriptscriptstyle S} M}{RT} rac{\partial [p/p_{\scriptscriptstyle S}]}{\partial W} \ K_{\scriptscriptstyle \Pi\Pi} = D_0 f(n) rac{g p_{\scriptscriptstyle S} M^2}{R^2 T^2} \exp rac{g H_{\scriptscriptstyle \Pi} M}{RT}$$

где - D_0 — изотермический коэффициент диффузии пара в воздухе; f(n) — функция свободного объема пор, $f(n) \approx 0,66n_a$, где n_a — свободная (открытая) пористость; p/p_s — относительное давление паров воды в грунте; — молекулярная масса воды; H_{Π} — эквивалентное давление (напор) пара, $H_{\Pi} = \mu/g$

Изотермический поток жидкой фазы в грунте:

$$J_{\scriptscriptstyle \rm HJK} = -K_{\scriptscriptstyle \rm HJK} \frac{d\Phi_{\scriptscriptstyle \rm HJK}}{dx},$$

где $K_{\text{иж}}$ — коэффициент изотермической влагопроводности воды в жидкой фазе, зависящий от живого сечения, влагосодержания, плотности и структуры порового пространства грунта.

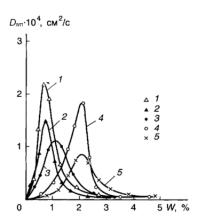


Рис. 8.2. Зависимость диффузивности Рис. 8.3. Зависимость диффузивности $napa\ (D_{wn})$ от влажности (W) в лёссо- $napa\ (D_{wn})$ от влажности (W) в смективых грунтах: 1 -лёгкий лёссовидный су- товыхглинах: 1 - Na-аскангель; 2 - Саглинок; 2 – лёсс лекгосуглинистый круп- аскангель (при температуре 20°) нопылеватый; 3 - средний лессовидный суглинок; 4 - средний лессовидный суглинок; 5 – тяжелый лессовидный суглинок (npu температуре 20°)

Потенциал потока воды:

$$\Phi_{\text{\tiny IDK}} = \mu_w + \psi_{\text{\tiny \Gamma}},$$

где $\mu_{\scriptscriptstyle W} = \mu_{\scriptscriptstyle \Pi} - \mu_{\scriptscriptstyle {
m OCM}}$ – потенциал влажности (матричный потенциал), $\mu_{\scriptscriptstyle {
m OCM}}$ – осмотический потенциал влаги в грунте; ψ_{Γ} – гравитационный потенциал

Общий изотермический поток пара и жидкой влаги в грунте $J_{
m u}$ является аддитивным:

$$J_{\scriptscriptstyle \mathrm{H}} = J_{\scriptscriptstyle \mathrm{HH}} + J_{\scriptscriptstyle \mathrm{HK}}$$

Для одномерного потока:

$$J_{\scriptscriptstyle \mathrm{H}} = -(K_{\scriptscriptstyle \mathrm{HII}} + K_{\scriptscriptstyle \mathrm{HJK}}) rac{d\mu_{\scriptscriptstyle W}}{dx} = -K_{\scriptscriptstyle \mathrm{H}} rac{d\mu_{\scriptscriptstyle W}}{dx},$$

где $K_{\rm u}$ – коэффициент изотермической влагопроводности грунта (суммарно, в паровой и жидкой фазе).

Это уравнение можно записать в форме закона Дарси:

$$v_{\scriptscriptstyle \mathrm{H}} = v_{\scriptscriptstyle \mathrm{HII}} + v_{\scriptscriptstyle \mathrm{HJK}} = -K_{\scriptscriptstyle \mathrm{HII}} rac{dh_{\scriptscriptstyle \mathrm{SII}}}{dx} - K_{\scriptscriptstyle \mathrm{HJK}} rac{dh_{\scriptscriptstyle \mathrm{SJK}}}{dx}$$

где $v_{\rm u}$ – линейная скорость потока влаги; $h_{\rm sn}=\mu_{\rm w,n}/g$ – эквивалентный напор пара; $h_{\text{эж}} = \mu_{\text{w,ж}}/g$ — эквивалентный напор жидкости в грунте, причём когда гравитационный поток пренебрежимо мал, и грунт не засолен, $h_{\text{эп}} \approx h_{\text{эж}} \approx h_{\text{э}}$.

Закон изотермической влагопроводности грунта может быть записан и в диффузионной форме, тождественной первому закону Фика:

$$v_{\rm M} = K_{\rm M} \frac{\partial h_{\rm S}}{\partial W} \frac{dW}{dx} = D_{\rm W} \frac{dW}{dx}$$

где $D_w = K_{\rm u}(\partial h_s/\partial W)$ – коэффициент капиллярной диффузии, или **диффузивность**; W – влажность грунта; h_s – эквивалентный напор, соответствующий потенциалу воды μ_w в грунте.

Величины производных $(\partial h_s/\partial W)$, $(\partial P_{\mathfrak{d}}/\partial W)$ или $(\partial \mu_w/\partial W)$ называются дифференциальной потенциалоёмкостью. Обратные им величины — дифференциальной влагоёмкостью грунта:

$$C_m = \frac{\partial W}{\partial h_s}; \quad C_m = \frac{\partial W}{\partial P_{\mathfrak{D}}}; \quad C_m = \frac{\partial W}{\partial \mu_w}$$

Эти параметры вязаны между собой соотношением:

$$K_{\rm M} = D_{\rm W} C_{\rm m} \rho_{\rm B}$$

где $ho_{\scriptscriptstyle
m B}$ – плотность воды.

Рассмотренные величины графически представлены на (Рис. 8.4)

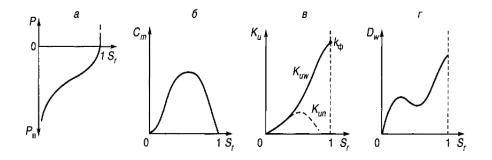


Рис. 8.4. Общий вид зависимостей давления влаги (а), дифференциальной влагоем-кости (б), коэффициента влагопроводности (в) и коэффициента диффузии влаги (г) от степени влажности грунта (S_r) при изотермическом влагопереносе; k_{ϕ} – коэффициент фильтрации

Неизотермический влагоперенос в грунтах

В неполностью водонасыщенных грунтах ($S_r < 1$) при наличии температурного градиента (неизотермические условия) под действием ∇T возникают дополнительные потоки вещества и тепла, которые «накладываясь» на «изотермические» потоки, усложняют и изменяют общую картину тепло- массопереноса. При этом, в силу

эффектов увлечения одних обобщённых координат другими, возникают различные перекрёстные эффекты переноса.

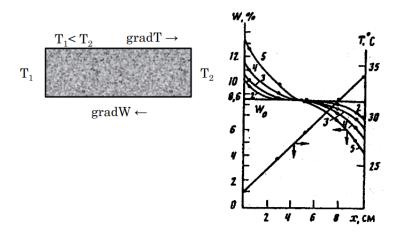


Рис. 8.5. Кинетика изменения полей влажности (W) в результате термовлагопереноса и установившееся поле температуры () по длине образца среднемелкозернистого песка в разные моменты времени: 1–4 часа; 2–5 часов; 3–6 час; 4–8 час; 5–9 час

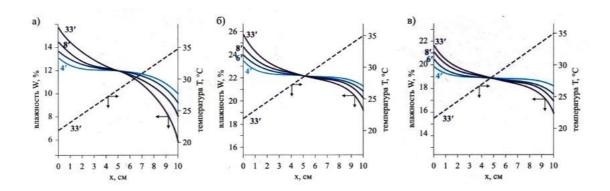


Рис. 8.6. Профили влажности (W) и температуры (T) по длине образцов изучаемых лессовых грунтов: а – тяжелый лессовидный суглинок с естественной структурой и W=12%; б – то же при W=22%; в – лессовидный суглинок с естественной структурой и W=19%. Цифры у кривых – время от начала опыта, ч

Уравнение суммарного (изотермического и неизотермического) влагопереноса:

$$v_{vm} = \frac{J_{WT}}{\rho_{\scriptscriptstyle B}} = -D_w \frac{dW_0}{dx} - D_T \frac{dT}{dx}$$

где v_{vm} — линейная скорость влагопереноса; W_0 — объёмная влажность грунта; D_w , D_T — соответственно, коэффициенты изотермической и неизотермической влагопро-

водности. Эти параметры также можно определить экспериментально по (Рис. 8.7) кривым для разных временных интервалов.

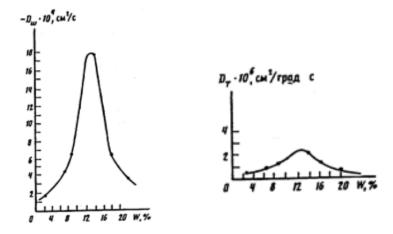


Рис. 8.7. Зависимость коэффициента влагопереноса (D_w) и коэффициента термопереноса (D) для неизотермического влагопереноса чистого средне-мелкозернистого песка от влажности W

Чтобы учесть соотношение твердой, жидкой и газообразной фаз грунта при оценке неизотермического влагопереноса, удобно этот процесс изображать графически с помощью треугольных диаграмм фазового состава. (Рис. 8.8)

Помимо расчёта v_{vm} , J_{WT} , D_w , D_T на основе анализа кинетики изменения полей влажности в ходе термовлагопереноса могут быть также рассчитаны дополнительные показатели (графически представлены на (Puc. 8.9)):

- 1) **результирующий поток влаги** $q_{mw} = J_{WT}t$ для среднего сечения колонки , где влажность в момент времени t равна исходной;
- 2) **перепад влажности** $\Delta W_{\rm xr}$ между «холодной» и «горячей» границами системы;
- 3) доля перераспределившейся влаги от всей, находящейся в системе $\sum_{\omega T}$;
- 4) **«влажностный» термоградиентный коэффициент** $\delta_W(W,)$, рассчитываемый по данным о стационарном профиле влажности, когда результирующий поток $J_{WT} = 0$ и, следовательно, $J_T = -J_W$ в соответствии с уравнением:

$$\delta_W(W,T) = \frac{D_T}{D_W} = -\left(\frac{dW}{dT}\right)_{t\to\infty}$$

Так как на указанные параметры сильно влияет соотношение фаз в грунте, то удобно их отражать с помощью треугольных диаграмм.(Рис. 8.10), (Рис. 8.11)

76

Выводы:

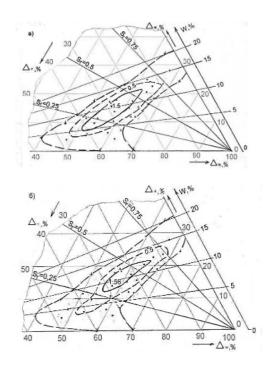


Рис. 8.8. Диаграммы значений коэффициентов влаго- $D_w \cdot 10^3$, cm^2/c (a) и термопереноса $D_T \cdot 10^6$, $cm^2/\text{град} \cdot (6)$ в зависимости от фазового состава песка; W – весовая влажность; S_r – степень влажности

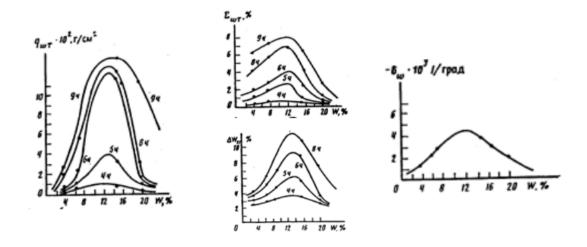


Рис. 8.9. Зависимость максимального потока влаги q_{wt} через среднее сечение образца; доли перераспределившейся влаги \sum_{WT} ; перепада влажности между холодной и горячей границами системы ΔW ; «влажностного» термоградиентного коэффициента δ_W для неизотермического влагопереноса в чистом средне-мелкозернистом песке от влажности W. Интервал температуры $22-36^\circ$

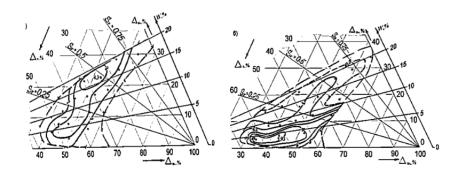


Рис. 8.10. Диаграммы значений максимального потока влаги $q_{wT} \cdot 10^2$, ϵ/cm^2 через 20 часов от начала опыта в зависимости от фазового состава крупного (а) и мелкого (б) неоднородных песков

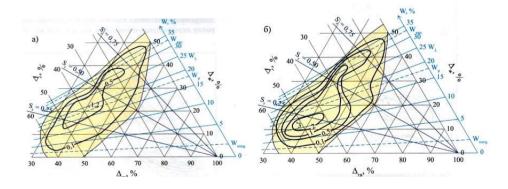


Рис. 8.11. Диаграммы значений коэффициентов $D_W \cdot 10^3$, $c M^2/c$ (a) и $D_T \cdot 10^6$, $c M^2/r$ град c (б) в зависимости от фазового состава среднего лессовидного суглинка: W – весовая влажность, S_r – степень влажности

- 1) Уравнения переноса в грунтах для разных субстанций (вода, газ, тепло, растворенные вещества и т.п.) подобны.
- 2) В наиболее общей форме они записываются на основе уравнения закона сохранения.
- 3) Решение уравнений переноса зависит от краевых условий (начальных и граничных)
- 4) Изотермический массоперенос в грунтах по-разному описывается в насыщенных и ненасыщенных грунтах
- 5) Неизотермический влагоперенососуществляется как в фазе пара, так и в фазе жидкости (термоосмос)

6) Совместное рассмотрение всех потоков влаги может быть дано на основе термодинамики необратимых процессов

Лекция 9. Термодинамика диффузии и осмоса в грунтах. Термодинамика физико-механических процессов в грунтах

Диффузия

Диффузия – процесс самопроизвольного выравнивания концентрации одного вещества во всём объёме другого.

В соответствии с **первым законом Фика** скорость одномерного диффузионного потока вещества (J=dm/dt) определяется градиентом его концентрации (C) в направлении диффузии (x)

$$J = -DS\frac{dC}{dx},$$

где D — коэффициент молекулярной диффузии вещества, см 2 /с (количество вещества, диффундирующего в единицу времени через единицу площади при единичном градиенте концентрации); m — масса вещества; S — площадь поперечного сечения.

Для образца грунта (выполняющего роль полупроницаемой мембраны), по обе стороны которого находятся двухкомпонентные растворы соли одинакового состава, но разной концентрации ($\nabla \mu \neq 0$) при наличии разности гидростатических давлений ($\nabla p \neq 0$) диссипативная функция:

$$\vartheta = J_1(\nabla \mu_1)_{T,p} + J_2(\nabla \mu_2)_{T,p} + J_\nu \nabla p$$

где J_1, J_2 – потоки 1 и 2 компонентов; J_{ν} – объёмный поток, вызванный градиентом гидростатического напора ∇p .

Формула Эйнштейна для D:

$$D=\frac{RT}{6\pi v r N_A},$$

где V — вязкость среды; r — радиус диффундирующей частицы (иона, молекулы).

Второй закон Фика устанавливает закономерности протекания диффузии во времени:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2},$$

где t – время диффузии; x – координата в направлении диффузии.

В реальных грунтах нужно учитывать вклад непроводящих частиц: обломков, зерен в поровом пространстве грунта, которые осложняют диффузионный перенос.

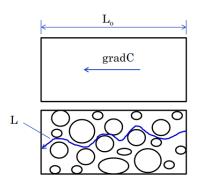


Рис. 9.1. Диффузия: сверху – диффузия в жидкости, снизу – диффузия в грунте (L – длина пути диффузии)

(Рис. 9.1) Для этого вводится понятие «эффективного коэффициента диффузии» в грунтах.

Эффективный коэффициент диффузии:

$$D_{\mathrm{s}\mathrm{d}}=\Omega_{\chi}D,$$

где Ω — площадь свободного сечения пор на единицу площади полного сечения; $\chi = L_0/L$ — коэффициент извилистости, учитывающий структуру и длину поровых и трещинных каналов; L_0 — длина пути диффузии в свободной среде (в объеме раствора);L — длина пути диффузии в пористой среде; D — коэффициент молекулярной диффузии в свободном объеме.

Для пористых сред приближенная формулой Викке:

$$\chi = \frac{1 - (1 - n)^{2/3}}{n},$$

где n — пористость.

Коэффициент извилистости $0 < \chi < 1$; для грунтов: от 0,2-0,3 (для плотных) до 0,7-0,9 (для рыхлых).

Осмос

Осмос – это движение растворителя через полупроницаемую мембрану, причиной которого является наличие градиента концентрации. Полупроницаемая мембрана свободно пропускает молекулы растворителя и задерживает молекулы растворенного вещества. В грунтах её роль играет внешняя граница ДЭС.

Условно процесс осмоса может быть охарактеризован с помощью V-образной трубки. (Рис. 9.2)

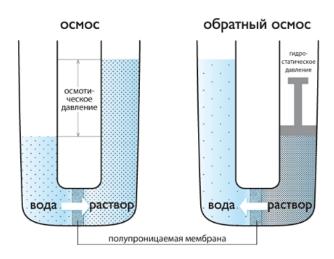


Рис. 9.2. Процесс осмоса

Осмотическое давление в равновесной системе подчиняется закономерности, установленной Вант-Гоффом:

$$P_{\text{OCM}} = iRTC$$

где $P_{\text{ОСМ}}$ — осмотическое давление, МПа; C — молярная концентрация раствора, i — коэффициент Вант-Гоффа, близкий к 1.

Для грунтов формула Вант-Гоффа:

$$P_{\text{OCM}} = RTC_{\kappa}^{\text{a}}$$

где $C_{\kappa}^{\rm a}$ – активная концентрация поверхностных (обменных) катионов (противоионов ДЭС) в поровом растворе.

При набухании грунта перенос воды осуществляется за счёт разности химических потенциалов воды в объёме ($\mu_{\scriptscriptstyle B}^0$) и воды в пределах ДЭС грунта ($\mu_{\scriptscriptstyle B}$), причём $\mu_{\scriptscriptstyle B}^0 > \mu_{\scriptscriptstyle B}$. Эта разность может быть затрачена на работу по впитыванию влаги и переориентацию глинистых частиц и может быть скомпенсирована внешним давлением, примерно равным давлению набухания $P_{\scriptscriptstyle H6}$:

$$\frac{\mu_{\scriptscriptstyle \rm B}}{\nu_{\scriptscriptstyle \rm B}} = \frac{\mu_{\scriptscriptstyle \rm B}^0 - \mu_{\scriptscriptstyle \rm B}}{\nu_{\scriptscriptstyle \rm B}} \approx P_{\scriptscriptstyle {\rm H} 6},$$

где $v_{\rm B}$ — удельный объём воды в набухающем грунте.

Некоторые считали, что давление набухания можно отождествить с давлением влаги:

$$P_{\scriptscriptstyle \mathrm{H}ar{\mathrm{O}}} = P_{\scriptscriptstyle \mathrm{R}}$$

Другие исходили из формулы Вант-Гоффа:

$$P_{\rm HG} = p_{\rm OCM}$$

Разность между $P_{\scriptscriptstyle \mathrm{B}}$ и $p_{\scriptscriptstyle \mathrm{OCM}}$ составляет ту часть макроскопического давления набухания системы «глина-поровый раствор», которая может быть скомпенсирована внешней нагрузкой $P_{\scriptscriptstyle \mathrm{BH}}=P_{\scriptscriptstyle \mathrm{H}\mathrm{G}},$ т.е.:

$$p_{\scriptscriptstyle ext{OCM}} - P_{\scriptscriptstyle ext{B}} = \Delta P_{\scriptscriptstyle ext{B}} = P_{\scriptscriptstyle ext{H}f 0}$$

Сопоставление термодинамических функций, вносящих вклад в величину давления набухания в глинистых грунтах разного минерального состава и разной дисперсности, позволило определить, что давление набухания определяется разностью величин осмотического давления по Вант-Гоффу и давления влаги. (Рис. 9.3), (Рис. 9.4)

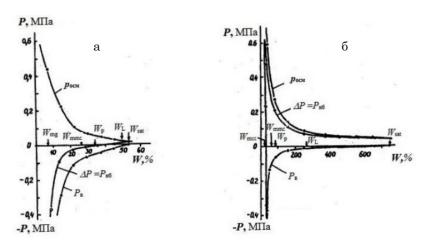


Рис. 9.3. Соотношение капиллярно-сорбционного давления влаги (P_6) , осмотического давления (p_{ocm}) и давления набухания $(P_{H\bar{0}})$ в глинах различной влажности (W): а – Nа-каолинит (каолин глуховецкий); б – Nа-монтмориллонит (аскангель)

Термодинамика упругого деформирования грунта

Уравнение Гиббса для процесса деформирования грунта:

$$dU = TdS + \sigma_{ij}d\varepsilon_{ij} + \sum dA,$$

где U — удельная внутренняя энергия грунта; S — удельная энтропия; σ_{ij} — тензор напряжений; ε_{ij} — тензор деформаций; $\sum dA = \mu_{k,yz} dm + \varphi dq_{эл} + \dots$ — другие виды немеханической работы.

В этом уравнении тензоры напряжений и деформаций:

$$\sigma_{ij} = \begin{vmatrix} \sigma_{11} & \tau_{12} & \tau_{13} \\ \tau_{21} & \sigma_{22} & \tau_{23} \\ \tau_{31} & \tau_{32} & \sigma_{33} \end{vmatrix} \quad \varepsilon_{ij} = \begin{vmatrix} \varepsilon_{11} & \frac{1}{2}\gamma_{12} & \frac{1}{2}\gamma_{13} \\ \frac{1}{2}\gamma_{21} & \varepsilon_{22} & \frac{1}{2}\gamma_{23} \\ \frac{1}{2}\gamma_{31} & \frac{1}{2}\gamma_{32} & \varepsilon_{33} \end{vmatrix},$$

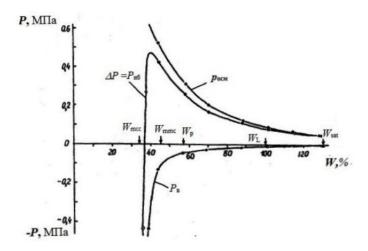


Рис. 9.4. Соотношение капиллярно-сорбционного давления влаги (P_6) , осмотического давления (p_{ocm}) и давления набухания (P_{n6}) в Са-монтмориллонитовой глинк (асканглина) различной влажности (W)

где au_{ij} – касательные напряжения; γ_{ij} – деформации сдвига.

Для случая равномерного всестороннего сжатия грунта уравнение Гиббса:

$$dU = TdS - pdV + \sum dA,$$

где *p* – равномерное всестороннее давление.

Если при рассмотрении ограничиться лишь термической и механической работой, то:

$$dU = TdS + \sigma_{ij}d\varepsilon_{ij}$$

Для этого же случая изменения удельных свободной энергии (F) и энергии Γ иббса (G) упруго деформируемого грунта:

$$dF = -SdT + \sigma_{ij}d\varepsilon_{ij}, \quad dG = -Sdt - \varepsilon_{ij}d\sigma_{ij}$$

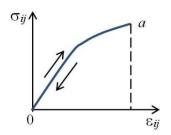
Отсюда компоненты тензора напряжений и деформаций соответственно будут равны:

$$\sigma_{ij} = \left(\frac{\partial U}{\partial \varepsilon_{ij}}\right)_S = \left(\frac{\partial F}{\partial \varepsilon_{ij}}\right)_T, \quad \varepsilon_{ij} = -\left(\frac{\partial G}{\partial \sigma_{ij}}\right)_T = -\left(\frac{\partial H}{\partial \sigma_{ij}}\right)_S,$$

где H — удельная энтальпия грунта.

Графический анализ и оценка работы упругого деформирования грунта представлен на (Рис. 9.5).

Поскольку в изотермическом процессе $A_{\text{mex}} = -\Delta F$, то оценка величины работы



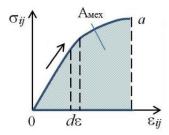


Рис. 9.5. Проявление идеальной упругости (слева) и оценка механической работы деформирования (справа) грунта

упругого деформирования в этом процессе:

$$A_{ ext{ iny Mex}} = -\int\limits_0^{arepsilon_{ij}} \sigma_{ij} darepsilon_{ij} = -\Delta F$$

даёт возможность определить изменение свободной энергии. При этом приращение работы $\delta A_{\text{mex}} = \sigma_{ij} \delta \varepsilon_{ij}$, так как в общем случае оно не является полным дифференциалом.

Поскольку работа деформирования складывается из **работы деформации объ- ёма** $A_{\text{мех}}^{\nu}$ и **работы деформации формы** $A_{\text{мех}}^{\varphi}$, то соответствующие изменения удельной свободной энергии ΔF^{ν} и ΔF^{φ} будут:

$$A_{ ext{mex}}^{v} = -\int\limits_{0}^{arepsilon_{m}} \sigma_{m} darepsilon_{m} = -\Delta F^{v}$$

$$A_{ ext{ iny Mex}}^{oldsymbol{\Phi}} = -\int\limits_{0}^{\gamma_{ ext{ iny II}}} au_{ ext{ iny I}} d\gamma_{ ext{ iny II}} = -\Delta F^{oldsymbol{\Phi}}$$

где σ_m — среднее нормальное напряжение: $\sigma_m = (\sigma_{xx} + \sigma_{yy} + \sigma_{zz})/3$; ε_m — средняя линейная деформация: $\varepsilon_m = (\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz})/3$; τ_{π} — среднее касательное напряжение; γ_{π} — средняя деформация сдвига.

Выражения для F, G и U получаются, в частности для упругих сред, разложением U или F в ряд по степени ε_{ij} , исходя из малости упругих деформаций.

Разложение F в ряд по степени ε_{ij} с точностью до членов 2 порядка:

$$F = F_0 + \Delta F = F_0 + \frac{\lambda_0}{2} \varepsilon_{ij}^2 + E_\tau \varepsilon_{ij}^2,$$

где F_0 — удельная свободная энергия недеформированного грунта в исходном состоянии; λ_0 — коэффициент Ламэ; E_{τ} — модуль сдвига, связанный с λ_0 и модулем всестороннего сжатия E_p соотношением: $E_p = \lambda_0 + 2E_{\tau}/3$.

Отсюда:

$$\Delta F = \left(\frac{\sigma_{ij}\varepsilon_{ij}}{2}\right)_T$$

При простом растяжении (или сжатии) вдоль оси Z под действием напряжения σ_{zz} :

$$\Delta F = rac{\sigma_{zz} arepsilon_{zz}}{2} = rac{\sigma_{zz}^2}{2E} = rac{E arepsilon_{zz}^2}{2},$$

где $\varepsilon_{zz} = \sigma_{zz}/E$; — модуль упругости грунта.

При разгрузке образца «идеально упругого» грунта деформация полностью восстанавливается (Рис. 9.5), а изменение свободной энергии за цикл «нагрузка-разгрузка» равно нулю, т.е.

$$\Delta F_{1-2} = \Delta F_1 + \Delta F_2 = \int\limits_0^{arepsilon_{ij}} \sigma_{ij} darepsilon_{ij} + \int\limits_{arepsilon_{ij}}^0 \sigma_{ij} darepsilon_{ij} = 0$$

Т.е. накапливаемая в грунте при деформировании упругая механическая энергия полностью возвращается при разгрузке, а совершаемая за цикл нагружения от 0 до точки механическая работа (A_{mex}) соответствует на рисунке площади области под кривой. Накопленная работа является полезной.

При сжатии образца грунта без возможности его бокового расширения ($\varepsilon_{xx} = \varepsilon_{yy} = 0$):

$$\Delta F' = -\sigma_{zz}^2 (1 + \mu_{\pi})(1 - 2\mu_{\pi})/2E(1 - \mu),$$

или $\Delta F' = \Delta F \cdot K_{\text{сж}}$, где $K_{\text{сж}} = (1 + \mu_{\text{п}})(1 - 2\mu_{\text{п}})/(1 - \mu_{\text{п}})$ – коэффициент упругого сжатия; $\mu_{\text{п}}$ – коэффициент Пуассона.

Для однородного деформирования изменение удельной **внутренней энергии грунта**:

$$\Delta U = rac{\sigma_z}{2E} \left[\left(1 - rac{T}{E} \cdot rac{dE}{dT}
ight) \sigma_z + ET\alpha \left(rac{\sigma_z}{E} + 2
ight) \right],$$

где E – модуль упругости грунта; $\alpha = (1/L_0)(\partial L_0/\partial T)_p$ – температурный коэффициент линейного расширения грунта, где L_0 – длина образца грунта до деформирования.

Изменение удельной энтропии грунта при деформировании в этом случае:

$$\Delta S = \alpha \sigma_z + \frac{\alpha \sigma_z^3}{2E} - \frac{\sigma_z^2}{2E^2} \cdot \frac{dE}{dT}$$

Основные термодинамические функции образца «идеально упругого» грунта могут быть получены и **на основе уравнения состояния** идеального упругого тела, задаваемого в общем вида как f = f(L,T), где f — сила продольного сжатия (или растяжения), приложенная к образцу грунта длиной L. Явный вид этого уравнения

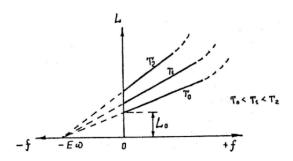


Рис. 9.6. Изотермы деформирования идеально-упругого грунта: L_0 – начальная длина образца при температуре T_0 ; f – cила

в широком интервале деформаций и температуры сложен и находится эмпирически для каждого грунта.

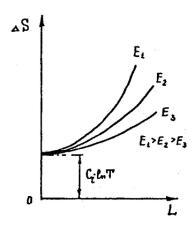
Для малых упругих деформаций и температур, далеких от точки плавления породы, когда справедливо соотношение $L(T,0)=L(T_0,0)[1+\alpha(T-T_0)]$ и выполняется закон Гука $(f/E\omega)=[L(T,f)-L(T,0)]/L(T,0)$ уравнение состояния грунта:

$$f = E\omega\left(\frac{L}{L_0}[1 + (T - T_0)] - 1\right),\,$$

где E — модуль упругости, $T_0=273,15K$, ω — площадь поперечного сечения образца грунта, $L_0=L(T_0,0),\;\alpha$ — коэффициент линейного температурного расширения грунта.

Изменение энтропии может быть получено на основе соотношения $(dS/dL)_T = -(df/dT)_L$, откуда имеем: $\Delta S = S - S_0 = C_p \ln(T) + \alpha E \omega L^2/2L_0$, где S_0 – энтропия образца до деформирования; C_p – изобарная теплоёмкость грунта.

Изменение внутренней энергии упругого образца грунта будет равно: $\Delta U = C_p T + E \omega (L-L_0)^2/2L_0$



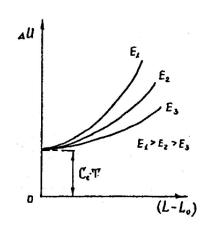


Рис. 9.7. Общий вид зависимости изме- Рис. 9.8. Общий вид зависимости изменения энтропии от длины образца (L) нения внутренней энергии от длины обпри упругом деформировании грунта и разца (L) при упругом деформировании разных модулях деформации: $E_1 > E_2 > E_3$ грунта и разных модулях деформации:

 $E_1 > E_2 > E_3$

Лекция 10. Термодинамика неупругого деформирования грунтов. Термодинамические критерии прочности и разрушения грунтов

Отличие деформирования упруго-пластичного грунта от идеального пластичного

Графическая оценка работы диссипации при деформировании упруго-пластичного грунта представлена на (Рис. 10.1).

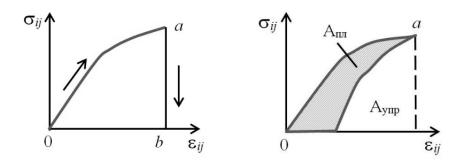


Рис. 10.1. Деформирование идеально пластичного (а) и упруго-пластичного (б) грунта

Пластическая деформация не накапливается, а рассеивается.

Полное приращение деформаций складывается из обратимой (индекс «у») и необратимой («р») частей:

$$\delta \varepsilon_{ij} = \delta \varepsilon_{ij}^{y} + \delta \varepsilon_{ij}^{p},$$

и, соответственно, работа внешних сил:

$$A_{ ext{ iny Mex}} = \sum \sigma_{ij} \delta arepsilon_{ij} = \sigma_{ij} (\delta arepsilon_{ij}^{y} + \delta arepsilon_{ij}^{p})$$

Работа неупругого деформирования грунта

В соответствии с 1 законом термодинамики, $A_{\text{мех}} + Q_{\text{тепл}} = dU$, следовательно:

$$Q_{ ext{ iny Temp}} = dU - \delta A_{ ext{ iny Mex}} = \left(rac{\partial U}{\partial oldsymbol{arepsilon}_{ij}^y} - oldsymbol{\sigma}_{ij}
ight) \delta oldsymbol{arepsilon}_{ij}^y + \left(rac{\partial U}{\partial oldsymbol{arepsilon}_{ij}^p} - oldsymbol{\sigma}_{ij}
ight) \delta oldsymbol{arepsilon}_{ij}^p + rac{\partial U}{\partial T} \delta T$$

Поскольку для необратимых процессов $Q_{\text{тепл}} < TdS$, то:

$$\left(\frac{\partial U}{\partial \varepsilon_{ij}^{y}} - \sigma_{ij}\right) \delta \varepsilon_{ij}^{y} + \left(\frac{\partial U}{\partial \varepsilon_{ij}^{p}} - \sigma_{ij}\right) \delta \varepsilon_{ij}^{p} + \frac{\partial U}{\partial T} \delta T < T dS$$

Здесь величина $\delta A_{ ext{mex}}^p = \sum \sigma_{ij} \delta arepsilon_{ij}^p > 0$ – работа диссипации.

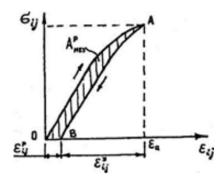


Рис. 10.2. Диаграмма нагружения и разгрузки образца грунта при необратимом деформировании

Работа диссипации $A_{\text{мех}}^p$ (Рис. 10.2) при упругопластическом деформировании грунта за цикл «нагрузка-разгрузка» может быть оценена опытным путём при определении общей ε_{ij} и обратимой ε_{ij}^y деформации в функции напряжений σ_{ij} исходя из уравнения:

$$A_{ ext{ iny Mex}}^p = \int\limits_0^{arepsilon_{ij}} \sigma_{ij} darepsilon_{ij} - \int\limits_0^{arepsilon} \sigma_{ij} darepsilon_{ij}^{arphi} = A_{ ext{ iny Mex}} - A_{ ext{ iny Mex}}^{arphi}$$

Энтропия неупругого деформирования грунта

На основе обобщенного уравнения термодинамики:

$$dS = rac{\delta Q_{ ext{ iny TEII,I}}}{T} + rac{\delta A_{ ext{ iny Mex}}^p}{T} = dS^y + dS^p,$$

где dS^y — прирост энтропии за счет переноса тепла; dS^p — прирост энтропии за счет необратимой пластической деформации $\delta \varepsilon_{ii}^p$, причем $dS^p > 0$.

Таким образом, наличие необратимой деформации увеличивает энтропию грунта при деформировании. Следовательно, при компрессионном уплотнении грунта энтропия возрастает. Но это отражается в увеличении ориентированности частиц параллельно напластованию. При этом грунт становится более упорядоченным.

(Рис. 10.4) Таким образом, увеличение упорядоченности грунтов в процессе их литификации – антиэнтропийный процесс.

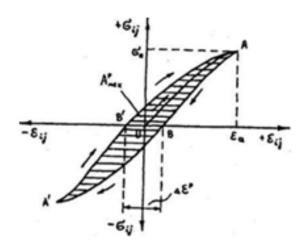


Рис. 10.3. Диаграмма сжатия-растяжения образца грунта за полный цикл нагружения и разгрузки при необратимом циклическом деформировании

Рис. 10.4. Изменение ориентации частиц монтмориллонитовой глины при уплотнении

Термодинамика компрессии и консолидации грунтов

При компрессионном уплотнении грунта совершается работа A_K – работа компрессии. Она легко может быть оценена по площади кривой изотермы компрессии в координатах «деформация - нагрузка» (Рис. 10.5)

На (Рис. 10.6), (Рис. 10.7) представлены графики, отражающие динамику компрессии и консолидации грунтов.

На (Рис. 10.8) показаны результаты компрессионного уплотнения и консолидации глинистого грунта, изображенные в виде треугольной диаграммы.

Прочность. Классические теории прочности

Прочность: (в широком смысле) – способность материала сопротивляться разрушению, а также необратимому изменению формы (пластической деформации) при

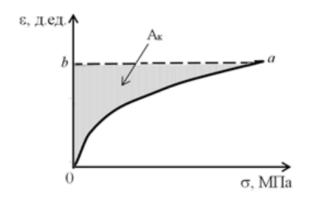
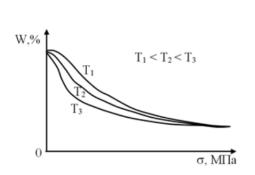
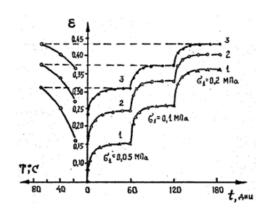


Рис. 10.5. Оценка работы компрессионного уплотнения грунта (A_K)





личной температуре: $T_1 < T_2 < T_3$

Рис. 10.6. Изотермы компрессии водона- Рис. 10.7. Кривые одномерной ползучести сыщенных глинистых грунтов при раз- Са-каолинитовой глины при различных давлениях консолидации (σ_1) и темпера*mype* (T): $1 - 20^{\circ}$; $2 - 40^{\circ}$; $3 - 70^{\circ}$

действии внешних нагрузок; (в узком смысле) – только сопротивление разрушению. Разрушение можно вызвать силами разной природы – механическими, термическими, электрическими и т.п.

Первая теория прочности (теория Галилея): разрушение тела наступает в тот момент, когда сжимающее нормальное напряжение достигнет критического значения σ^* , т.е. критерий разрушения:

$$R_{\scriptscriptstyle ext{CM}} = \sigma^* = const$$

Вторая теория прочности (Мариотта – Сен-Венана) – теория наибольших удлинений. Критерий разрушения:

$$\gamma = \gamma_p = \gamma_{\rm kp} = const$$
,

где γ – величина деформации сдвига

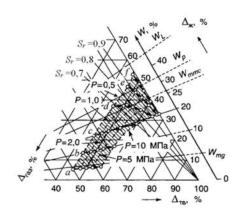


Рис. 10.8. Диаграмма изменения фазового состава каолинитовой глины при компрессионном уплотнении образцов (a,b,c,d,e,f) с разной исходной влажностью (W) и степенью водонасыщения (S_r) : P – давление уплотнения, $M\Pi a$

Но для одного и того же грунта при разных величинах напряжений, разных интервалах воздействия напряжений во времени деформация сдвига не является константой. (Рис. 10.9)

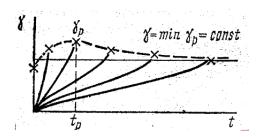


Рис. 10.9. Развитие предельных деформаций во времени (по С.С.Вялову, 1978)

Третья теория прочности (Кулона) (Рис. 10.10). Критерий разрушения: достижение наибольшего (критического) касательного напряжения: $\tau_{max} = \tau_{\kappa p} = const$, $\tau = tg \phi \cdot \sigma + C$

Теория Кулона-Мора. По закону Мора – сопротивление связных пород нелинейно зависит от нормального давления (обобщение закона Кулона). Для 3-осного сжатия:

$$\tau_{max} = \frac{\sigma_1 - \sigma_3}{2}$$

Мором был предложен графический способ построения диаграмм для предельного состояния породы при ее разрушении. (Рис. 10.11)

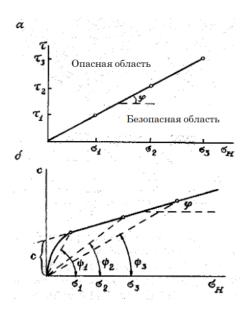


Рис. 10.10. Диаграмма сопротивления сдвигу песчаных (а) и глинистых (б) пород $(c-сцепление\ nopod)$

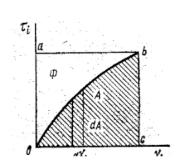
Рис. 10.11. Диаграмма Мора для предельного состояния породы при ее разрушении

Энергетические теории прочности (четвертая теория)

Теория Бельтрами — теория наибольшей потенциальной энергии формоизменения. (Рис. 10.12), (Рис. 10.13) Критерий прочности: достижение критического значения удельной потенциальной энерги иизменения формы (U) — наибольшей работы упругих сил или предела текучести

$$U < U_{
m np} \quad U_{
m np} = A_{
m ynp} = rac{\sigma_{
m np}^2}{2E},$$

Е – модуль Юнга



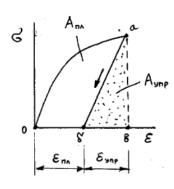


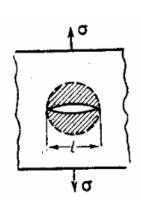
Рис. 10.12. Работа деформации сдвига

Рис. 10.13. *Работа пластической и упру*гой деформации

Теория Гриффитса. (Рис. 10.14) Хорошо «работает» для описания разрушения хрупко-упругих материалов.

$$L = \frac{EU}{\sigma^2},$$

L – критическая длина трещины; U – удельная поверхностная энергия; E – модуль упругости; σ – растягивающее напряжение



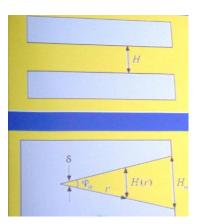


Рис. 10.14. Трещина Гриффита. Стрел- Рис. 10.15. Схема плоской (а) и клиновидки указывают направление растяжения; ной (б) трещин заштрихована область, в которой сняты напряжения

Предел прочности (для сквозных трещин):

$$\sigma = \left(\frac{EU}{L}\right)^{1/2}$$

Предел прочности (для круговых трещин):

$$\sigma = \left(\frac{\pi E U}{kL}\right)^{1/2}$$

Расклинивающее давление (П) в зазоре трещины (Рис. 10.15):

a)
$$\Pi = A/H^3$$
, 6) $\Pi = A/H^3 \cos^3(\varphi_0/2)$

В соответствии с теорией Фюрта, для временного сопротивления на разрыв σ_p :

$$\sigma_p = 2Q_v(1 - 2\mu_{\rm m}),$$

где Q_{ν} – удельная теплота плавление; $\mu_{\rm n}$ – коэффициент Пуассона.

Другие авторы считали, что в качестве энергетического критерия более обоснованно брать удельную энтальпию:

$$\Delta H_S = \int\limits_0^{T_{
m II,II}} C_p dT + Q_{
m v},$$

где C_p – удельная теплоемкость; $T_{\rm пл}$ – температура плавления.

Теория Губера — **Мизеса** — **Генки** — учет работы разрушения при данном напряженном состоянии. Она связывает прочность с потенциальной энергией, накапливающейся при деформации в 1 см³ материала и численно равной удельной работе деформации. Из диаграмм напряжений $\tau = f(\gamma)$ следует, что прочность структур грунтов практически определяется площадью участка упругих деформаций, действующих почти до разрушения у хорошо развитых структур.

Но работа (или ее виды) не является функцией состояния тела (полным дифференциалом), она зависит от условий разрушения, а следовательно – не может быть универсальным критерием разрушения

Термодинамические критерии прочности

Теория Гольденблата. (Рис. 10.16) Критерий разрушения: достижение критической величины изменения внутренней энергии тела

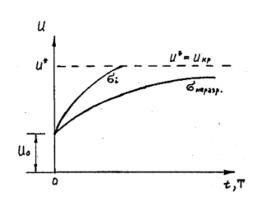
$$U = U_0 + \Delta U = U_{\text{KD}}$$

$$dU = \sum dA = dA_{ ext{mex}} + dA_{ ext{teii}} + dA_{ ext{xim}} + dA_{ ext{sim}} + dA_{ ext{sim}} + \dots$$

Энтропийный критерий разрушения: (Рис. 10.17)

$$S(t_p^*) = S(t=0) + \Delta S^* = S^*$$

где $S(t_p^*)$ — энтропия деформируемого образца в момент разрушения $t_p^*;\ S(t=0)$ — начальная (до деформирования) энтропия



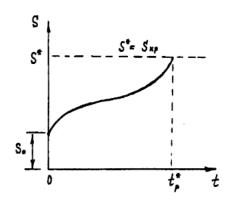


Рис. 10.16. Зависимость внутренней Рис. 10.17. Зависимость энтропии (S) энергии грунта (U) от времени (t) и грунта от времени (t) при его деформитемпературы (T) при деформировании ровании и разрушении.

Один из вариантов нахождения ΔS^* может быть получен из опытов на ползучесть грунта. Экспериментально получаются зависимость вида $\dot{\gamma}=f(\tau)$ или $v=f(\tau)$, где $\tau=v(d\gamma/dt)=v(\dot{\gamma});\ v$ — вязкость грунта; $\dot{\gamma}$ — скорость деформации; γ — деформация сдвига.

Для этого случая **скорость производства энтропии** определяется толко пластической деформацией (γ) грунта:

$$\frac{dS}{dt} = \frac{\tau}{T} \cdot \frac{d\gamma}{dt} > 0$$

Также известно, что

$$S = \int_{0}^{t_p} S_i dt = \int_{0}^{t_p} \frac{1}{T} \left[\sum_{\alpha=1}^{n} J_{\alpha} X_{\alpha} \right] dt$$

Откуда имеем:

$$S = \int\limits_0^t rac{ au}{T} \cdot rac{d\gamma}{dt} dt = \int\limits_0^t rac{v}{T} \left(rac{d\gamma}{dt}
ight)^2 dt,$$
 или $S = \int\limits_0^t rac{ au^2}{vT} dt$

Откуда окончательно:

$$\delta S^* = \frac{\tau^2}{vT} t_p^*$$

