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Lecture 1. Classical Fields and Symmetries

The history and main challenge of QFT

Quantum field theory (QFT), perhaps, is one of the greatest achievements of theoretical

physicists of 20s century. It is arose from an attempt to combine two already existent and

experimentally verified theories: theory of special relativity and quantum mechanics. QFT

is the unique tool which is used to describe the physics of elementary particles. QFT is

characterized by numerous precision experiments or tests such as collider experiments

like, for instance, those which people carry out in the Large Hadron Collider at Cern or

at Fermi National Accelerator Laboratory in USA.

Methods of QFT has an universal character and this theory is not only applied in

sphere of particle physics, but also widely used in, for example, condensed matter theory.

Thus, QFT applied for dynamical systems with large or infinite degrees of freedom.

In spite of well developed state of QFT, starting from 1928 discovery of the electron

by Dirac, it has many undiscovered peaces of knowledge.

The fact that in QFT scientists deal with dynamical systems with large or infinite

degrees of freedom leads to a list of well-known problems. Some of the physical observables

or quantities which you would like to measure or predict will be given by divergent

integrals. It is a so-called problem of infinities. Perhaps, most sharply the problem of

infinities shows itself when people try to merge QFT with gravitational theory.

All of today’s experience shows that, perhaps, the degrees of freedom that can be

obtained in QFT are not a suitable starting point for building a quantum theory. This

means that, probably, there is some hidden theory on the next level where degrees of

freedom should be reconsidered or recovered and understood by another point of view. One

of such next-level theory is a string theory. There is a theory of one-dimensional extended

objects and it offers very intriguing possibility how to think about quantum fields in a

very different way and, hopely, to construct the quantum approach to avoid the problem

of infinities. The problem of infinities is also known under the name renormalization.

Concerning particle physics, the main goal is to be able to ultimately compute and

predict physical observables such as, for instance, cross-ratios in scattering experiments,

decays of unstable particles and the spectra of bound states. All of these are very difficult

theoretical questions because there is no direct access to local losses during particle

interaction. It is unknown how to access this loss, but as one of the possible ways is

5
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to build a theoretical model of interaction loss between elementary particles and then test

this predictions, for instance, in colliding experiments, when cross-ratios or decay rates of

unstable particles can be experimentally measured.

Discussion of symmetries

Symmetries play an extremely important role not in a QFT, but in physics in general

and in our lives. It essentially means that the loss of nature is not arbitrary from one

space-time point to another. If you have a certain knowledge of measure at one space-time

point and you move away and you made measurements in the other points of space-time,

you better find something which in agreement with your previous experiments, but not

something arbitrary subjected to new loss. So, symmetries provide a certain order in our

world, allowing us to talk about universal laws. That is why the first theme will be about

symmetries and their relations to conservation laws. This will be the so-called Noether’s

first theorem. he transition will be made to the traditional or canonical quantization of

3 basic fields: scalar, spinor and electromagnetic, and then to the scattering matrix (or

S-matrix). So, the gotten knowledge about quantized fields will be applied to evaluation

of the scattering matrix of the quantum electrodynamics (QED) theory, which is used to

describe electrons and photons.

The lecturer suggests people to read some books for better understanding of the course.

There are:

1) Michael E. Pestin and Daniel V. Schroeder
”
An introduction to quantum field

theory“ (canonical book, which is used in many universities)

2) A. Zee
”
Quantum Field Theory in a Nutshell“

3) L.D. Landau and E.M. Lifshits
”
Theoretical physics. Quantum electrodynamics“

4) N.N. Bogolyubov and D.V. Shirkov
”
Quantum fields“

5) Silvan S. Schweber
”
An Introduction to Relativistic Quantum Field Theory“

6) L.A. Takhtajyan
”
Quantum mechanics for mathematicians“

7) Brian C. Hall
”
Quantum Theory for Mathematicians“

8) Faddeev and Yakubovsky
”
Lectures on quantum mechanics for mathematics students“
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Classical fields and symmetries

The discussion of classical fields and symmetries includes lagrangian description of

classical systems with an infinite number of degrees of freedom and Noether’s first theorem

that allows to construct dynamical invariants or quantities that remain invariants during

dynamical evolution of the system.

Let’s remind how in classical mechanics the transition from discrete to continuum

takes place. To describe continuous systems like, for instance, solid, it is necessary to

make a transition from finite number of degrees of freedom to infinite. This means that

it is necessary to specify at least coordinates of all points and the number of this points

is infinite. By the fact continuous can be reached by taking appropriate limit of a system

with a finite number of discrete coordinates. For instance, let’s consider an elastic rod of

fixed length which undergoes small longitudinal vibrations (fig. 1.1).

Fig. 1.1. An elastic rod of fixed length 𝑙

Let’s describe this system in the framework of classical mechanics. The rod can be

approximated as a system of equal mass and particles with equal distances between

neighbor points.

If the rod is represented as a system of 𝑛 particles connected with each other by a

springs (fig. 1.2), then the distance between each particle will be ∆𝑎 = 𝑙/𝑛, where we

denoted a distance between particles in equilibrium position as ∆𝑎.

Fig. 1.2. The rod is represented as a system of 𝑛 particles connected with each other by

a springs

7
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From fig. 2 it can be seen that system has 𝑛+ 1 springs and that is why the length of

rod can be written as:

𝑙 = (𝑛+ 1)∆𝑎 . (1.1)

Each spring has such characteristic as Hooke’s constant 𝑘.

The displacement of 𝑖𝑡ℎ particle from it’s equilibrium position will be described by the

coordinate 𝜑𝑖. Displacement means that the particle is taken and moved a little bit away

from it’s equilibrium position.

The kinetic energy of all particles can be easily found from:

𝑇 =
𝑛∑︁
𝑖=1

𝑚

2
𝜑̇2 . (1.2)

It is also known that the presented system has a potential energy stored in springs,

and such an energy may be computed. For this reason, the coordinate system should be

introduced.

The left end of 𝑖𝑡ℎ particle will have coordinate:

𝑥𝑖 = 𝑖∆𝑎+ 𝜑𝑖 . (1.3)

At the same time the right end of 𝑖𝑡ℎ particle will have coordinate:

𝑥𝑖+1 = (𝑖+ 1)∆𝑎+ 𝜑𝑖+1 . (1.4)

The potential energy stored in the 𝑖𝑡ℎ spring will be:

𝑈𝑖 =
𝑘

2
(𝑥𝑖+1 − 𝑥𝑖)

2 . (1.5)

With the use of (1.3) and (1.4), (1.5) can be simplified to:

𝑈𝑖 =
𝑘

2
(∆𝑎+ 𝜑𝑖+1 − 𝜑𝑖)

2 . (1.6)

The total potential energy of the system can be gotten by summarizing of impacts

from each spring:

𝑈 =
𝑛∑︁
𝑖=0

𝑘

2
(∆𝑎+ 𝜑𝑖+1 − 𝜑𝑖)

2 . (1.7)

Formula (1.7) can be simplified by opening the brackets:

𝑈 ==
𝑘

2

𝑛∑︁
𝑖=0

(𝜑𝑖+1 − 𝜑𝑖)
2 +

𝑘

2
∆𝑎2 (𝑛+ 1) + 𝑘∆𝑎

𝑛∑︁
𝑖=0

(𝜑𝑖+1 − 𝜑𝑖) , (1.8)

8
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where the last expression represents cross member.

Let’s associate

𝜑0 = 𝜑𝑛+1 = 0 , (1.9)

because the left end of 0𝑡ℎ spring and the right end of (𝑛+ 1)𝑡ℎ spring are not movable.

Because of the statement (1.9) and the fact that all displacements will compensate

each other, the last term of the (1.8) will be equal to zero.

It is known that in classical mechanics the constant shift of the potential plays no role,

because the force is given by the minus gradient of the potential energy:

𝐹𝑖 = −𝜕𝑈𝑖
𝜕𝜑𝑖

. (1.10)

Such a way formula (1.9) can be simplified to:

𝑈 =
1

2
𝑘

𝑛∑︁
𝑖=0

(𝜑𝑖+1 − 𝜑𝑖)
2 . (1.11)

If we place (1.11) into (1.10), we will get that

𝐹𝑖 = 𝑘 (𝜑𝑖+1 + 𝜑𝑖−1 − 2𝜑𝑖) . (1.12)

The force 𝐹𝑖 presented in (1.12) consists of difference between forces that acts on 𝑖𝑡ℎ

particle from the right and from the left sides. It can be seen from:

𝐹𝑖 = 𝑘 (𝜑𝑖+1 − 𝜑𝑖)⏟  ⏞  
from the right

− 𝑘 (𝜑𝑖 − 𝜑𝑖−1)⏟  ⏞  
from the left

. (1.13)

This means that kinetic and potential energies of the system are known and, therefore,

the lagrangian of the system may be formed. From course of theoretical mechanics it is

well known that:

L = 𝑇 − 𝑈 , (1.14)

Then it is necessary to place (1.2) and (1.11) into (1.14):

L =
𝑛∑︁
𝑖=1

𝑚

2
𝜑̇𝑖

2 − 𝑘

2

𝑛∑︁
𝑖=0

(𝜑𝑖+1 − 𝜑𝑖)
2 . (1.15)

As can be seen from (1.15), we have a system with finite number of degrees of freedom

and these degrees of freedom can be described by 𝜑𝑖.

Then it is necessary to take a continuum limit by sending the number of particles to

infinity. At the same time, the number of springs also will tend to infinity. The distance

between particles in the opposite side will tend to zero:

𝑛→ ∞ , ∆𝑎→ 0 . (1.16)

9
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From (1.1) it can be clearly seen that 𝑛 and 𝐷𝑎 changes with the same speed and that

is why 𝑙 remains constant. Despite this fact that there is an another problem which is

linked with the fact that each particle in system has a mass. With increasing of particles

number it will tend to infinity and therefore it is necessary to keep it finite. This target

can be reached if mass of each particle 𝑚 will decrease with the same speed as ∆𝑎. Let’s

define a mass density 𝜇:

𝜇 =
𝑚

∆𝑎
. (1.17)

From (1.17) it can be seen that the mass density is constant.

Besides the mass of each particle it is also necessary to keep constant forces between

particles. For this goal the Hook’s constant with the ∆𝑎 change will be scaled as follows:

𝑘∆𝑎 = 𝑐𝑜𝑛𝑠𝑡 = κ , (1.18)

where 𝑘 is now a function of ∆𝑎 and

𝑘 ∼ κ
∆𝑎

. (1.19)

Then it is necessary to rewrite lagrangian in terms of ∆𝑎:

L =
1

2

𝑛∑︁
𝑖=1

∆𝑎
(︁ 𝑚

∆𝑎

)︁
𝜑̇𝑖

2 − 1

2

𝑛∑︁
𝑖=0

∆𝑎 (𝑘∆𝑎)

(︂
𝜑𝑖+1 − 𝜑𝑖

∆𝑎

)︂2

. (1.20)

Using (1.17) and (1.18), formula (1.20) can be written as:

L =
1

2

𝑛∑︁
𝑖=1

∆𝑎𝜇𝜑̇𝑖
2 − 1

2

𝑛∑︁
𝑖=0

∆𝑎κ
(︂
𝜑𝑖+1 − 𝜑𝑖

∆𝑎

)︂2

. (1.21)

When the limit will be taken, ∆𝑎 will tend to zero. Due to this fact the discrete index

𝑖 of displacement variable can be replaced by a continuum variable 𝑥. In other worlds, the

variable 𝜑𝑖 will be replaced by 𝜑 (𝑖∆𝑎). Due to the replacement of 𝑖, 𝑖∆𝑎 may be changed

by 𝑥 and as a result:

𝜑𝑖 → 𝜑 (𝑥) . (1.22)

It should be noticed, that with 𝑛→ ∞ 𝜑(𝑥) becomes a continuous field.

After the transition to the continuum

𝜑𝑖+1 − 𝜑𝑖
∆𝑎

→ 𝜑 (𝑥+ ∆𝑎) − 𝜑(𝑥)

∆𝑎
−→
𝑛→∞

𝜕𝑥𝜑 (𝑥) . (1.23)

Using expressions (1.22) and (1.23), (1.21) can be written as:

L =
1

2

∫︁ 𝑙

0

d𝑥
[︁
𝜇𝜑̇2 (𝑥) − κ (𝜕𝑥𝜑 (𝑥))2

]︁
, (1.24)
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where sums from 𝑖 = 0 or 1 to 𝑛 were replaced by integrals from 𝑥 = 0 to 𝑙.

The limiting procedure with equations of motion can also be performed. For this task

it is necessary to get them from lagrangian with finite 𝑛 and then go to the limit. The

equations of motion for discrete system can be written as:

𝑚

∆𝑎
𝜑𝑖 − 𝑘∆𝑎

𝜑𝑖+1 + 𝜑𝑖−1 − 2𝜑𝑖
(∆𝑎)2

= 0 . (1.25)

The second expression in (1.25) can be replaced by second derivative when ∆𝑎 tends

to zero:

lim
Δ𝑎→0

𝜑𝑖+1 + 𝜑𝑖−1 − 2𝜑𝑖
(∆𝑎)2

=
𝜕2𝜑

𝜕𝑥2
= 𝜕𝑥𝑥𝜑 . (1.26)

As a result the final view of equation of motion (1.25) will be:

𝜇𝜑 (𝑥) − κ𝜕𝑥𝑥𝜑 (𝑥) = 0 . (1.27)

Equation (1.27) also can be gotten from (1.24), but for this target it is necessary to

represent (1.27) in the next view:

L =

∫︁ 𝑙

0

d𝑥L , (1.28)

where L is a lagrangian density and equal

L =
1

2

(︁
𝜇𝜑̇2 − κ (𝜕𝑥𝜑)2

)︁
(1.29)

for the presented situation.

In theoretical mechanics there is one more important term such as action, which can

be defined as an integral of the lagrangian with respect to time. By this moment it is not

needed to pass the general picture, which says that the case is being conducted with an

action for our continuum dynamical system.

The action will be indicated as 𝑆 and it will be a functional of displacement field

𝜑 (𝑥, 𝑡):

𝑆 [𝜑] =

∫︁ 𝑡2

𝑡1

Ld𝑡 . (1.30)

Lagrangian at the same time can be written as presented at (1.29) and, therefore,

(1.30) will have a view:

𝑆 [𝜑] =

∫︁ 𝑡2

𝑡1

d𝑡

∫︁ 𝑙

0

d𝑥× L
(︁
𝜑 (𝑥, 𝑡) , 𝜑̇ (𝑥, 𝑡) , 𝜕𝑥𝜑 (𝑥, 𝑡)

)︁
. (1.31)
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To obtain equations of motion directly from lagrangian (1.28) it is needful to understand

how the action changes under an infinitesimal change of the field. For this purpose it

is necessary to replace 𝜑(𝑥, 𝑡) with 𝜑(𝑥, 𝑡) + 𝛿𝜑(𝑥, 𝑡). This procedure is called variation

because the field is varied to observe how the action changes.

The derivatives of 𝜑 can be also written as:⎧⎨⎩
𝜕
𝜕𝑡
𝜑 (𝑥, 𝑡) → 𝜕

𝜕𝑡
𝜑 (𝑥, 𝑡) + 𝜕

𝜕𝑡
𝛿𝜑 (𝑥, 𝑡)

𝜕
𝜕𝑥
𝜑 (𝑥, 𝑡) → 𝜕

𝜕𝑥
𝜑 (𝑥, 𝑡) + 𝜕

𝜕𝑥
𝛿𝜑 (𝑥, 𝑡)

(1.32)

Then it is needed to see how the action reacts on the infinitesimal change of the field.

So the result was calculated as follows:

𝛿𝑆 [𝜑] = 𝑆 [𝜑+ 𝛿𝜑] − 𝑆 [𝜑] . (1.33)

Formula (1.33) gives the following:

𝛿𝑆 [𝜑] =

∫︁ 𝑡2

𝑡1

d𝑡

∫︁ 𝑙

0

d𝑥

[︂
𝜕L

𝜕𝜑
𝛿𝜑+

𝜕L

𝜕𝜑̇
𝜕𝑡𝛿𝜑+

𝜕L

𝜕 (𝜕𝑥𝜑)
𝜕𝑥𝛿𝜑

]︂
. (1.34)

Integral in (1.34) can be evaluated by parts:

𝛿𝑆 [𝜑] =
∫︀ 𝑡2
𝑡1

d𝑡
∫︀ 𝑙
0

d𝑥
[︁
𝜕L
𝜕𝜑

− 𝜕𝑡
𝜕L
𝜕𝜑̇

− 𝜕𝑥
𝜕L

𝜕(𝜕𝑥𝜑)

]︁
𝛿𝜑+

+
∫︀ 𝑙
0

d𝑥 𝜕L
𝜕(𝜕𝑡𝜑)

𝛿𝜑

⃒⃒⃒⃒
⃒
𝑡=𝑡2

𝑡=𝑡1

+
∫︀ 𝑡2
𝑡1

d𝑡 𝜕L
𝜕(𝜕𝑥𝜑)

𝛿𝜑

⃒⃒⃒⃒
⃒
𝑥=𝑙

𝑥=0

(1.35)

To find the trajectories (get equations of motion) of the dynamical systems it is

necessary to minimize the action which means that it is needed put to zero the variational

derivative:
𝛿𝑆 [𝜑]

𝛿𝜑
= 0 . (1.36)

It should be noticed that it was needed to minimize the action under the condition

that values of the field in the initial and finite times are unaffected. In other words:

𝛿𝜑 (𝑥, 𝑡1) = 𝛿𝜑 (𝑥, 𝑡2) = 0 , (1.37)

that means that initial and final profile of the field must be kept in tact.

Expression (1.37) can be clearly understood if return to classical mechanics. In classical

case there is a particle which moves from one point to another and it makes some actual
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trajectory. The particle moves in the some potential and interacts with this one which

lead to formation of the definite trajectory. In the variational principle, the fixed initial

and final positions of the particle cannot be changed, and all other trajectories that are

in the vicinity of the actual trajectory are tried. For all of this trajectories the principle

of least action telling us that the value of the action must be largen than the value of the

action on the actual trajectory (fig. 1.3). But comparison of values of the action on the

virtual and the actual trajectories is made under the assumption that the initial and the

final points taken by a particle keep fixed.

Fig. 1.3. Possible trajectories of the particle

The same thing happens for a field. Suppose that there is an initial moment of time

that equals to 𝑡1 and the 𝜑 function can be drawn as represented on (fig. ??). Then when

time grows, the field starts to move and at the time moment equals to 𝑡2 has another

profile. Such a way trajectory of the field forms a surface.

Fig. 1.4. The field evolution from 𝑡 = 𝑡1 to 𝑡 = 𝑡2

Due to formula (1.37) the integral

∫︁ 𝑙

0

d𝑥
𝜕L

𝜕 (𝜕𝑡𝜑) 𝛿𝜑

⃒⃒⃒⃒
⃒
𝑡=𝑡2

𝑡=𝑡1

(1.38)
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will be equal to zero.

Then it is necessary to find the third integral in formula (1.35). This term can be put

to zero or not put to zero due to physical grounds. For instance, if we say that we are

dealing with the rod which is clamped between two walls which means that the profile

of the field at the left and right points is fixed (fig. 1.5), the 𝛿𝜑 will equal to zero and

therefore third integral in formula (1.35) will be equal to zero.

Fig. 1.5. The profile of the field of the rod which is clamped between two walls

Such a way in formula (1.35) only one expression stayed. For the actual trajectory

the vanishing of 𝛿𝑆 for any variation 𝛿𝜑 by the basic lemma of a variational calculus

represents the equation of motion:

𝜕

𝜕𝑡

(︂
𝜕L

𝜕 (𝜕𝑡𝜑)

)︂
+

𝜕

𝜕𝑥

(︂
𝜕L

𝜕 (𝜕𝑥𝜑)

)︂
− 𝜕L

𝜕𝜑
= 0 . (1.39)

If we apply equations of motion (1.39) to the concrete problem and place the lagrangian

density (1.29) into (1.39), we will get equations of motion similar to (1.27):

𝜑− 𝑐2𝜕𝑥𝑥𝜑 = 0 , (1.40)

where 𝑐 is a next ratio between 𝜇 and κ:

𝑐 =

√︂
κ
𝜇
. (1.41)

The value 𝑐 can interpreted as a speed which characterizes propagation of vibrations

through the rod.

Equations of motions gotten for the presented dynamical system are very easy because

of their linearity. As it well known, for the linear equations the superposition principle

works. So it is possible to solve equations by creating of the next linear combination:

𝜑 (𝑥, 𝑡) = 𝑒𝑖𝑝𝑥𝑎𝑝 (𝑡) + 𝑒−𝑖𝑝𝑥𝑏𝑝 (𝑡) . (1.42)

Then it is necessary to apply boundary conditions for the gotten solution. For the left

wall of the rod, the boundary condition will give:

𝜑 (0, 𝑡) = 0 ⇒ 𝑎𝑝 (𝑡) + 𝑏𝑝 (𝑡) = 0 → 𝑏𝑝 (𝑡) = −𝑎𝑝 (𝑡) . (1.43)
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Expression (1.43) leads to the simplification of the (1.42):

𝜑 (𝑥, 𝑡) = 𝑎𝑝 (𝑡)
(︀
𝑒𝑖𝑝𝑥 − 𝑒−𝑖𝑝𝑥

)︀
→ 𝑎𝑝 (𝑡) sin (𝑝𝑥) , (1.44)

where the multiplier 2𝑖 was entered in 𝑎𝑝 (𝑡).

At the same time for the right border of the rod there will be the following expression:

𝜑 (𝑙, 𝑡) = 𝑎𝑝 (𝑡) sin (𝑝𝑙) = 0 . (1.45)

In expression (1.45) it is necessary to equate to zero one of two multipliers. It can be

clearly seen that 𝑎𝑝 (𝑡) = 0 corresponds to 𝜑 (𝑥, 𝑡) = 0. That is why it is necessary to

equate to zero sin (𝑝𝑙) and get the condition for 𝑝-value.

sin (𝑝𝑙) = 0 ⇒ 𝑝𝑙 = 𝜋𝑛→ 𝑝 = 𝑝𝑛 =
𝜋𝑛

𝑙
, 𝑛 ∈ Z . (1.46)

Then it is possible to take the gotten anzac and plug it into equations of motion. In

this way there will be an equation which will describe a time evolution of the 𝑎𝑝 coefficient:

𝑎̈𝑝 + 𝑐2𝑝2𝑎𝑝 (𝑡) = 0 . (1.47)

The solution of the (1.47) is well known and equal to:

𝑎𝑝 (𝑡) = 𝑒𝑖𝜔𝑝𝑡𝑎𝑝 , (1.48)

where 𝜔𝑝 is equals to:

𝜔𝑝 = ±𝑐𝑝 . (1.49)

For any 𝑝𝑛 the solution of equation of motion can be found, but for general solution

𝜑 (𝑥, 𝑡) it is required to find a sum of all possible 𝑛 values:

𝜑 (𝑥, 𝑡) =
∞∑︁
𝑛=0

sin (𝑝𝑛𝑥) (𝐴𝑛 cos (𝜔𝑛𝑡) +𝐵𝑛 sin (𝜔𝑛𝑡)) , (1.50)

where sine and cosine replace exponents +𝑖𝜔𝑛𝑡 and −𝑖𝜔𝑛𝑡, because 𝜔𝑝 can be positive or

negative due to formula (1.49). That is why it is enough to sum only from 𝑛 = 0 to ∞. It

should be noticed that there is a zero-solution when 𝑛 = 0.

Formula (1.50) has two undetermined coefficients 𝐴𝑛 and 𝐵𝑛 which can be determined

if specify the initial value of the field and it’s first derivative at the time moment 𝑡 = 0.

It should be noticed that the initial conditions must be represented as a sum of cosines

and sines of 𝜔𝑛𝑡 and then we can equate coefficients between this cosines and sines with

coefficients 𝐴𝑛 and 𝐵𝑛 from (1.50).

Summarizing the previous information, a description of the continuum system in

classical mechanics was made and the expression for the displacement field was found.
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Lecture 2. Tensor Fields, Euler-Lagrange Equations,

Lorentz Transformations

Classical fields in many dimensional case

The concept of the displacement field can be further generalized to the case of multidimensional

systems. For instance, in two dimensions it is possible to consider two-dimensional lattice

of springs. In such a way it is necessary to present a plane of particles with mass 𝑚 and

distance between neighbors ∆𝑎 (fig. 2.1).

Fig. 2.1. A two-dimensional lattice of springs

Then it is necessary to allow longitudinal fluctuations of particles connected with the

springs existence. In this case a natural quantity to discuss is the displacement field 𝜑

depending on coordinates of a point at the equilibrium position. This coordinates can be

written as 𝑖 and 𝑗 for 𝑥 and 𝑦 respectively. In such a way the displacement field 𝜑 will be

a vector with the following notation:

𝜑⃗(𝑖,𝑗) . (2.1)

The continuum approximation of the presented system is called a membrane. In this

case a longitudinal fluctuations of the membrane will be searched.

Further a transmission to three-dimensional case can be completed. For this purpose

it is required to represent the system as it shown on fig. 2.2.

The displacement field of such system will be a three-dimensional vector 𝜑⃗(𝑖,𝑗,𝑘) coordinates

of which can be specified by indexes 𝑖, 𝑗 and 𝑘 for 𝑥, 𝑦 and 𝑧 respectively.
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Fig. 2.2. A three-dimensional lattice of springs

Then it is necessary to complete absolutely the same derivation procedure which have

been already done for the case of the one-dimensional system. At the end it is needed

to end up with the following differential equation which describes the evolution of the

three-dimensional vector 𝜑⃗. Any component of the displacement field vector will undergo

the following dynamics:

¨⃗
𝜑− 𝑐1𝜕𝑥𝑥𝜑⃗− 𝑐2𝜕𝑦𝑦𝜑⃗− 𝑐3𝜕𝑧𝑧𝜑⃗− 𝑐4𝜕𝑥𝑦𝜑⃗− 𝑐5𝜕𝑦𝑧𝜑⃗− 𝑐6𝜕𝑥𝑧𝜑⃗ = 0 , (2.2)

where 𝜑 is the second time derivative and coefficients 𝑐1, . . . , 𝑐6 describe a properties of

the observed solid body. It also can be seen that many quantities which appear in the

description are fields depending on space-time variables and this fields behaves themselves

as tensors or more generally tensor fields.

Therefore it is very natural to introduce and discuss the concept of a tensor field from

the beginning.

Tensors and tensor fields

As it well known tensors in any coordinate system represent a set of numbers which

transforms with changing from one coordinate system to another in a definite way.

For tensor fields we are asking about transformation of the set of numbers under general

coordinate transformations. Consider a transformation of coordinates of this type:

𝑥𝜇 → 𝑥′𝜇 (𝑥𝜈) . (2.3)

Such transformations are assumed to be invertible and this transformations belong to
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the class which is directly defined as general coordinate transformations. Let’s assume

that the work is done in 𝑑 dimensions. That is why index 𝜇 can take values from 1 to 𝑑.

Then a tensor field

𝜑𝜇1...𝜇𝑝𝜈1...𝜈𝑞
(𝑥) (2.4)

is a tensor field of rank (𝑝, 𝑞).

Under general coordinate transformations it transforms in the following way. In the

new coordinate system it is described as

𝜑′𝜇1...𝜇𝑝
𝜈1...𝜈𝑞

(𝑥′) =
𝜕𝑥′𝜇1

𝜕𝑥𝜆1
. . .

𝜕𝑥′𝜇𝑝

𝜕𝑥𝜆𝑝
𝜕𝑥𝜌1

𝜕𝑥′𝑛𝑢1
. . .

𝜕𝑥𝜌𝑞

𝜕𝑥′𝜈𝑞
𝜑𝜆1...𝜆𝑝𝜌1...𝜌𝑞

(𝑥) , (2.5)

where over indexes 𝜆1 . . . 𝜆𝑝 and indexes 𝜌1 . . . 𝜌𝑞 are used for summation due to Einstein’s

convention.

Partial derivatives
𝜕𝑥′𝜇

𝜕𝑥𝜆
= 𝐽𝜇𝜆 (2.6)

can be represented as elements of the matrix which is called Jacobian matrix. This matrix

is non degenerate and therefore it is the element of the group 𝐺𝐿 (𝑑,R), where 𝑑 means

dimension and R means that the Jacobian matrix is real. The group 𝐺𝐿 (𝑑,R) is a group

of all invertible 𝑑× 𝑑 matrices. 𝑑 is a positive integer number which specifies the range of

the coordinates

𝜇, 𝜆, 𝜈, 𝜌 = 1, . . . , 𝑑 . (2.7)

Further restrictions on possible transformations of coordinates can be imposed by

physical requirements. For instance, if you are talking about Galilean invariants then you

restrict general coordinate transformations to that of the rotation group. The transition

from 𝑥 to 𝑥′ in this situation will be only rotation.

Analogously, if you implement Einstein’s relativity principle, which allows only for

Lorentz transformation, than in this case you will restrict the general coordinate transformation

to that of Lorentz transformations.

A simple example of a tensor is given by a scalar. Scalar in this case is an object which

transform under general coordinate transformations according to the formula:

𝜑′ (𝑥′) = 𝜑 (𝑥) . (2.8)

The scalar does not have any indexes and therefore the Jacobian matrices do not

appear. It is a tensor of rank (0, 0).
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It’s important to realize that the point in different coordinates can be specified by the

coordinate 𝑥 and 𝑥′, but physically it is the one point.

Summarizing, the scalar field is a function, which under the change of coordinates

behaves itself in the way written by formula (2.8).

It should be noticed that the scalar field is not something which behaves like (2.8). It is

not true. If you take any function like, for instance, sin𝑥 and then make a next coordinate

transformation:

𝑥→ 𝑥′2 (2.9)

you will get

sin𝑥→ sin𝑥′2 . (2.10)

But, of course, now it is necessary to realize that the written in (2.10) expression will

not the old function depending on 𝑥′, because if you write

𝜑 (𝑥) = sin𝑥 (2.11)

and complete a transformation written in (2.9), the 𝜑 (𝑥′) will be described by formula:

𝜑 (𝑥′) = sin𝑥′ . (2.12)

That is why it is needed to make transformed in the (2.10) expression equal to 𝜑′ (𝑥′).

Next to the scalar field is a vector field, which carries one index up. An example of a

vector field would be, for instance, a velocity vector which can be also made as a vector

field. For instance, if you discuss the flow of a liquid in hydrodynamics, then you need

tensor field of velocities of volume elements of the liquid.

There are also some examples of a co-vector, which means a tensor with a lower index.

This tensor would be a gradient of a function. More generally you might have, for instance,

symmetric on the manifold which would be a tensor with two lower indices and so on. It

will also be seen in the development of the course, a few other examples of tensor fields.

Action principle and Euler-Lagrange equations

Then it is necessary to return back to the action principle in general. Action principle

that was already discussed plays an important role in describing of the dynamics.

In the action principle the work takes place with with the functional 𝑆, which is a

functional of field 𝜑. This functional has the following form:

𝑆 [𝜑] =

∫︁
d𝑥L (𝑥, 𝜑𝑖, 𝜕𝜇𝜑𝑖) , (2.13)
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where the d𝑥 can be defined as

d𝑥 := d𝑥0d𝑥1 . . . d𝑥𝑑−1 , (2.14)

where 𝑑 is a number of space-time dimensions, where 𝑥0 signifies the time direction.

The 𝑥0 element can be represented by the next formula:

𝑥0 = 𝑐𝑡 , (2.15)

where 𝑐 is the speed of light.

Other directions such as 𝑥1, . . . , 𝑥𝑑−1 are spatial directions.

Finally, action is an integral over 𝑑 dimensional space-time coordinates of the Lagrangian

density, which is considered in general to be a function of 𝑥, fields 𝜑𝑖, and the first

derivatives.

It should be noticed that Lagrangian density depends on only first derivatives because

non-degenerate or what is called unitary theories is considered, where equations of motion,

which would be derived from this section, contain only second derivatives in time of the

field 𝜑 and second derivatives in the spatial directions. The theories with derivatives of

the third and higher orders of the field 𝜑 are much more complicated in the classical and

especially the quantum case.

An example of the theory limited by the second order is a very natural generalization

of the Newtonian mechanics, because in Newtonian mechanics deriving equations have a

second order in time. It means that to specify the trajectory of a particle it is needed

to specify the initial coordinate and initial velocity and it is enough to solve the Koshi

problem for such dynamical system which linked with the fact that a unique solution is

needed. This principle was inherited from standard Newtonian mechanics, and our goal

is to apply it to fields as well.

Further, it will also be required that there is no explicit dependence on 𝑥. All dependence

on 𝑥 will come only through the field 𝜑 and its derivatives:

𝑆 [𝜑] =

∫︁
d𝑥L (𝜑𝑖, 𝜕𝜇𝜑𝑖) , (2.16)

where the index 𝑖 has double meaning. It will combine labels of different fields when the

discussion will be about fields of different nature and also it will be uniform label for

all possible tensor indices of one field. In formula (2.16) it is possible to consider the

Lagrangian not only for a scalar field, but, for instance, Lagrangian for a vector field, as it

can be, for instance, in electrodynamics where the electromagnetic field is a vector. Also
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by index 𝑖, for example, it is possible to mean the index of a vector of the one vector field,

but it is also possible to mean a collection of scalars by index 𝑖.

From the action 𝑆 described by formula (2.16), equations of motion are derived by

using the principle of the least action. In fact, an example how this is done with the help

of variational principle where variational derivative was used has already been seen. As it

was described in the previous lecture the variational derivative is a variation of the action

with respect to variation of the field 𝜑:

𝜀𝑖 =
𝛿𝑆

𝛿𝜑𝑖
=
𝜕L

𝜕𝜑𝑖
− d

d𝑥𝜇

(︂
𝜕L

𝜕 (𝜕𝜇𝜑𝑖)

)︂
= 0 . (2.17)

where the gotten expression that is known as Euler-Lagrange equations. Solving of the

Euler-Lagrange equations it is possible to find the actual dynamical trajectories of the

system.

Then it is necessary to differentiate the Lagrangian derivative with respect to 𝑥𝜇 in

an explicit way by taking into account that Lagrangian density is a function of 𝜑𝑖 and its

derivative. It is possible to write for this Lagrangian derivative:

𝜕L

𝜕𝜑𝑖
− 𝜕2L

𝜕𝜑𝑖,𝜇𝜕𝜑𝑗
𝜑𝑗,𝜇 −

𝜕2L

𝜕𝜑𝑖,𝜇𝜕𝜑𝑗,𝜈
𝜑𝑗,𝜇𝜈 = 0 , (2.18)

where

𝜑𝑖,𝜇 =
𝜕𝜑𝑖
𝜕𝑥𝜇

. (2.19)

Then it is important to realize that in fact Lagrangian is not uniquely defined, which

leads to the one and the same equations of motion. It is practicable to have different

Lagrangians, which lead to the one and the same equations of motion. This acts because

the Lagrangian density may always be changed by adding to it total derivative:

L → L + 𝜕𝜇Λ𝜇 , (2.20)

where Λ𝜇 is considered as a function

Λ𝜇 = Λ𝜇 (𝜑𝑖) . (2.21)

which depends on 𝜑𝑖 but not of their derivatives, because if you also assume that the

Λ𝜇 depends on the derivative of 𝜑𝑖, then it would lead to the appearance of the second

derivative of 𝜑 in the Lagrangian. This is something which was prohibited because it was

required that the Lagrangian depends on the first derivative of 𝜑.
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Then it is necessary to find out why the equations of motion will not be changed under

the addition. This acts because of the next expression:

𝜕𝜇Λ𝜇 =
𝜕Λ𝜇

𝜕𝜑
𝜕𝜇𝜑 , (2.22)

where it was considered that we deal with one scalar field 𝜑.

Then it is possible to trace how under this addition the Lagrangian derivative changes.

It is known that Lagrangian derivative is given by expression (2.17). If we want to observe

how the Lagrangian derivative changes, we need to substitute the additional term instead

of Lagrangian in (2.17) and see what happens. This means that the Lagrangian derivative

will get an extra contribution depending on Λ:

𝜀→ 𝜀+ 𝛿𝜀 (Λ) , (2.23)

where the extra contribution 𝛿𝜀 (𝐿) will be given by:

𝛿𝜀 (𝐿) =
𝜕

𝜕𝜑

(︂
𝜕Λ𝜆

𝜕𝜑
𝜕𝜆𝜑

)︂
− 𝜕2

𝜕𝜑𝜕𝜑,𝜇

(︂
𝜕Λ𝜆

𝜕𝜑
𝜑,𝜆

)︂
𝜑,𝜇−

𝜕2

𝜕𝜑,𝜇𝜕𝜑,𝜈

(︂
𝜕Λ𝜆

𝜕𝜑
𝜑,𝜆

)︂
𝜑,𝜇𝜈 = 0 . (2.24)

It can be seen from (2.24) that the additional contribution 𝛿𝜀 (𝐿) is zero by itself. First

of all, if you look at the last term in (2.24), you will see that the Λ𝜆 depends on 𝜑 we

have its first derivative. If we differentiate the expression in the brackets(︂
𝜕Λ𝜆

𝜕𝜑
𝜑,𝜆

)︂
(2.25)

with respect to derivatives, since we have two derivatives before brackets, the result of

the differentiation will be zero, because of the fact that expression in the brackets involve

the first derivative of 𝜑 only once. Remaining two terms will cancel each other and it

can be checked by opening the brackets and evaluating of the derivatives. Finally, the

contribution to the Euler-Lagrangian equations from the total derivative presented in

(2.24) is actually zero. That is why an additional term does not contribute to equations

of motion.

Lorentz and Poincare groups

After the general remarks presented in previous section it is now possible to come to

the discussion of Lorentz and Poincare groups.

As it was already mentioned in the first lecture, symmetries play an extremely important

role in the description of nature. For instance, the translational symmetry implies that if
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we know physical loss at one space-time point, then we know them at any other which

means that in fact, the physical losses are not random from point to point. Similar remarks

concern, for instance, rotational symmetry, which means that losses in different directions

can be related to each other. Among all possible symmetries, there is one which has a

universal character and this is Poincare symmetry, which combines Lorentz symmetry or

Lorentz transformations with shifts of space-time coordinates.

From mathematical point of view, these transformations have a structure of a Lie

group. First of all, before describing of the Poincare symmetry, it is needed to introduce

the notion of the Lie group which will be defined as 𝐺. The group 𝐺 is a set of elements

of any nature, which satisfies the following set of axioms:

1) For any two elements 𝐺1 and 𝐺2, which belong to group 𝐺, one can define their

product, 𝐺1 ·𝐺2, which also belongs to the group 𝐺. The product of 𝐺1 and 𝐺2 is

associative, which means that it does not matter how to put the brackets:

(𝑔1 · 𝑔2) · 𝑔3 = 𝑔1 · (𝑔2 · 𝑔3) . (2.26)

2) Group 𝐺 must include a unit element 𝑒 such that:

𝑔 · 𝑒 = 𝑒 · 𝑔 = 𝑔 , (2.27)

where a unit element can be also called as identity.

3) For any element 𝑔 from the group 𝐺, there exists an inverse element 𝑔−1 such that:

𝑔 · 𝑔−1 = 𝑔−1 · 𝑔 = 𝑒 . (2.28)

An important class of groups constitute Lie groups. A smooth manifold 𝐺 of dimension

𝑛 is called Lie group, if 𝐺 is supplied with a structure of a group and compatible with a

structure of a smooth manifold, which means that the group operations are smooth.

A physical important example of Lie group, which can be well known from courses

on classical mechanics is a rotation group. The rotation group is the group of rotational

matrices in three dimensions. The explicit discussion of this group will be held a little bit

later, because it is a subgroup of the Lorentz group.

Another example, which is primarily important, is a Lorentz group. Now consider a 𝑑

dimensional Minkowski space R1,𝑑−1. The Lorentz transformations by definition are linear

coordinate transformations of Minkowski space of the form:

𝑥′𝜇 = Λ𝜇
𝜈𝑥

𝜈 , (2.29)
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where over index 𝜈 there is a summation in the Einstein’s term.

These transformations of a Minkowski space are such, that they preserve the interval

between two events in a Minkowski space. The infinitesimal relativistic interval 𝑑𝑠 is

defined through the quadratic form:

𝑑𝑠2 = 𝜂𝜇𝜈d𝑥
𝜇d𝑥𝜈 = 𝑐2d𝑡2 −

(︀
d𝑥1
)︀2 − (︀d𝑥2)︀2 − (︀d𝑥3)︀2 , (2.30)

where 𝜂𝜇𝜈 is Minkowski metric, which is a diagonal matrix and indexes 𝜇 and 𝜈 are running

in general from 0 to 3, if the four dimensional Minkowski space is discussing:

𝜂𝜇𝜈 = diag (+1, −1, −1, −1) , 𝜇 , 𝜈 = 0, 1, 2, 3 . (2.31)

Now it can be seen that 𝑥𝜇 is a vector with components 𝑥0, 𝑥1, 𝑥2, 𝑥3:

𝑥𝜇 =
(︀
𝑥0, 𝑥1, 𝑥2, 𝑥3

)︀
. (2.32)

If you treat 𝑥𝜇 as a vector, the Lorentz transformations can be written in the matrix

form

𝑥′ = Λ𝑥 , (2.33)

cover vector 𝑥 and it transforms passing from one Lorentz frame into another, simply with

matrix Λ like:

Λ = |Λ𝜇
𝜈 | , 𝜇, 𝜈 = 0, 1, 2, 3 . (2.34)

The requirement of Λ to preserve the quadratic form is an explicit form written in the

following way:

𝜂𝜇𝜈Λ
𝜇𝛼Λ𝜈

𝛽 = 𝜂𝛼𝛽 . (2.35)

In other words, Lorentz transformations are transformations which leave our Minkow’s

metric invariant. Formula (2.35) defines the class of matrices Λ, which can be associated

with Lorentz transformations.

The transformation from formula (2.35), which preserves Minkowsky metric can also

be written in the matrix form:

Λ𝑡𝜂Λ = 𝜂 , (2.36)

where 𝜂 and Λ is a four by four matrix.

Definition presented in (2.36) is a generalization of the standard condition

Λ𝑡Λ = 1 , (2.37)
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which is known for orthogonal matrices representing the rotation group. Because of the

fact that Minkowsky metric is used in expression (2.36), the condition in (2.36) can be

called as pseudoorthogonality condition arising from the fact that now the work with

Minkowsky space takes place rather than the work with Euclidean 𝑑 dimensional space.

It can be showed that matrices, which satisfies condition (2.36), form a group. It is clear

that as a product in this group, it is possible to consider the usual product of matrices.

It should be also noticed that condition (2.36) works only for Minkowsky space. It

is a condition which is directly related with the definition of something that is meant

by Lorentz transformations. Lorentz transformations are transformations which preserve

Minkowsky metric 𝜂. It is also practicable to define a group which preserves this metric

in general relativity, or in special relativity, such a group is called a group of isometrics.

Group of isometrics is a group which preserves a given metric. That is why it is possible to

say in this respect that the Lorentz group is a group of isometrics of Minkowsky metric. If

we want a different constant metric instead of 𝜂, it is possible to use, if we have a different

manifold, not Minkowsky space. Then it is necessary to consider what a different space

with a different metric and also define a group of isometrics in a similar way, which was

completed before.

Let’s take two matrices, Λ1 and Λ2, which satisfy the condition (2.36) and then consider

the product of these two matrices. It is needed also to show that the condition (2.36) works

for Λ1 and Λ2: ⎧⎨⎩Λ𝑡
1𝜂Λ1 = 𝜂

Λ𝑡
2𝜂Λ2 = 𝜂

(2.38)

meaning that the expression

(Λ1Λ2)
𝑡 𝜂Λ1Λ2 = 𝜂 (2.39)

will be satisfied.

Expression (2.39) would be also a Lorentz transformation. It is easy to proof that

(2.39) is right:

Λ𝑡
2 Λ𝑡

1𝜂Λ1⏟  ⏞  
=𝜂

Λ2 = Λ𝑡
2𝜂Λ2 = 𝜂 . (2.40)

Finally, from (2.40) it is clearly seen that the product of two Lorentz transformations

is a Lorentz transformation. Identity matrix would be a trivial Lorentz transformation,

which is a identity matrix. Then it is needed to show that any Λ has an inverse, which

is also a Lorentz transformation. To complete this it is possible to take and compute the
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determinant of both sides:

det
(︀
Λ𝑡𝜂Λ

)︀
= (det Λ)2 det 𝜂 , (2.41)

where the rule that under transposition the determinant is unchanged was used.

On the other hand, by the definition of Lorentz transformation, expression (2.41) is the

same as the determinant of 𝜂. The determinant of 𝜂 is not equal to zero by the definition

and equal to minus one. That is why

(det Λ)2 = 1 . (2.42)

From formula (2.42), it was concluded that all matrices of Lorentz transformations

always have

det Λ = ±1 . (2.43)

But this means that matrix of Lorentz transformation is non-degenerate and therefore

it is invertible. The inverse is easy to find from the defining relation of the Lorentz

transformations:

Λ𝑡𝜂Λ = 𝜂 ⇒ Λ𝑡𝜂 = 𝜂Λ−1 ⇒ 𝜂Λ𝑡𝜂 = 𝜂2Λ−1 = Λ−1 . (2.44)

Finally, we got that

Λ−1 = 𝜂Λ𝑡𝜂 . (2.45)

Therefore to show that Λ−1 is also Lorentz transformation, it is necessary to check the

following: (︀
Λ−1

)︀𝑡
𝜂Λ−1 = 𝜂 . (2.46)

It may be done by substituting the expression for Λ−1:(︀
Λ−1

)︀𝑡
𝜂Λ−1 =

(︀
𝜂Λ𝑡𝜂

)︀𝑡
𝜂𝜂⏟ ⏞ 
1

Λ𝑡𝜂 = 𝜂Λ𝜂Λ𝑡⏟  ⏞  
𝜂

𝜂 = 𝜂 𝜂𝜂⏟ ⏞ 
1

= 𝜂 , (2.47)

where the statement that

Λ𝜂Λ𝑡 = 𝜂 (2.48)

was used. Expression (2.48) follows from the defining relation

Λ𝑡𝜂Λ = 𝜂 (2.49)
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Expression (2.48) means that Λ𝑡 is also a matrix of Lorentz transformation. By this

moment it is clear that if Λ is a matrix of Lorentz transformations, Λ𝑡 is also a matrix of

Lorentz transformation. And this can be gotten again from the same expression for Λ−1:

Λ−1 = 𝜂Λ𝑡𝜂 | Λ · (2.50)

1 = Λ𝜂Λ𝑡𝜂 | · 𝜂 (2.51)

𝜂 = Λ𝜂Λ𝑡𝜂2 = Λ𝜂Λ𝑡 . (2.52)

In other words, we got that if Λ is a Lorentz transformation, is a Lorentz transformation,

then the matrices Λ−1, Λ𝑡 and Λ𝑡−1 are matrices of Lorentz transformations. According

to definition of the group, Lorentz transformations for described group can be associated

with the usual matrix multiplication.

As can be seen, defining the relation of the Lorentz group implies the following

important statement: if the condition of preservation of the Lorentz metric is taken and

the low index of Λ is specified to be zero, then the following will be obtained:

𝜂𝜇𝜈Λ
𝜇
0Λ𝜈

0 =
(︀
Λ0

0

)︀2 − (︀Λ𝑖
0

)︀2
= 𝜂00 = 1 . (2.53)

From expression (2.53) can be seen that:(︀
Λ0

0

)︀2
= 1 +

(︀
Λ𝑖

0

)︀2 ≥ 1 . (2.54)

Expression in (2.54) is always bigger or equal to one, because a non-negative contribution

(Λ𝑖
0)

2 is added to one. Therefore there are two possibilities for the component Λ0
0:

Λ0
0 ≥ 1 𝑜𝑟 Λ0

0 ≤ −1 . (2.55)

The correspondent Lorentz group is a six dimensional non-compact Lie group whose

mathematical name is 𝑂 (1, 3), where 𝑂 stands for orthogonal. This group consists of four

topologically separated spaces.

Now it is possible discuss the following statements. First of all, Lorentz transformations

may reverse the direction of time or not reverse the direction of time, e.g. keep the direction

of time. In other words, they can transform a future point in time like vector into a past

point in one. In other words, it’s related to the effect if condition (2.55) completes.

The second thing is that Lorentz transformation reverse or not reverse the four dimensional

reference frame. This related to the effect if

det Λ = 1 𝑜𝑟 det Λ = −1 . (2.56)
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We have two operations, which are also Lorentz transformations, and there are discrete

operations. One of them is parity and another is time reversal. Time reversal operation

will reverse direction of time and the parity will change the orientation of the frame

and transform the matrices with a determinant equal to one with two matrices with

determinant equal to minus one and vice versa.

Λ’s for which Λ0
0 ≥ 1 preserve the direction of time. For this reason they are called

orthochronous. The product of two orthochronous transformations is also an orthochronous

transformation. It can be seen easily if the following is noticed⃒⃒
Λ0

0

⃒⃒
>
⃦⃦

Λ𝑖
0

⃦⃦
. (2.57)

This implies that modulus of Λ0
0 is bigger than the norm of the vector Λ𝑖

0.

Now Λ𝑖
0 is a 3-dimensional vector and then ‖Λ𝑖

0‖ is the square of its norms and it’s

naturally follows from the relation (2.54).

Analogously, if in the relation (2.54) Λ → Λ𝑡 is changed, which is also Lorentz

transformation, the following will be obtained:⃒⃒
Λ0

0

⃒⃒
>
⃦⃦

Λ0
𝑖

⃦⃦
. (2.58)

Therefore, if the product of two Lorentz transformations Λ and Λ′ is taken, it will be:

(ΛΛ′) 0
0 = Λ0

0Λ
′0
0 + Λ0

𝑖Λ
′𝑖
0 . (2.59)

Now if the Cauchy-Bonyakowski-Schwarz inequality is used, which essentially tells that

for any two vectors 𝑥 and 𝑦 the following is found:

|(𝑥, 𝑦)| ≤ ‖𝑥‖ ‖𝑦‖ . (2.60)

It will be obtained that: ⃒⃒
Λ0
𝑖Λ

′𝑖
0

⃒⃒
≤
⃦⃦

Λ0
𝑖

⃦⃦ ⃦⃦
Λ′𝑖

0

⃦⃦
. (2.61)

Therefore, if it is assumed that Λ0
0 and Λ′0

0 are both positive, it will be concluded that:

(ΛΛ′) 0
0 > 0 , (2.62)

which means that Λ0
0 must be bigger or equal to one, because any Lorentz transformation

with positive Λ0
0 must have the property that it’s zero-zero component is bigger or equal

to one.
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In other words, if we have two orthochronous transformations, then the product of

these two orthochronous transformations is also an orthochronous transformation, which

means that orthochronous transformations by itself form a group.

It can be also shown that the inverse of the orthochronous transformation is an

orthochronous transformation. And this group or subgroup of the Lorentz group, which

consists of orthochronous transformations is denoted as 𝑂+ (1, 3), where plus is related to

the fact that we preserve the direction of time.

Now concerning the determinant, the Lorentz transformations, which preserve orientation

are called proper. These are transformations with determinant equals to +1. The transformations

with determinant equals to -1 are called improper.

The proper Lorentz transformations form a subgroup of the Lorentz group, which is

denoted as 𝑆𝑂 (1, 3), where the letter 𝑆 as usual means special.

Now it is possible to combine these two properties of being orthochronous and being

proper and get a subgroup, which is called a restricted Lorentz group. A restricted Lorentz

group denoted as 𝑆𝑂+ (1, 3) and consists of proper orthochronous Lorentz transformations.

Actually identity matrix is a proper orthochronous Lorentz transformation.

Now it is possible to get the picture of how topologically the Lorentz group looks like:

1) A component which consists of all Lorentz transformations, which have a Λ0
0 ≥ 1,

and which have det Λ = 1. This is the restricted Lorentz group 𝑆𝑂+ (1, 3).

2) A component which contain Λ0
0 ≤ −1 and det Λ = −1. This component presents

improper transformations, inverting the direction of time. The passage from restricted

Lorentz group to this component is done by application of what is called time

reversal. Time reversal is a particular Lorentz transformation, which looks like:

𝑇 = diag (−1, 1, 1, 1) . (2.63)

3) A component which contain Λ0
0 ≥ 1 and det Λ = 1. This component is obtained

from the proper orthochronous subgroup by means of application, what is called

parity or space inversion denoted by 𝑃 :

𝑃 = diag (1, −1, −1, −1) . (2.64)

As can be seen from (2.64), parity changes orientation of the three spatial coordinate

axes by multiplying them by minus one.
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4) A component which contain Λ0
0 ≤ −1 and det Λ = 1. That is why all transformations

of the component are not orthochronous. The component is obtained from restricted

Lawrence subgroup by means of combined application of a space inversion with

the time inversion. Combined application keeps the determinant equals to one, but

since the time reversal is employed, then what will be obtained are matrices of

non-orthochronous Lawrence transformations.

Discrete operations, which relates this topologically distinguished or topologically

different components of the Lawrence group, are the following discrete operations:

{𝑒, 𝑃, 𝑇, 𝑃𝑇} . (2.65)

Presented discrete transformations also form what is called a discrete group or discrete

subgroup of the Lawrence group 𝑂 (3, 1), which allows the movement among these different

topologically different components.

Described list of components suggests that only component with Λ0
0 ≥ 1, and det Λ = 1

here is an actual subgroup of the Lawrence group. Other components, if we take them by

themselves, do not form a subgroup. There is only one subgroup and this subgroup is a

subgroup of proper orthochronous Lawrence transformations because only this component

contains an identity group. The connected subgroup of the Lorentz group of dimension

six is 𝑆𝑂+ (1, 3).

The Lorentz group is six dimensional Lie group because of the fact that Lawrence

transformations combine three rotations around three coordinate axes: 𝑥, 𝑦 and 𝑧. In

addition, there are three boosts, which involve one special direction and the time direction.

If you have a four dimensional Minkowsky space, the picture of possible transformations

will look like presented on fig. 2.3.

Then it is necessary to remind how any rotation can be parameterized. It is possible

to do it by specifying the rotation axis 𝑛⃗ and the rotation can be done by specifying a

unit vector. If 𝑛⃗ is a unit vector, it is also needed to specify a rotation angle around this

unit vector, and the rotation angle will be 𝜃.

If the following three by three matrices are defined

𝑎1 =

⎛⎜⎜⎝
0 0 0

0 0 −1

0 1 0

⎞⎟⎟⎠ , 𝑎2 =

⎛⎜⎜⎝
0 0 1

0 0 0

−1 0 0

⎞⎟⎟⎠ , 𝑎3 =

⎛⎜⎜⎝
0 −1 0

1 0 0

0 0 0

⎞⎟⎟⎠ , (2.66)
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Fig. 2.3. The picture of possible transformations of a four dimensional Minkowsky space

Fig. 2.4. The rotation axis 𝑛⃗ and the rotation angle 𝜃

then such a transformation is described by a matrix

𝑅 (𝑛⃗, 𝜃) = 𝑒𝜃𝑛⃗𝑎⃗ , (2.67)

where 𝑎⃗ comprises three matrices 𝑎1, 𝑎2, 𝑎3:

𝑎⃗ = (𝑎1, 𝑎2, 𝑎3) . (2.68)

𝑅 (𝑛⃗, 𝜃) is a three by three matrix of rotations specified by the direction 𝑛⃗ and the

angle 𝜃. It is possible to compute this matrix quite explicitly. In fact, the scalar product

𝑛⃗𝑎⃗ can be written as:

(𝑛⃗𝑎⃗)𝑖𝑗 = −𝜀𝑖𝑗𝑘𝑛𝑘 . (2.69)

Then it is practicable to exponentiate the product simplified by formula (2.69) and

this gives us an explicit three by three matrix with the following matrix elements. After

computation of this matrix elements the following expression will be obtained

𝑅𝑖𝑗 (𝑛⃗, 𝜃) = cos 𝜃 𝛿𝑖𝑗 + (1 − cos 𝜃)𝑛𝑖𝑛𝑗 − sin 𝜃 𝜀𝑖𝑗𝑘𝑛𝑘 . (2.70)

It can be easily checked that the matrix 𝑅 is orthogonal. It satisfies the properties

that

𝑅𝑡 ·𝑅 = 𝑅 ·𝑅𝑡 = 1 . (2.71)
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It means that this matrix is an element of the group of rotation 𝑆𝑂 (3).

It also should be said that

− 𝜋 < 𝜃 ≤ 𝜋 , (2.72)

which covers the whole interval 2𝜋.

But in fact, it is possible to restrict the rotation angle to run from 0 to 𝜋, because

the negative values of 𝜃 from −𝜋 to 0 are equivalent to changing the direction of vector

𝑛⃗ to the opposite. The vector 𝑛⃗ can be allowed to be an identity or a unit vector, which

actually runs over 𝜃 or run over the two dimensional sphere.

Very often people use this model for a topological description of the rotation group

(fig. 2.5). They say that the angle can be identified with the lens of the vector 𝑛⃗. This

vector is not a unit one, but the wall of a radius 𝜋 is felt. Any point inside this wall of

radius 𝜋 will represent a rotation in the direction, specified by the line connecting a zero

point with a point inside the ball. The rotation angle will be given by the lens of the

interval connecting this point with the origin. A bit non-trivial in this description of the

rotations is that diametrally opposite points on a sphere should be identified because of

the fact that a rotation on angle 𝜋 and −𝜋 will give the same rotation.

Fig. 2.5. The model for a topological description of the rotation group

Now it is possible to embed the rotation group into the Lorenz group and embedding

is done in the following way:

Λ (𝑛, 𝜃) =

(︃
1 0

0 𝑅 (𝑛⃗, 𝜃)

)︃
, (2.73)

where the time direction is untouched and represented by 1.

It also can be checked about the matrix 𝑅 that it satisfies the property that

𝑅 (𝑛⃗, 𝜃 + 2𝜋) = 𝑅 (𝑛⃗, 𝜃) . (2.74)

32



THE PRINCIPLES OF QUANTUM FIELD THEORY

GLEB ARUTYUNOV

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

Boosts

Now let’s come to boosts. Boosts will be represented by four by four matrices:

𝑏1 =

⎛⎜⎜⎜⎜⎜⎝
0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , 𝑏1 =

⎛⎜⎜⎜⎜⎜⎝
0 0 −1 0

0 0 0 0

−1 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , 𝑏1 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 0

⎞⎟⎟⎟⎟⎟⎠ . (2.75)

Now there will be rotation, but around what is called hyperbolic angle. The corresponding

Lorentz transformations are now specified again by the axis around which the rotation is

happened and by the rotation angle, which is called 𝜗:

Λ (𝑛⃗, 𝜗) = 𝑒𝜗𝑛⃗⃗𝑏 , (2.76)

where 𝑏⃗ is equal to:

𝑏⃗ = (𝑏1, 𝑏2, 𝑏3) . (2.77)
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Lecture 3. Lorentz and Poincare Groups, Noether’s

Theorem

Repeating of the rotation group

At the last discussion it was considered that any rotation can represented by the

rotation 𝑅 (𝑛⃗, 𝜃) given by the formula:

𝑅 (𝑛⃗, 𝜃) = 𝑒𝜃𝑛⃗·⃗𝑎 . (3.1)

If the corresponding exponent is computed, then a rotation matrix will be obtained

𝑅𝑖𝑗 (𝑛⃗, 𝜃) = cos 𝜃 𝛿𝑖𝑗 + (1 − cos 𝜃)𝑛𝑖𝑛𝑗 − sin 𝜃𝜀𝑖𝑗𝑘𝑛𝑘 , (3.2)

where 𝑖 and 𝑗 runs from 1 to 3.

It can be easily checked that the matrix 𝑅 is orthogonal, which means that

𝑅𝑡𝑅 = 𝑅𝑅𝑡 = 1 . (3.3)

Also, the matrix 𝑅 is periodic:

𝑅 (𝑛⃗, 𝜃 + 2𝜋) = 𝑅 (𝑛⃗, 𝜃) . (3.4)

As can be seen,𝑅 represents three dimensional rotations and embed into a six dimensional

Lawrence group in the following way:

Λ (𝑛⃗, 𝜃) =

(︃
1 0

0 𝑅 (𝑛⃗, 𝜃)

)︃
, (3.5)

where Λ is a matrix of Lorentz transformation.

Lorentz boosts

When we speak about Lorentz boosts, it is necessary to consider a similar parametrization

with the rotation group, but instead of three by three matrices it is needed to consider

four by four matrices 𝑏𝑖 which have a form described in previous lection.

Exponentiating these matrices, but now multiplied with the angle 𝜗, will give the

matrix of Lawrence boosts:

Λ (𝑛⃗, 𝜗) = 𝑒𝜗𝑛⃗⃗𝑏 . (3.6)
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If the corresponding exponentiation is performed, the following matrix will be found

Λ (𝑛⃗, 𝜗) =

(︃
cosh𝜗 −𝑛𝑖 sinh𝜗

−𝑛𝑖 sinh𝜗 𝛿𝑖𝑗 (cos𝜗− 1)𝑛𝑖𝑛𝑗

)︃
, (3.7)

where Λ now it is parameterized by the hyperbolic angle and the name hyperbolic is

related with the hyperbolic functions: cosh and sinh.

It is also should be noticed that the hyperbolic angle 𝜗 is not running from 0 to 2𝜋,

but it runs from −∞ to +∞. Therefore, 𝜗 is usually called rapidity because it is related to

a velocity with which we boost the Lorentz system with respect to the reference system.

It can be seen that cosh𝜗 is always bigger or equal to one

cosh𝜗 ≥ 1 . (3.8)

By the property, it is a variable which takes values from 1 to +∞ and, for this reason,

it is possible to parameterize it as

cosh𝜗 =
1√︁

1 − 𝑣2

𝑐2

, (3.9)

where 𝑣 is a three dimensional velocity vector and 𝑐 is the speed of light. In other words,

the rapidity is related to velocity by means of formula (3.9).

Now, the transformations, as can be seen from (3.9), are now correspond to the

orthochronous transformations. Clearly this means that the component Λ00 of the Lawrence

transformation is bigger than 0, which means that the work takes place with orthochronous

Lorentz transformations.

Equation (3.9) can be solved for the modulus of velocity and if we do that, the following

answer will be found

|𝑣⃗| = ±𝑐 tanh𝜗 . (3.10)

Let’s take from (3.10) the expression with the plus sign. If the plus sign is selected, it

is necessary to restrict the variable 𝜗 to run from 0 to +∞ because in this case tanh will

be positive and we will get on the right side the non negative expression.

In this case, if this choice is made, it will be seen that the variable sinh𝜗 will be given

by

sinh𝜗 =
|𝑣⃗|

𝑐
√︁

1 − 𝑣⃗2

𝑐2

. (3.11)
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Now it is possible to use the parametrization of cosh and sinh in the formula for

Lorentz transformation

Λ (𝑣⃗) =

⎛⎜⎜⎝
1√︁

1− 𝑣⃗2

𝑐2

− 1√︁
1− 𝑣⃗2

𝑐2

𝑣⃗+

𝑐

− 1√︁
1− 𝑣⃗2

𝑐2

𝑣⃗
𝑐

1 +

(︂
1√︁

1− 𝑣⃗2

𝑐2

− 1

)︂
𝑣⃗⊗𝑣⃗+
𝑣⃗2

⎞⎟⎟⎠ , (3.12)

where Λ is four by four matrix and depends on 𝑣⃗, which represented in (3.12) as a column

of size 3. It also should be noticed that 𝑣⃗+ is a row of size 3.

Variable 𝑣 in formula (3.12) is the velocity with which a moving frame is boosted with

respect to the original inertial frame.

The expression 𝑣⃗ ⊗ 𝑣⃗+ means that 𝑣⃗ is multiplied by transposed 𝑣⃗ in terms of the

tensor multiplication

𝑣⃗ ⊗ 𝑣⃗+ =

⎛⎜⎜⎝
𝑣1

𝑣2

𝑣3

⎞⎟⎟⎠⊗
(︁
𝑣1 𝑣2 𝑣3

)︁
, (3.13)

where for an element with indexes 𝑖𝑗 we will get(︀
𝑣⃗ ⊗ 𝑣⃗+

)︀
𝑖𝑗

= 𝑣𝑖𝑣𝑗 . (3.14)

Now let’s formulate the general form of Lorentz transformations. A four dimensional

vector X can be transformed to a vector X′ by a rotation matrix and also by a matrix of

Lawrence boost:

X
′ = Λ (𝑛⃗, 𝜃) Λ (𝑣⃗)⏟  ⏞  

generic Lorentz transformation

X . (3.15)

From formula (3.15) there are three parameters related to rotations and three parameters

in the velocity vector related to Lawrence boost. All together this parameters form a six

parametric group of transformations.

If expression (3.15) is written more explicitly, it will be obtained that⎛⎜⎜⎜⎜⎜⎝
𝑐𝑡′

𝑥1′

𝑥2′

𝑥3′

⎞⎟⎟⎟⎟⎟⎠ =

(︃
1 0

0 𝑅 (𝑛⃗, 𝜃)

)︃⎛⎜⎜⎝
1√︁

1− 𝑣⃗2

𝑐2

− 1√︁
1− 𝑣⃗2

𝑐2

𝑣⃗+

𝑐

− 1√︁
1− 𝑣⃗2

𝑐2

𝑣⃗
𝑐

1 +

(︂
1√︁

1− 𝑣⃗2

𝑐2

− 1

)︂
𝑣⃗⊗𝑣⃗+
𝑣⃗2

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
𝑐𝑡

𝑥1

𝑥2

𝑥3

⎞⎟⎟⎟⎟⎟⎠ . (3.16)

If expression (3.16) is written for components by multiplication of the vector on

the right side by two matrices, it will be possible to derive the transformation loss for
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individual components of the four dimensional vector. For instance, for 𝑡′ it will be found

that 𝑡′ is related to the original coordinates by the following formula

𝑡′ =
𝑡− (𝑥⃗·𝑣⃗)

𝑐2√︁
1 − 𝑣⃗2

𝑐2

. (3.17)

The three dimensional vector 𝑥⃗′ is related to the original vector 𝑥⃗ and time 𝑡 by the

formula

𝑥⃗′ = 𝑅 (𝑛⃗, 𝜃)

⎡⎣𝑥⃗− 𝑣⃗𝑡√︁
1 − 𝑣⃗2

𝑐2

+

⎛⎝ 1√︁
1 − 𝑣⃗2

𝑐2

− 1

⎞⎠ 𝑣⃗ · (𝑣⃗ · 𝑥⃗)

𝑣⃗2

⎤⎦ . (3.18)

We may now recognize that expressions in (3.17) and (3.18) are standard formulas

of special relativity. (3.17) represents a transformation of time coordinate 𝑡, and (3.18)

represents a transformation of the spatial coordinates 𝑥 under Lawrence transformations

governed by the rotation parameters, 𝜃 and by the velocity vector. These formulas are

standard formulas which may be recognized from the course of special relativity.

As an exercise formulas can be used, for instance, to derive the law of addition of

velocities in special relativity. For that it is necessary to consider 2 successive Lawrence

transformations, which are boosts for velocities 𝑣1 and 𝑣2, and use this formulas in order

to see how the velocity add in special relativity.

Now, it is possible to extend the Lorentz group to the Poincare group by including

shifts of space time coordinates of the following form

𝑥𝜇 → 𝜉′𝜇 = 𝑥𝜇 + 𝑎𝜇 , (3.19)

where 𝑎𝜇 is a constant shift which is a constant four dimensional vector.

Lie algebra

Lie algebra is important notion, which is related to the notion of a Lie group. And a

Lie algebra is an infinitesimal version of a Lie group.

Mathematically a Lie algebra is a linear space, which is supplied an operation called

commutator, which is bilinear, skew symmetric and satisfies a Jacobi identity.

If two elements of a vector space 𝑣 and 𝑤 are applied, the commutator of this two

vectors will have the next property:

[𝑣, 𝑤] = − [𝑤, 𝑣] . (3.20)
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The Jacobi identity means that if three elements 𝑣, 𝑤 and 𝑢 are taken, next cyclic

permutation will be obtained:

[[𝑣, 𝑤] , 𝑢] + [[𝑢, 𝑣] , 𝑤] + [[𝑤, 𝑢] , 𝑣] = 0 , (3.21)

where the operation written in (3.21) must be bilinear. Such a linear space is called a Lie

algebra.

In fact, every Lie group has a Lie algebra, and in particular a Poincare group has a Lie

algebra. And this Lie algebra is spent by generators, which we will denote by 𝑀𝜇𝜈 , where

𝜇 and 𝜈 running from 0 to 3. The 𝑀𝜇𝜈 will be Lorenz generators. In addition to Lorenz

generators, there will be also generators responsible for shifts, which will be denoted as

𝑃𝜇 and call as momentum generators.

It will be seen a little bit later that space-time shifts related to momentum of our

dynamical system and it’s very natural to call the 𝑃𝜇 momentum generators.

The Lie algebra relations between generators 𝑀𝜇𝜈 and generators 𝑃𝜇, which make a

Lie algebra of the Poincare group, are given by the following commutation relations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[𝑀𝜇𝜈 ,𝑀𝜌𝜎] = 𝑖 (−𝜂𝜈𝜌𝑀𝜇𝜎 + 𝜂𝜇𝜌𝑀𝜈𝜎 + 𝜂𝜈𝜎𝑀𝜇𝜌 − 𝜂𝜇𝜎𝑀𝜈𝜌)

[𝑀𝜇𝜈 , 𝑃𝜎] = (𝜂𝜇𝜎𝑃𝜈 − 𝜂𝜈𝜎𝑃𝜇)

[𝑃𝜇, 𝑃𝜈 ] = 0

(3.22)

Exponentiating of generators of the Lie algebra will give the corresponding group

elements and, in fact, this was already done , for instance, for a case of the rotation

group. It was seen that the group element is constructed by means of exponentiating of

matrices 𝑎, but the matrices 𝑎 are elements of the Lie algebra of the rotation group 𝑆𝑂 (3)

and the corresponding commutator of 𝑎𝑖 and 𝑎𝑗 of matrices is easy to compute:

[𝑎𝑖, 𝑎𝑗] = 𝜀𝑖𝑗𝑘𝑎𝑘 . (3.23)

In quantum theory, the Poincare generators become Hermitian operators. Hermitian

operators means that𝑀𝜇𝜈 and 𝑃𝜇 are represented as operators, which satisfy the condition

(3.22).

A Hermitian operators also satisfy the following condition:

𝑀+
𝜇𝜈 = 𝑀𝜇𝜈 , 𝑃

+
𝜇 = 𝑃𝜇 . (3.24)

The presented generators will be explicitly realized on a certain space, called the Fock

space. We will come to the discussion of the Fock space a little bit later.
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A scheme which we want to achieve in quantum field theory connected with searching

of so called unit area and realization of unitary representations of the Poincare group.

As it can be known unitary representations play an important role in quantum mechanics

and also as a consequence in the quantum field theory because unitarity is naturally related

to the conservation of probabilities.

In quantum field theory it is also necessary to achieve unitary representations of our

symmetry groups and one of the important symmetry groups is the Poincare group, which

is a symmetry group of the space-time.

Therefore, the main goal will be to obtain the unitary representation of the Poincare

group. Finally, we can also introduce important relation between the proper orthochronous

Lorentz group, whose name is 𝑆𝑂+ (1, 3), and the special linear group of complex 2 by 2

matrices, whose mathematical name is 𝑆𝐿 (2,C).

There are three Pauli matrices 𝜎𝑖, which are well known from quantum mechanics

𝜎1 =

(︃
0 1

1 0

)︃
, 𝜎1 =

(︃
0 −𝑖
𝑖 0

)︃
, 𝜎1 =

(︃
1 0

0 −1

)︃
. (3.25)

Pauli matrices presented in (3.25) can be also combined with the unit matrix 𝜎0, which

is the unit 2 by 2 matrix

𝜎0 =

(︃
1 0

0 1

)︃
. (3.26)

All Pauli matrices can be combined in one definition of a matrix 𝜎𝜇 in the following

way

𝜎𝜇 =
(︀
𝜎0, 𝜎𝑖

)︀
, (3.27)

where 𝑖 can be equal to 1, 2 and 3.

Simultaneously, a notion of matrices can introduced

𝜎𝜇 =
(︀
𝜎0,−𝜎𝑖

)︀
. (3.28)

𝜎𝜇 and 𝜎𝜇 are collections of 2 by 2 matrices. Then, having a four dimensional vector

𝑥𝜇, a 2 by 2 Hermitian matrix can be defined by means of the following construction:

𝑋 =
3∑︁

𝜇=0

𝑥𝜇𝜎𝜇 =
3∑︁

𝜇=0

𝜂𝜇𝜈𝑥
𝜇𝜎𝜈 . (3.29)

If the matrices 𝜎 in (3.29) is substituted , it will be seen that explicitly, we construct

the 2 by 2 matrices of the following type:

𝑋 =

(︃
𝑥0 + 𝑥3 𝑥1 − 𝑖𝑥2

𝑥1 + 𝑖𝑥2 𝑥0 − 𝑥3

)︃
. (3.30)
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It’s easy to see that since 𝑥𝜇 are real, the matrix 𝑋 is Hermitian, which means that

under commission conjugation it stays invariant:

𝑋+ = 𝑋 . (3.31)

If there is such a commission matrix, it is possible to uniquely determine the original

components 𝑥𝜇 by taking a trace of 𝑥 with a metric 𝜎𝜇:

𝑥𝜇 =
1

2
Tr (𝑋 · 𝜎𝜇) . (3.32)

It can be easily verified that computing a trace from (3.32) will lead to turning back

to the original coordinates 𝑥𝜇.

Finally, it also can be seen that if the determinant of the commission matrix X is

computed, it will be

det𝑋 =
(︀
𝑥0 + 𝑥3

)︀ (︀
𝑥0 − 𝑥3

)︀
−
(︀
𝑥1 − 𝑖𝑥2

)︀ (︀
𝑥1 + 𝑖𝑥2

)︀
. (3.33)

If (3.33) is simplyfied, it will be obtained that

det𝑋 =
(︀
𝑥0
)︀2 − (︀𝑥1)︀2 − (︀𝑥2)︀2 − (︀𝑥3)︀2 . (3.34)

Expression (3.34) is nothing else as a four interval, which is Lawrence invariant.

Now it is possible to define on the commission matrix 𝑋 the action of the group 𝑆𝐿.

Let’s take a matrix 𝑔 from 𝑆𝐿 (2,C) and allow it to be multiplied on the commission

matrix 𝑋 in the following way:

𝑋 → 𝑋 ′ = 𝑔𝑋𝑔+ , (3.35)

It is clear that such transformation will not destroy hermiticity and will preserves it,

because due to the rules of hermitian conjugation the following expression will be obtained

𝑋 ′+ =
(︀
𝑔𝑋𝑔+

)︀+
=
(︀
𝑔+
)︀+
𝑋+𝑔+ = 𝑔𝑋+𝑔+ . (3.36)

It also can be seen that if we look at the determinant of 𝑋 ′, this determinant will be

equal to

det𝑋 ′ = det 𝑔𝑋𝑔+ = det 𝑔 det 𝑔+⏟  ⏞  
=det 𝑔

det𝑋 , (3.37)

where the determinant of 𝑔+ is determinant of 𝑔𝑡 but determinant does not changes with

transportation of the matrix. Since the talk is about special linear group, determinant of

𝑔 is equal to 1 by the definition of something that is called special linear group.
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Let’s remind that the special linear group is a group of 2 by 2 complex mattresses

with a unit determinant. That is why

det𝑋 ′ = det𝑋 . (3.38)

Let’s conclude that since these determinants are equal to one, we get determinant of 𝑋

and determinant of 𝑋 is a four interval. Therefore, completed transformations by matrices

from 𝑆𝐿 (2,C) group preserve the four interval. Once they preserve the four interval it is

possible to say that they just perform on the vector 𝑥𝜇 Lorentz transformations.

It can be seen that the conservation of the vector length is guaranteed by the transformation.

But this transformation may be written more explicitly

𝑥′𝜇 =
1

2
Tr (𝑋 ′𝜎𝜇) =

1

2
Tr
(︀
𝑔𝑋𝑔+𝜎𝜇

)︀
. (3.39)

Then it is possible to simplify (3.39) using the definition of 𝑥 from (3.29):

𝑥′𝜇 =
1

2
Tr
(︀
𝜎𝜇𝑔𝜎𝜌𝑔+

)︀
𝜂𝜌𝜈𝑥

𝜈 . (3.40)

Formula (3.40) relates the transformed coordinates to the original coordinates and

it is known how this transformation should look like in terms of matrix of Lorentz

transformation

𝑥′𝜇 = Λ𝜇
𝜈𝑥

𝜈 (3.41)

and this means that the matrix Λ𝜇 is found in an explicit way and it’s given by the formula

Λ (𝑔)𝜇𝜈 =
1

2
Tr
(︀
𝜎𝜇𝑔𝜎𝜌𝑔+

)︀
𝜂𝜌𝜈 , (3.42)

where Λ is parameterized by an element 𝑔 of the 𝑆𝐿 (2,C).

In fact, formula (3.42) gives a map from 𝑆𝐿 (2,C) to the group 𝑆𝑂+ (1, 3).

It should be noticed why 𝑆𝑂+ (1, 3) is written. This is because, if the element Λ0
0 of

the gotten matrix is written, it will be obtained that

Λ (𝑔)00 =
1

2
𝜂00Tr

(︀
𝜎0𝑔𝜎0𝑔+

)︀
, (3.43)

where 𝜂00 = 1, 𝜎0 and 𝜎0 are identity matrices.

That is why Λ (𝑔)00 is bigger than zero and therefore, it was realized by means of the

construction

Λ (𝑔)00 =
1

2
Tr
(︀
𝑔𝑔+

)︀
> 0 (3.44)

the orthochronous transformation.
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It also should be pointed that all nondiagonal elements of the matrix Λ will be 0,

because the metric 𝜂 is diagonal.

Let’s prove that the transformation presented in (3.42) is proper. That means that

it is necessary to prove that determinant of the matrix is equal to one. It is possible to

compute it easily by using the definition of Λ𝜇
𝜈 and it will be found that the determinant

of Λ will be reduced to the determinant of 𝑔.

As a result it will be obtained that

det Λ = (det 𝑔)2 ·
(︀
det 𝑔+

)︀2
= 1 . (3.45)

What is very interesting is that the map from 𝑆𝐿 (2,C) to 𝑆𝑂+ (1, 3) is a map 2 to

1. It means that, in fact, there are two matrices of 𝑆𝐿 (2,C) which go to one matrix

of Lorentz transformation. For instance, two elements 𝑔 and −𝑔, which both belong to

𝑆𝐿 (2,C), go to one element of the Lorentz group. If 𝑔 is changed to −𝑔, the matrix Λ,

which is construct by formula (3.42) will not be changed.

And moreover, it is known that the group 𝑆𝐿 (2,C) is simply connected while 𝑆𝑂+ (1, 3)

is not simply connected. The term simply connected means that if 𝑆𝑂+ (1, 3) is considered

as a topological manifold and a closed loop such as presented at (fig. 3.1) is considered, it

will be seen that this loop cannot be contracted to a point all the time, returning inside

is 𝑆𝑂+ (1, 3).

Fig. 3.1. A topological manifold with a closed loop

In other words, in 𝑆𝑂+ (1, 3) there are non contractible loops. In a way, 𝑆𝑂+ (1, 3)

looks like a circle.

If a circle is considered, which is the simplest group 𝑈 (1) by multiplication, then, if

any loop is considered, it will be clear that it is not possible to contract it.

In fact, we discovered here that 𝑆𝐿 (2,C) represents a simply connected double cover

of 𝑆𝑂+ (1, 3) (fig. 3.2).
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Fig. 3.2. A picture how 𝑆𝐿 (2,C) double cover of 𝑆𝑂+ (1, 3)

It also can be introduced that any simply connected manifold which covers non simply

connected manifold is called the universal cover. So, 𝑆𝐿 (2,C) is the universal cover of

𝑆𝑂+ (1, 3).

As an exercise, it can be checked that indeed the matrix Λ𝜇
𝜈 , which is constructed in by

formula (3.42), is a matrix of Lorentz transformation, it preserves the Minkowsky metric.

It means that you need to take Minkowsky metric 𝜂𝜇𝜈 and need to apply to it Lorentz

transformation Λ𝜇
𝜌Λ𝜈

𝜆 and then you can compute this expression by using formula (3.42).

In fact, this has already been shown in a simple way by noting that transformations

of the type, which was considered, preserve the determinant and determinant is a four-

interval.

It also should be noticed that in general, if non-trivial background takes place, which

is not Minkowsky space, then this background is characterized by certain metric, which

can not be put on it. This metric might have or might not have what is called isometries.

Isometries typically would provide a symmetries of a quantum field theory on a curved

background, when the background is not flat like in Minkowsky space. It can be seen that

quantum particles not only in Minkowsky space, but, for instance, quantum particles in

the background of black hole. This means that space-time is very curved. This means that

different background requires the different metric. The possible group of isometries is a

group which preserves metric. In fact, for each manifold it is possible to define the notion

of a tangent space. Even if there is a curved manifold, there is a tangent space. Then in

this tangent space, there will be a group of transformations of tangent vectors which are

attached to this space and this space will be linear. Therefore, there will be a group of

linear transformations. If this tangent space is supplied or inherits Minkowsky metric, it

will be a Lorenz group of the tangent space. Such a way Lorenz group becomes associated

with a tangent space, but not to the whole manifold moving from point to point. There
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will be a different sort of local Lorenz groups. In this case, in general, if there is no trivial

metric, it is possible to talk about different morphisms which preserve this metric and

these different morphisms are called isometries and they form the group of isometries.

Fig. 3.3. The tangent space in very curved space-time

Noether’s theorem

Noether’s theorem has been established by me Noether in 1980. This theorem is

important, because it relates symmetries to conservation laws. If a dynamical system

are given, then a special role is played by the so called dynamical invariances or quantities,

which are invariant with respect to dynamics of the system. Very often dynamical invariances

are called as conservation laws. This means that if there is some dynamical systems, for

instance, a system of particles, which are characterized by coordinates and momenta, when

the dynamical system develops in time, the coordinates and momenta undergo changes,

but it is possible to create some complicated or simple quantities, which stay invariant

while time develops.

So, 𝑥𝑖 and 𝑝𝑖 of individual particles of the system change with time, but dynamical

invariance remains unchanged. For this reason they are called conservation laws.

If the goal is to describe a dynamical system, it is not enough to know solutions

of equations of motion. It is also important to be able to express the basic physical

characteristics of a system like, for instance, conserved energy or conserved momentum.

It is necessary to to know the energy and momentum or angular momentum of the system

as a whole and for this reason it is needed to be able to find expressions for this quantities

like energy momentum, angular momentum and so on in terms of individual dynamical

coordinates and momenta, in other words phase space variables of the system. This goal

is precisely achieved by means of Noether’s first theorem.
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Noether’s theorem tells the following: let the action of a dynamical system be invariant,

up to a boundary term with respect to a finite parametric, that is dependent on 𝑠 constant

parameters, continuous transformations of fields and space time coordinates. Then

1) there exists 𝑠 linearly independent currents 𝐽𝜇𝑛 , where n runs from 1 to 𝑠 with

divergences equal to certain linear combinations of Lagrangian derivatives.

2) on-shell, that is on solutions of equations of motion these currents are divergenceless

which means that 𝜕𝜇𝐽𝜇𝑛 = 0, and they give rise to dynamical invariance or conservation

loss, which are conserved functionals of fields and their derivatives.

The symmetries of the action, which leaves the action invariant up to a boundary term

are called variational symmetries. The symmetries we are talking about in the Noether’s

theorem can be formulated in the following form: transformation of the coordinates is

involved as

𝑥𝜇 → 𝑥′𝜇 = 𝑥′𝜇 (𝜑, 𝑥) (3.46)

where 𝑥′𝜇 depending on fields or several fields, which might have a different nature and

can be scalars, vectors, tensors, and so on and depending on original coordinates.

Together with this, we also need to introduce transformations of fields

𝜑𝑖 (𝑥) → 𝜑′
𝑖 (𝑥

′) = 𝜑′
𝑖 (𝜑, 𝑥) . (3.47)

It is assumed that the work is carried out in 𝑑-dimensional space and that is why index

𝜇 is allowded to run from 0 to 𝑑− 1. Derivatives of fields under this transformations will

change accordingly

𝜕𝜇𝜑𝑖 → 𝜕′𝜇𝜑
′
𝑖 . (3.48)

In general, such transformations can be non-trivial, because not only space-time coordinates

are being transformed, but also fields. Moreover, space-time coordinates may be required

to be transformed by involving fields.

Let’s now prove the Noether’s theorem. First of all, the theorem requires that the

symmetries of the action may be seen up to a boundary term. It means that if the action

functional is taken, which is an integral over 𝑑-dimensional space-time of the Lagrangian

density. Then in new coordinates, the action will look like

𝑆 ′ =

∫︁
Ω

d𝑑𝑥′L
(︀
𝜑′
𝑖 (𝑥

′) , 𝜕′𝜇𝜑
′
𝑖 (𝑥

′)
)︀
, (3.49)
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where the Lagrangian density depends on transformed fields 𝜑′
𝑖 (𝑥

′), and derivatives 𝜕′𝜇𝜑′
𝑖 (𝑥

′).

Integration will also be done over the image of the original region Ω under the coordinate

transformation.

Originally there is an integration region Ω, which can be arbitrary. Under the transformation

𝑥→ 𝑥′ it is mapped to some other region, which is called Ω′ (fig. 3.4).

Fig. 3.4. The transformation 𝑥→ 𝑥′

The condition of the theorem requires that the new action linked with the old action

by the formula

𝑆 ′ =

∫︁
Ω

d𝑑𝑥

⎛⎜⎜⎝L (𝜑𝑖 (𝑥) , 𝜕𝜇𝜑𝑖 (𝑥)) +
dΛ𝜇

d𝑥𝜇⏟ ⏞ 
boundary term

⎞⎟⎟⎠ . (3.50)

In the last lecture, it has been discussed that adding a derivative dΛ𝜇

d𝑥𝜇
, where Λ𝜇 is

a function of fields 𝜑 does not influence on equations of motion. Variational symmetries

allow the change of the action up to a boundary term.

The condition (3.50) is required in the Noether’s theorem and the gotten invariance

must be evaluated on the arbitrary region Ω.

It also should be noticed, that for the Noether’s theorem it is not important that the

Λ𝜇 depends only on field 𝜑. In general, Λ𝜇 might depend on derivatives of 𝜑, but the

problem is that, in this case, this addition will lead to the problem that the physical

requirement to have a unique solution of the standard Kashi problem will not preserve,

because the new Lagrangian would involve derivatives higher than the first derivative.

But the Noether’s theorem is telling us that any boundary term is allowed.

Now it is necessary to use arbitrariness of the volume Ω and compare two integrals

for 𝑆 ′. For that, it is possible to make a change of coordinates from 𝑥′ → 𝑥 and pass to

integration over the original variable 𝑥 over the region Ω.

Under the change of coordinates it is necessary to use a Jacobian, which is a determinant

of the Jacoby matrix. Such a way the following will be obtained

d𝑑𝑥′ =

⃒⃒⃒⃒
𝜕𝑥′𝛼

𝜕𝑥𝛽

⃒⃒⃒⃒
× d𝑑𝑥 . (3.51)
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Then there will be two integrals over the same volume Ω and since Ω is arbitrary it

is possible to change it arbitrarily. Left hand side should be equal to the right hand side

and then this is only possible if the integrals are equal to each other.

So, the condition of the equality of the integrals can be written in the following way:

L
(︀
𝜑′ (𝑥′) , 𝜕′𝜇𝜑

′ (𝑥′)
)︀ ⃒⃒⃒⃒𝜕𝑥′𝛼
𝜕𝑥𝛽

⃒⃒⃒⃒
= L (𝜑𝑖 (𝑥) , 𝜕𝜇𝜑𝑖 (𝑥)) +

dΛ𝜇

d𝑥𝜇
. (3.52)

The infinitesimal version of this equation is considered. This means that infinitesimal

transformations that infinitesimal transformations are necessary, in which 𝑥𝜇 goes to 𝑥′𝜇

and a small variation of 𝑥𝜇 is infinitesimally added to 𝑥𝜇.

𝑥𝜇 → 𝑥′𝜇 = 𝑥𝜇 + 𝛿𝑥𝜇 . (3.53)

For fields infinitesimal version 𝑝ℎ𝑖𝑖 (𝑥) goes to 𝜑′
𝑖 (𝑥

′), which is

𝜑𝑖 (𝑥) → 𝜑′
𝑖 (𝑥

′) = 𝜑𝑖 (𝑥) + 𝛿𝜑𝑖 (𝑥) , (3.54)

where again the edition to 𝑝ℎ𝑖𝑖 is an infinitesimal version of the transformation.

It is also needed to parameterize transformations with the help of individual parameters.

As it was described in the Noether’s theorem, we are talking about 𝑠 independent constant

parameters, which parameterize transformations. Transformations are linear and continuous

functions of parameters and, therefore, it is possible to write

𝛿𝑥𝜇 =
∑︁

1≤𝑛≤𝑠

𝑋𝜇
𝑛 · 𝜖𝑛⏟ ⏞ 

parameters

, (3.55)

where 𝜖𝑛 are parameters parameters, which are constant in a sense that they do not

depend on space-time points or fields and they just numbers, 𝑋𝜇
𝑛 are quantities which

describe response of 𝑥𝜇 on the change by infinitesimal parameters 𝜖𝑛.

Also for fields it is possible to write 𝛿𝜑𝑖 (𝑥) is given by a response of fields:

𝛿𝜑𝑖 (𝑥) =
∑︁

1≤𝑛≤𝑠

Φ𝑖,𝑛𝜖
𝑛 , (3.56)

where Φ𝑖,𝑛 are responses of fields on infinitesimal transformation with parameters 𝜖𝑛.

Then let’s look at how Lagrangian density transforms under symmetry transformations.

For this reason it is necessary to consider 𝜑′
𝑖 (𝑥

′). So infinitesimally it is written in the

following way

𝜑′
𝑖 (𝑥

′) = 𝜑′
𝑖 (𝑥+ 𝛿𝑥) . (3.57)
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Now, it is possible to expand variable in (3.57) in a Taylor series in the following way

𝜑′
𝑖 (𝑥

′) = 𝜑′
𝑖 (𝑥) + 𝜕𝜇𝜑

′
𝑖 (𝑥) 𝛿𝑥𝜇 + . . . , (3.58)

where instead of . . . it is practicable to continue a Taylor series, but there is no interest

in that, because infinitesimal transformations are considered.

Then it is possible to simplify expression (3.58) and get

𝜑′
𝑖 (𝑥

′) = 𝜑′
𝑖 (𝑥) + 𝜕𝜇𝜑

′
𝑖 (𝑥)𝑋𝜇

𝑛𝜖
𝑛 + . . . . (3.59)

Now it can be seen that 𝜑′
𝑖 will be different from 𝜑𝑖 also by order 𝜖, but one order

𝜖 is already in expression (3.59) and this means that there will not be a mistake at the

leading order in 𝜖 if there is a replacement in the 𝜕𝜇𝜑′
𝑖 with the original field 𝜑𝑖. In this

case, there will not be a at a given order 𝜖 because the difference between 𝜑′ and 𝜑 is of

order 𝜖 and it will contribute to the order 𝜖2.

𝜑′
𝑖 (𝑥

′) = 𝜑′
𝑖 (𝑥) + 𝜕𝜇𝜑𝑖 (𝑥)𝑋𝜇

𝑛𝜖 . (3.60)

At this point, it is important to realize that the variation, which is applied to the field

𝜑, 𝛿 does not commute with derivative 𝜕
𝜕𝑥𝜇

. That is why, because variation 𝛿 an effect of

both changing coordinates and fields. This variation is due to both the change of the form

of the field, and also due to the change of the argument of the field. The variation 𝛿𝜑

incodes both variation of coordinates and the variation of the form of the field. In order to

distinguish variation of the form from the general variation, which also involves variation

of the coordinates, the variation of the form of the field is introduced, which will not be

denoted by 𝛿. By definition this is

𝛿𝜑𝑖 = 𝜑′
𝑖 (𝑥) − 𝜑𝑖 (𝑥) . (3.61)

In other words, it can be seen how the variation of the form of the field changes,

keeping this field at the same point. So space-time point is kept untouched. Such a way

the difference between primed and unprimed fields is considered. It is possible to find

what this variation is, because this is nothing else as the following thing:

𝛿𝜑𝑖 = (Ψ𝑖,𝑛 − 𝜕𝜇𝜑𝑖𝑋
𝜇
𝑛 ) · 𝜖𝑛 . (3.62)

Expression for (3.62) can be gotten from the next condition:

𝜑𝑖 (𝑥) + Φ𝑖,𝑛𝜖
𝑛 = 𝜑′ (𝑥) + 𝜕𝜇𝜑𝑖𝑋

𝜇
𝑛 · 𝜖𝑛 , (3.63)
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where then it is necessaru to subtract 𝜑𝑖 (𝑥) from 𝜑′
𝑖 (𝑥):

𝛿𝜑𝑖 = 𝜑′
𝑖 (𝑥) − 𝜑𝑖 (𝑥) = (Φ𝑖,𝑛 − 𝜕𝜇𝜑𝑖𝑋

𝜇
𝑛 ) 𝜖𝑛 . (3.64)

From (3.64) it can be seen that variation of the form coincides with the full variation

only if 𝛿𝑥𝜇 = 0.

Now it is possible to compute the variation of the Lagrangian density and for that the

Lagrangian is considered as a function of the variable 𝑥.

The new Lagrangian density is equal to

L′ (𝑥′) = L
(︀
𝜑′ (𝑥′) , 𝜕′𝜇𝜑

′ (𝑥′)
)︀
. (3.65)

As can be seen from (3.65) the new Lagrangian is an old Lagrangian density evaluated

on the new coordinates and new fields.

So now it is obtained that

L′ (𝑥′) = L′ (𝑥) +
dL

d𝑥𝜇
𝛿𝑥𝜇 . (3.66)

It is possible to add the Lagrangian density and then subtract it

L′ (𝑥′) = L (𝑥) + L′ (𝑥) − L (𝑥) +
dL

d𝑥𝜇
𝛿𝑥𝜇 (3.67)

which gives us variational form of the Lagrangian plus total derivative:

L′ (𝑥′) = L + 𝛿L +
dL

d𝑥𝜇
𝛿𝑥𝜇 . (3.68)

The variation of the Lagrangian is computed in the usual way as

𝛿L (𝑥) =
𝜕L

𝜕𝜑𝑖
𝜑𝑖 +

𝜕L

𝜕 (𝜕𝜇𝜑𝑖)
𝜕𝜇𝛿𝜑𝑖 , (3.69)

where it is possoble to use the effect that the variation of the form commutes with the

space-time derivative and, therefore, this gives us the following expression:

𝛿L (𝑥) =

(︂
𝜕L

𝜕𝜑𝑖
− d

d𝑥𝜇

(︂
𝜕L

𝜕 (𝜕𝜇𝜑𝑖)

)︂)︂
⏟  ⏞  

𝜀𝑖

𝛿𝜑𝑖 +
d

d𝑥𝜇

(︂
𝜕L

𝜕 (𝜕𝜇𝜑𝑖)
𝛿𝜑𝑖

)︂
. (3.70)

The last thing to take into account is the infinitesimal expression for integration

measure. On the next lecture it will be shown that the integration measure is given

by the following expression⃒⃒⃒⃒
𝜕𝑥′𝛼

𝜕𝑥𝛽

⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝜕

𝜕𝑥𝛽
(𝑥𝛼 + 𝛿𝑥𝛼)

⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝛿𝛼𝛽 +

𝜕𝛿𝑥𝛼

𝜕𝑥𝛽

⃒⃒⃒⃒
. (3.71)
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It can be seen that if there is no goal to restrict yourself to the leading order in 𝜖, then

expression (3.71) in the leading order gives us⃒⃒⃒⃒
𝜕𝑥′𝛼

𝜕𝑥𝛽

⃒⃒⃒⃒
= 1 +

d

d𝑥𝜇
𝛿𝑥𝜇 + . . . . (3.72)

Now let’s return back to the original equation (3.52), which is required in the Noether’s

theorem. The infinitesimal version of this expression will be considered. That is why

Lagrangian will be replaced by Lagrangian plus its first variation. As a result on the left

side of the (3.52) it wiil be obtained that(︂
L + 𝜀𝑖𝛿𝜑𝑖 +

d

d𝑥𝜇

(︂
𝜕L

𝜕 (𝜕𝜇𝜑𝑖)
𝛿𝜑𝑖 + . . .

)︂
+

dL

d𝑥𝜇
𝛿𝑥𝜇
)︂(︂

1 +
d

d𝑥𝜇
𝛿𝑥𝜇 + . . .

)︂
. (3.73)

On the right hand side it will be obtained that

L +
d𝛿Λ𝜇

d𝑥𝜇
. (3.74)

Then it is necessary to open the brackets on the left side and collect the terms at

leading order.

It should be noticed that 𝛿Λ𝜇 is understood as Λ𝜇
𝑛 · 𝜖𝑛 and the leading order is epsilon.

After collecting the terms of order 𝜖, the following expression wiil be obtained

d

d𝑥𝜇

(︂
𝜕L

𝜕 (𝜕𝜇𝜑𝑖)
𝛿𝜑𝑖 + L𝛿𝑥𝜇 − 𝛿Λ𝜇

)︂
=

d

d𝑥𝜇

(︂
𝜕L

𝜕 (𝜕𝜇𝜑𝑖)
− 𝜕L

𝜕𝜑𝑖

)︂
𝛿𝜑𝑖 (3.75)

From expression (3.75) it is possible to read off that there is a current exist, which

will be called 𝐽𝜇 and can be written as

𝐽𝜇 =
𝜕L

𝜕 (𝜕𝜇𝜑𝑖)
𝛿𝜑𝑖 + L𝛿𝑥𝜇 − 𝛿Λ𝜇 , (3.76)

The current written in (3.76) has a property that:

d𝐽𝜇

d𝑥𝜇
= −𝜀𝑖𝛿𝜑𝑖 , (3.77)

i.e. the divergence of the current 𝐽𝜇 is given by a linear combination of Lagrangian

derivatives 𝜀𝑖 and this linear combination involves the variation of the form of the field

𝜑𝑖.

Index 𝑛 will be introduced in the following way: if we plug in variations, explicitly,

a variation of the form of the field, variation of the coordinates and variation of Λ𝜇, it

will not be possible to see that for since parameters, 𝜀𝑛 is independent. For each of these
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parameters, tere will not be a conserved current. This conserved current 𝐽𝜇𝑛 , where index

𝑛 runs from 1 to 𝑠, will be given by the following expression

𝐽𝜇𝑛 = − 𝜕L

𝜕 (𝜕𝜇𝜑𝑖)
(Φ𝑖,𝑛 − 𝜕_𝜈𝜑𝑖𝑋𝜈

𝑛) − L ·𝑋𝜇
𝑛 + Λ𝜇

𝑛 . (3.78)

Expression from (3.78) can be called as Noether’s current. On equations of motion or,

in other words, on shell all Lagrangian derivatives are equal to 0 and this is why currents

are conserved. In other words, their divergences are equal to 0

d𝐽𝜇𝑛
d𝑥𝜇

= 0 for ∀𝑛 = 1, . . . , 𝑠 . (3.79)

Expression (3.79) is basically completes the proof of the Noether’s theorem. The only

point that was not explained is the construction of the dynamical invariance, which relies

on the divergenceless currents, but this will be explained in the next lecture.
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Lecture 4. Applications of Noether’s Theorem.

Conservation Laws and Symmetries

During the previous lecture it has been found an expression for the conserved current,

which follows from the Noether’s theorem. This current has a following structure

𝐽𝜇𝑛 = − 𝜕L

𝜕 (𝜕𝜇𝜑𝑖)
(Φ𝑖,𝑛 − 𝜕𝜈𝜑𝑖𝑋

𝜈
𝑛) − L𝑋𝜇

𝑛 + Λ𝜇
𝑛 , (4.1)

where in the gotten expression there are two indexes 𝜇 and 𝑛, where 𝜇 runs the space-time

coordinates from 0 to 𝑑− 1. At the same time index 𝑛 represents a range of independent

parameters and runs from 1 to 𝑠. Variable 𝑠 can be characterized as a set of independent

variation parameters.

With respect to index 𝜇 there is a conservation law of the next view

𝜕𝜇𝐽
𝜇
𝑛 = 0 , (4.2)

where this condition is right on shell, which means on solutions of equations of motion

(Euler-Lagrange equations).

The local conservation laws (4.2) can be used to define the integral invariance. It is

necessary to assume that all fields vanish at spatial infinity and then defines the following

integral

𝐽𝑛 =

∫︁
B

d𝑥⃗𝐽0
𝑛 , (4.3)

which is denoted as an integral of the zero component of the current, where zero-component

means time component. It also should be noticed that it is necessary to integrate over

𝑑− 1-dimensional hyper surface, which is orthogonal to the time direction.

Formula (4.3) can be visualized as presented at (fig. 4.1).

Then when such a quantity 𝐽𝑛 is constructed, the statement is that this quantity is a

conserved charge, which sometimes can be called as a Noether’s charge. It is true, because

if 𝐽𝑛 is differentiated over time, there will be obtained that

d𝐽𝑛
d𝑥0

=
𝜕

𝜕𝑥0

∫︁
B

d𝑥⃗𝐽0
𝑛 =

∫︁
B

d𝑥⃗
𝜕𝐽0

𝑛

𝜕𝑥0
. (4.4)

where the differentiation over 𝑥0 is moved inside the integral, because we are integrating

over spatial directions.
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Fig. 4.1. Integration over 𝑑−1-dimensional hyper surface orthogonal to the time direction

Now, the current which depends on time and on the spatial components becomes the

partial derivative, but then from the conservation law it follows that in terms of indexes

𝜕𝐽0

𝜕𝑥0
+
𝜕𝐽 𝑖

𝜕𝑥𝑖
= 0 , (4.5)

where 𝑖 runs over spatial indexes from 1 to 𝑑− 1.

The derivatives with indexes 𝑖 can be replaced by the divergence. Such a way it is

possible to write a new expression for d𝐽𝑛
d𝑥0

:

d𝐽𝑛
d𝑥0

= −
∫︁
B

𝜕𝐽 𝑖

𝜕𝑥𝑖
d𝑥⃗ , (4.6)

where the total derivative in the integral was obtained and such a way it is possible to

reduce integral to the integral over the boundary of the space region (fig. 4.2).

Fig. 4.2. Integration over the boundary of the space region

A boundary of the space region will be denoted as 𝜕B and then it is possible to write

(4.6) as
d𝐽𝑛
d𝑥0

= −
∫︁
𝜕B

d
(︁
𝐽𝑛 · 𝑛⃗

)︁
, (4.7)
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where 𝑛⃗ is a normal vector to the boundary of the region.

The expression in the brackets of the (4.7) is a flux of the vector 𝐽𝑛 through the

boundary.

Then it is necessary to tend boundaries to infinity. If the boundary ia taken, for

instance, as a sphere, surrounding the space as a 𝑑 − 1-dimensional ball, the boundary

will be a 𝑑− 2 dimensional sphere surrounding the ball. If our fields are assumed to have

a vanishing behavior at infinity, then in the limit where this boundary tends to infinity

the integral will tends to zero, because fields are assumed to die at special infinity.

In this case, if the boundary conditions described above is assumed, then it will be

seen that there is a next conservation law:

d𝐽𝑛
d𝑡

= 0 . (4.8)

Then it is possible to apply the general theorem of Noether to the discussion of concrete

examples of symmetry transformations and derive for this examples the corresponding

conserved currents.

First of all, let’s start with the case of an internal symmetry.

Internal symmetry

This is a case where the space-time variable 𝑥𝜇 is not touched and do not do anything

with 𝑥𝜇. That is why:

𝛿𝑥𝜇 = 0 . (4.9)

From (4.9) it is clearly seen that the only variation that is possible to be done is a

variation of the field. That is why it’s called internal symmetry, because it does not involve

change of the space-time.

This variation, as it is known, is written down as

𝛿𝜑′ (𝑥′) =
∑︁

1≤𝑛≤𝑠

Φ𝑖,𝑛𝛿𝜖
𝑛 , (4.10)

where the only non-trivial response is Φ and therefore, if we look at the general expression

(4.1), it will be seen that only the term Φ𝑖,𝑛 contributes, because 𝑋𝜈
𝑛 response on variation

of space-time is absent.

Therefore, for this case the current looks rather simple:

𝐽𝜇𝑛 = − 𝜕L

𝜕 (𝜕𝜇𝜑𝑖)
Φ𝑖,𝑛 . (4.11)
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The second very important example is an example of a conserved quantity, which is

called energy-momentum tensor.

Energy-momentum tensor

Sometimes people also can call it as stress-energy tensor. This corresponds to infinitesimal

space-time transformations, which can be firstly considered from the case of a single scalar

field.

The transformations which will be performed are translations of space time coordinates:

𝑥′𝜇 = 𝑥𝜇 + 𝛿𝑥𝜇 , (4.12)

where 𝛿𝑥𝜇 is a shift, which can be written in the following form:

𝛿𝑥𝜇 = 𝛿𝜇𝜈 𝜀
𝜈 , (4.13)

where 𝑑𝑒𝑙𝑡𝑎𝜇𝜈 is a Kronecker symbol, 𝜀𝜈 are constant shifts.

From formula (4.13) it can be clearly seen that the response

𝑋𝜇
𝜈 = 𝛿𝑛𝑢

𝜇 . (4.14)

For the scalar field it is known that transformation property is

𝜑′ (𝑥′) = 𝜑 (𝑥) + 𝛿𝜑 . (4.15)

Therefore, in this case, the 𝛿𝜑 (𝑥) is actually vanishes, and therefore response

𝛿𝜑 = 0 → Φ𝑖,𝑛 = 0 . (4.16)

That is why the formula for conserved current now looks as follows:

𝑇 𝜇𝜈 =
𝜕L

𝜕 (𝜕𝜇𝜑)
𝜕𝜈𝜑− 𝛿𝜇𝜈L , (4.17)

where for the stress energy tensor people usually use a special notation for the current

𝑇 𝜇𝜈 . It also should be noticed that index 𝑛 was replaced by space-time index 𝜈.

So, there is a tensor, which is directly derived by applying the general expression of

the Noether’s theorem. Expression (4.17) is called canonical stress energy tensor for a

scalar field.
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Then the next question should be asked. How this tensor will be looking, if the vector

field is placed instead of the scalar field. Let’s look at the field denoted by 𝜑𝜆, where

lambda is a vector index, and consider the same transformations

𝑥′𝜇 = 𝑥𝜇 + 𝜖𝜇 = 𝑥𝜇 + 𝛿𝜇𝜈 𝜖
𝜈 . (4.18)

The question is: what is the transformation for the field now? What is the response of

the vector field on coordinate shifts?

It turns out that this response vanishes in the same way as it was for the case of a

scalar field. As it can be seen from the following formula if the variation of vector field is

considered, then this is by definition should be response of a vector field by:

𝛿𝜑𝜆 = Φ𝜆
𝜇 · 𝜖𝜇 = 0 . (4.19)

On the other hand, the 𝛿𝜑𝜆 is the transformation which comes from the general

infinitesimal version of the transformation of a vector under the coordinate shift. This

formula is known, because it was discussed in the first lecture.

𝜑′𝜆 (𝑥′) =
𝜕𝑥′𝜆

𝜕𝑥𝜌
𝜑𝜌 (𝑥) . (4.20)

Expression (4.20) shows how the general formula looks like. Then the infinitesimal transformation

will be written in the following way:

𝑥′𝜆 = 𝑥𝜆 + 𝜀𝜆 . (4.21)

It can be seen that in this case, that the infinitesimal change of the derivative

𝜕𝛿𝑥′𝜆

𝜕𝑥𝜌
=
𝜕𝜀𝜆

𝜕𝑥𝜌
= 0 , (4.22)

where 𝜀𝜆 is constant and that is why the derivative will vanish.

As a result, the variation 𝛿𝜑𝜆 vanishes. Therefore for the vector field the response Φ𝜆
𝜇

vanishes, as it was for the case of a scalar field. That is why, it is seen that the stress

energy tensor for a vector field will have a similar form to what was for the scalar field:

𝑇 𝜇𝜈 =
𝜕L

𝜕 (𝜕𝜇𝜑𝜆)
𝜕𝜈𝜑

𝜆 − 𝛿𝜇𝜈L . (4.23)

There is only one difference that it is necessary to sum over vector components.

Now a bit more sophisticated transformations are considered, which are related to

angular momentum and to the conservation loss related to the conservation of angular

momentum.
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Angular momentum

For this case it is necessary to consider infinitesimal rotations. For example, for

infinitesimal rotations of Minkowski space there are transformations of the following type

𝑥′𝜇 = 𝑥𝜇 + 𝑥𝜈 · 𝜀𝜇𝜈 , (4.24)

where parameters of this transformations 𝜀𝜇𝜈 satisfy the following property

𝜀𝜇𝜈 = −𝜀𝜈𝜇 . (4.25)

In other words, these parameters constitute a second rank tensor, which is antisymmetric

with respect to permutation of indices 𝜇 and 𝜈.

If our work takes place in four-dimensional space, such a tensor will have six independent

components. That is because 𝜇 runs in this case from 0 to 3 and, therefore, antisymmetric

tensor will have the number of components equal to 4 multiplied by 3 and divided by 2,

which is 6.

This six components will present six Lawrence transformations, which include three

usual rotations of space-time coordinates, plus three boosts, where there will be a rotation

between one of the spatial coordinates and the time.

Now it is necessary to find the response of coordinates on such a transformation. It is

needful to take into account that only parameters 𝜀𝜇 with 𝜇 < 𝜈 are independent because

parameters with 𝜈 > 𝜇 can be found from the condition of antisymmetry (4.25). This

means that it is possible to represent the transformation of coordinates in the following

way:

𝛿𝑥𝜆 = 𝑥𝜈𝜀
𝜆𝜈 = 𝑥𝜈𝛿

𝜆
𝜇 · 𝜀𝜇𝜈 . (4.26)

As can be seen from (4.26), 𝛿𝜆𝜇 was introduced, but if there is a sum over 𝜇, then it

will be replaced by 𝜆 and we will return back to the formula:

𝛿𝑥𝜆 = 𝑥𝜈𝜀
𝜆𝜈 . (4.27)

Now, there will be a sum over all 𝜇 and 𝜈:

𝛿𝑥𝜆 =
∑︁
𝜇<𝜈

𝑥𝜈𝛿
𝜆
𝜇𝜀

𝜇𝜈 +
∑︁
𝜇>𝜈

𝑥𝜈𝛿
𝜆
𝜇𝜀

𝜇𝜈 . (4.28)

Then in the second sum it will be necessary to change the index 𝜇 for 𝜈, because 𝜇

and 𝜈 are dummy summation indexes. Then it is needed to use expression (4.25) and the
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resulting formula can be written in the following way:

𝛿𝑥𝜆 =
∑︁
𝜇<𝜈

(︀
𝑥𝜈𝛿

𝜆
𝜇 − 𝑥𝜇𝛿

𝜆
𝜈

)︀
𝜀𝜇𝜈 , (4.29)

where some now goes over independent components.

Then it is possible to write the response of the coordinates on such a variation

𝑋𝜆
𝜇𝜈 = 𝑥𝜈𝛿

𝜆
𝜇 − 𝑥𝜇𝛿

𝜆
𝜈 . (4.30)

where 𝜇 < 𝜈.

Let’s consider again a case of a scalar field for which there is

𝜑′ (𝑥′) = 𝜑 (𝑥) . (4.31)

Again, from expression (4.31) we will get that 𝛿𝜑 = 0 and, again, response of variation

of fields is actually zero (𝜑𝑛 = 0).

Now the general form of the Noether’s current will be obtained and the non-trivial

response will be substituted and the following formula for the current will be obtained.

Now the current actually will have two indexes 𝜇 and 𝜈 instead of one index 𝑛, which was

before. The current for this case is usually denoted by the letter 𝑀 .

𝑀𝜆
𝜇𝜈 =

𝜕L

𝜕 (𝜕𝜆𝜑)
(𝜕𝜇𝜑𝑥𝜈 − 𝜕𝜈𝜑𝑥𝜇) + L

(︀
𝑥𝜇𝛿

𝜆
𝜈 − 𝑥𝜈𝛿

𝜆
𝜇

)︀
. (4.32)

The conservation law will read now in this way:

𝜕𝜆𝑀
𝜆
𝜇𝜈 = 0 (4.33)

for any 𝜇 < 𝜈.

In arbitrary dimension the tensor 𝑀𝜆
𝜇𝜈 will have

𝑑 (𝑑− 1)

2
(4.34)

independent components.

In fact, it can be seen that it contains in addition to the usual angular momentum,

which can be associated with the spatial rotations, also conservation laws which are related

to Lorentz boosts, because as it was discussed in four dimensions the components 𝜇

and 𝜈 provide in total six independent conserved quantities. Three of these quantities

correspond to the standard angular momentum related to the rotations between spatial

directions and three other correspond to Lorentz boosts. It will be necessary to associate
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the corresponding conserved quantity with which one of the six possible transformations

according to the Noether’s theorem.

The formula for the angular momentum tensor can be rewritten in the following way:

there will be a small rearrangement of the terms. As a result, 𝑀𝜆
𝜇𝜈 will be written in the

following way:

𝑀𝜆
𝜇𝜈 = 𝑥𝜈

(︂
𝜕L

𝜕 (𝜕𝜆𝜑)
𝜕𝜇𝜑− L𝛿𝜆𝜇

)︂
− 𝑥𝜇

(︂
𝜕L

𝜕 (𝜕𝜆𝜑)
𝜕𝜈𝜑− L𝛿𝜆𝜈

)︂
. (4.35)

Then, if a comparison of what is written in the brackets is performed, it will be obvious

that what we see is the stress energy tensor for the scalar field. Therefore, expression (4.35)

can be written as

𝑀𝜆
𝜇𝜈 = 𝑥𝜈𝑇

𝜆
𝜇 − 𝑥𝜇𝑇

𝜆
𝜈 , (4.36)

where 𝑇 𝜆𝜇 and 𝑇 𝜆𝜈 are stress tensors for the scalar field.

Further it will be needed to place the gotten expression into the conservation law and

it will be possible to see what it implies:

𝜕𝜆𝑀
𝜆
𝜇𝜈 = 𝜕𝜆

(︀
𝑥𝜈𝑇

𝜆
𝜇 − 𝑥𝜇𝑇

𝜆
𝜈

)︀
= 𝜂𝜆𝜈𝑇

𝜆
𝜇 + 𝑥𝜈𝜕𝜆𝑇

𝜆
𝜇 − 𝜂𝜆𝜇𝑇

𝜆
𝜈 − 𝑥𝜇𝜕𝜆𝑇

𝜆
𝜈 , (4.37)

where due to the conservation of a stress tensor two terms 𝜕𝜆𝑇 𝜆𝜇 and 𝜕𝜆𝑇
𝜆
𝜈 will vanish.

Using the rule of raising of lower indexes with the help of the Minkowski metric the

following will be obtained in formula (4.37):

𝜕𝜆𝑀
𝜆
𝜇𝜈 = 𝑇𝜈𝜇 − 𝑇𝜇𝜈 . (4.38)

For the moment, expression (4.38) was derived, which actually shows us that for the

case of a Noether’s theorem, there is the divergence of angular momentum tensor vanishing

(𝜕𝜆𝑀𝜆
𝜇𝜈). Then the stress energy tensor for a case of a scalar field must be automatically

symmetric:

𝑇𝜇𝜈 = 𝑇𝜈𝜇 . (4.39)

The question is: what happens if, for instance, the energy momentum tensor 𝑀𝜆
𝜇𝜈 for

a case of a vector field is considered? There is an trivial response of a vector on space

time rotations and this response can be found from the following:

𝛿𝜑𝜆 =
∑︁
𝜇<𝜈

𝜑𝜆𝜇𝜈𝜀
𝜇𝜈 , (4.40)

where 𝜇 and 𝜈 represent independent parameters of Lawrence transformations (six parameters

in four dimensions).
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On the other hand, 𝛿𝜑𝜆 should be given by the transformation law of a vector on the

coordinate transformations which are in this case

𝛿𝜑𝜆 =
𝜕𝛿𝑥𝜆

𝜕𝑥𝜌
𝜑𝜌 (𝑥) =

𝜕

𝜕𝑥𝜌

(︃∑︁
𝜇𝜈

(︀
𝑥𝜈𝛿

𝜆
𝜇 − 𝑥𝜇𝛿

𝜆
𝜈

)︀)︃
. (4.41)

where the underlined expression can be interpreted as a coordinate response.

The field response will have the next structure:

Φ𝜆
𝜇𝜈 =

(︀
𝜂𝜌𝜈𝛿

𝜆
𝜇 − 𝜂𝜌𝜇𝛿

𝜆
𝜈

)︀
𝜑𝜌 = 𝜑𝜈𝛿

𝜆
𝜇 − 𝜑𝜇𝛿

𝜆
𝜈 . (4.42)

Now, if the response from (4.42) is substituted together with a response of coordinates

into the general formula for the current, it will be possible to find for the tensor of angular

momentum of a vector field the following formula:

𝑀𝜆
𝜇𝜈 = − 𝜕L

𝜕 (𝜕𝜆𝜑𝜌)

[︀
𝜑𝜈𝛿

𝜌
𝜇 − 𝜑𝜇𝛿

𝜌
𝜈 + (𝑥𝜇𝜕𝜈𝜑− 𝑥𝜈𝜕𝜇𝜑)

]︀
− L

(︀
𝑥𝜈𝛿

𝜆
𝜇 − 𝑥𝜇𝛿

𝜆
𝜈

)︀
. (4.43)

If the gotten expression is compared with stress tensor of a vector field, it will be

possible to see that expression (4.43) may be written in the following way:

𝑀𝜆
𝜇𝜈 = 𝑥𝜈𝑇

𝜆
𝜇 − 𝑥𝜇𝑇

𝜆
𝜈 +

(︂
𝜕L

𝜕 (𝜕𝜆𝜑𝜈)
𝜑𝜇 −

𝜕L

𝜕 (𝜕𝜆𝜑𝜇)
𝜑𝜈

)︂
. (4.44)

If we look at expression (4.44), it will be obvious that it does not reduce to the previous

case of a scalar field, because for a scalar field we had only first two terms, but now there

is an addition term.

It should be noticed that the first two term, which was in a case of the scalar field, is

called orbital momentum. The additional piece characterizes polarization properties of the

field and relates to the notion of spin. Such a way the part in the brackets of expression

(4.44) is called a spin part.

From the discussion of the conservation law it is known that

𝜕𝜆𝑀
𝜆
𝜇𝜈 = 𝑇𝜈𝜇 − 𝑇𝜇𝜈 + 𝜕𝜆

(︂
𝜕L

𝜕 (𝜕𝜆𝜑𝜈)
𝜑𝜇 −

𝜕L

𝜕 (𝜕𝜆𝜑𝜇)
𝜑𝜈

)︂
. (4.45)

From expression (4.45) it is not possible to conclude that the spin part and the orbital

part are separately conserved. It can be seen that this parts will be separately conserved

only in the case, while the stress tensor is symmetric. In other words, while

𝑇𝜇𝜈 = 𝑇𝜈𝜇 (4.46)

the spin part will be separately conserved.
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In general, it is unknown if the stress tensor is symmetric and it is possible to find

the non-symmetric tensor. In this case, there is no possibility to define two separate

quantities, because there is no separate conservation of the orbital part and the spin part.

In total, when the orbital part is added up to spin part, it is always conserved because

by the Noether’s theorem, it comes from a unique quantity namely the tensor of angular

momentum, which according to the Noether’s theorem should have vanishing divergence.

In particular, the case of Dirac field will be studied, where it will be found out that the

stress energy is not symmetric and therefore there is no separate conservation of spin and

orbital parts.

Lagrangians of
”
Wess-Zumino“

The last example of conservation laws and the application of the Noether’s theorem

will concern Lagrangians of so called
”
Wess-Zumino“ type. Wess and Zumino are scientists

who are responsible for the contribution to the discovery of super-symmetry.

In some cases, the Lagrangians have the property that they are invariant, mainly

Lagrangians which have super symmetry, only up to boundary terms. Since the appearance

of boundary terms is allowed by Noether’s theorem, there are examples where there are

conservation laws associated to the existence or appearance of the boundary terms.

The simplest Lagrangian density, which exhibit the property to be invariant up to

boundary terms, is the Lagrangian which has the next form:

L = 𝐶𝜇
𝑖𝑗𝜑

𝑖𝜕𝜇𝜑
𝑗 , (4.47)

where the Lagrangian wrote for a number of scalar fields 𝜑𝑖, index 𝑖 is running from 1 to

the number 𝑚 and 𝜇 is a space-time index.

Alsp it should be noticed that coefficients 𝐶𝜇
𝑖𝑗 are anti symmetric and this means that

𝐶𝜇
𝑖𝑗 = −𝐶𝜇

𝑗𝑖 . (4.48)

This is needed otherwise the Lagrangian will be a total derivative. So this anti-symmetry

property guarantees that there is no possibility to take the derivative out.

The infinitesimal transformation of fields 𝜑𝑖, which leaves the Lagrangian invariant up

to the boundary term is a simple shift. This means that a field 𝑝ℎ𝑖𝑖 is taken and it is

shifted by constant parameter 𝜀𝑖.

It can be seen that the variation of the Lagrangian density in this case is

𝛿L = 𝐶𝜇
𝑖𝑗𝜀

𝑖𝜕𝜇𝜑
𝑗 . (4.49)
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Because of the constant 𝐶 and 𝜀 it is possible to rewrite (4.49) as

𝛿L = 𝜕𝜇
(︀
𝐶𝜇
𝑖𝑗𝜀

𝑖𝜑𝑗
)︀
. (4.50)

As can be seen from (4.50) the gotten variation looks like the total derivative. It is

possible to rewrite it as

𝛿L = 𝜕𝜇Λ𝜇 , (4.51)

where Λ𝜇 is

Λ𝜇 = 𝐶𝜇
𝑖𝑗𝜀

𝑖𝜑𝑗 . (4.52)

It is also doable to write Λ𝜇 as the sum of components Λ𝜇
𝑖 :

Λ𝜇 = Λ𝜇
𝑖 𝜀

𝑖 . (4.53)

That is why

Λ𝜇
𝑖 = 𝐶𝜆

𝑖𝑗𝜑
𝑗 . (4.54)

It is atteinable now to use the formula for the Noether’s current and write

𝐽𝜇𝑖 = − 𝜕L

𝜕 (𝜕𝜇𝜑𝑖)
+ 𝐶𝜇

𝑖𝑗𝜑
𝑗 , (4.55)

If the Lagrangian from expression (4.47) is taken and placed into (4.53), the following

will be obtained

𝐽𝜇𝑖 = −𝐶𝜇
𝑗𝑖𝜑

𝑖 + 𝐶𝜇
𝑖𝑗𝜑

𝑖 = 2𝐶𝜇
𝑖𝑗𝜑

𝑖 . (4.56)

It is possible to immediately test the conservation law. For this case, it is necessary to

take the current from (4.56) and compute its divergence. As a result there will be received

that

𝜕𝜇𝐽
𝜇
𝑖 = 2𝜕𝜇

(︀
𝐶𝜇
𝑖𝑗𝜑

𝑗
)︀
, (4.57)

where the underlined equation is nothing else as an equation of motion for a field 𝜑𝑖.

Solutions of equations of motion as should be according to the Noether’s theorem will

be the divergence of the corresponding current and it will vanish. Finally there will be

obtained

𝜕𝜇𝐽
𝜇
𝑖 = 0 . (4.58)

The first remark, which we should to make is so-called improvement procedure.
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Improvement procedure

The point of this discussion is that, in principle, the conserved current 𝐽𝜇𝑛 is not

uniquely defined. As it has already been seen, the Noether’s theorem gives us a very

concrete expression for the current and this current is called canonical. But it turns out

that it is possible to change the current by adding to it so called improvement term:

𝐽𝜇𝑛 → 𝐽𝜇𝑛⏟ ⏞ 
canonical

+ 𝜕𝜈χ
𝜇
𝑛⏟ ⏞ 

topological

, (4.59)

where χ is a tensor which is assumed to be skew symmetric and then

χ𝜇𝜈𝑛 = −χ𝜈𝜇𝑛 . (4.60)

Then it can be seen that if such a term is added up, the conservation law will not be

changed or influenced, because if there is a performance with a derivative 𝜕𝜇 and compute

the divergence of this extra contribution, the following expression will be obtained:

𝜕𝜇𝜕𝜈χ
𝜇𝜈
𝑛 = 0 , (4.61)

where there is a zero because derivatives 𝜕𝜇 and 𝜕𝜈 commute, while the tensor χ is skew

symmetric.

In other words, it is clear that adding the topological term does not break the conservation

law. Moreover, if χ is a function of fields, which vanish at infinity, it also does not break

the conservation of the Noether’s charge, because∫︁
𝛽

d𝑥⃗𝜕𝜈χ
0𝜈 . (4.62)

It is possible to write the derivative in (4.62) as

𝜕𝜈χ
0𝜈 = 𝜕0χ

00 + 𝜕𝑘χ
0𝑘 , (4.63)

where the variable 𝜕0χ00 simply vanishes and therefore it is possible to write (4.62) in the

following way:

−
∫︁
𝛽

d𝑥⃗𝜕𝑘χ
0𝑘 . (4.64)

From (4.64) it is clearly seen that, as before, there will be a flux of the corresponding

vector χ0𝑘 over the boundary of the integration area 𝛽. Since the boundary tends to

infinity the integral (4.64) tends to zero.
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Then the next question may be asked: is it possible to make the stress tensor, which

might be not symmetrical, to become symmetric by adding a proper improvement term?

In other words, it is neccessary to take a 𝑇 𝜇𝜈 and add to it the improvement term:

𝑇 𝜇𝜈 → 𝑇 𝜇𝜈 + 𝜕𝜌χ
𝜌𝜇𝜈 , (4.65)

where according to the previous discussion

χ𝜌𝜇𝜈 = −χ𝜇𝜌𝜈 . (4.66)

If the tensor could be symmetric then, as it was discussed,the conservation of the

orbital part and the spin part will be gotten.

The answer to that question is that it turns out that there exists an improved symmetric

stress tensor J𝜇𝜈 , which is symmetric only if and only if the anti-symmetric part of the

canonical stress tensor 𝑇 𝜇𝜈 is the total derivative.

Let’s assume that the anti-symmetric part is a total derivative. This means that

𝑇 𝜇𝜈 − 𝑇 𝜈𝜇 = −𝜕𝜌Ω𝜌𝜇𝜈 , (4.67)

where Ω satisfies the anti-symmetry property with respect to indices 𝜇 and 𝜈:

Ω𝜌𝜇𝜈 = −Ω𝜌𝜈𝜇 . (4.68)

Let’s prove that it is always possible to improve such a tensor by adding to it the

improvement term. To construct the improvement term it is needed to do the following:

the improvement term χ𝜌𝜇𝜈 is taken in the following form:

χ𝜌𝜇𝜈 =
1

2
(Ω𝜌𝜇𝜈 + Ω𝜇𝜈𝜌− Ω𝜈𝜌𝜇) . (4.69)

Then it can be seen that, in fact, the tensor χ has the desired symmetry:

χ𝜌𝜇𝜈 = −χ𝜇𝜌𝜈 , (4.70)

where it is possible to prove this statement if indexes are changed in the (4.69):

χ𝜌𝜇𝜈 =
1

2
(Ω𝜇𝜌𝜈 + Ω𝜌𝜈𝜇− Ω𝜈𝜇𝜌) . (4.71)

Then, because the Ω has a property of skew symmetry with respect to the last two

indices, it is possible to rewrite expression (4.71) as

χ𝜌𝜇𝜈 =
1

2
(−Ω𝜇𝜈𝜌− Ω𝜌𝜇𝜈 + Ω𝜈𝜌𝜇) . (4.72)
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If terms from the (4.72) are compared with terms from the (4.69), it will be clear that

the (4.70) is true.

The second statement is that if χ defined by the (4.69) is taken and χ𝜌𝜈𝜇 is subtracted,

the following will be obtained:

χ𝜌𝜇𝜈 − χ𝜌𝜈𝜇 = Ω𝜌𝜇𝜈 . (4.73)

Therefore, in the anti symmetric part (4.67) it is possible to substitute instead of the

tensor Ω𝜇𝜈 the next difference:

𝑇 𝜇𝜈 − 𝑇 𝜈𝜇 = −𝜕𝜌 (χ𝜌𝜇𝜈 − χ𝜌𝜈𝜇) . (4.74)

Then it is possible to open the brackets and get that:

𝑇 𝜇𝜈 − 𝑇 𝜈𝜇 = −𝜕𝜌χ𝜌𝜇𝜈 + 𝜕𝜌χ
𝜌𝜈𝜇 . (4.75)

Let’s combine 𝑇 with derivatives in the following way:

𝑇 𝜇𝜈 + 𝜕𝜌χ
𝜌𝜇𝜈 = 𝑇 𝜈𝜇 + 𝜕𝜌χ

𝜌𝜈𝜇 , (4.76)

where it is attainable to conclude that the terms on the left and the right sides are

symmetric tensors J𝜇𝜈 and J𝜈𝜇 respectively. It is automatically means that

J𝜇𝜈 = J𝜈𝜇 . (4.77)

Indeed, it has been proved that if anti symmetric part of the stress tensor is a total

derivative, then the stress energy tensor can always be improved by adding a proper

improvement term.

In the other way, it is necessary to assume the opposite, that there exists an improved

symmetric tensor, which is the tensor J𝜇𝜈 of the next view:

J𝜇𝜈 = 𝑇 𝜇𝜈 + 𝜕𝜌χ
𝜌𝜇𝜈 . (4.78)

But then from the (4.78), it automatically follows that the anti-symmetric part of the 𝑇 𝜇𝜈

is a total divergence, because

J𝜈𝜇 = 𝑇 𝜈𝜇 + 𝜕𝜌χ
𝜌𝜈𝜇 (4.79)

and it is possible to subtract (4.79) from expression (4.78):

𝑇 𝜇𝜈 − 𝑇 𝜈𝜇 = 𝜕𝜌 (χ𝜌𝜇𝜈 − χ𝜌𝜈𝜇) , (4.80)
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which in (4.80) it is shown that anti symmetric part is a total divergence. Therefore, the

opposite statement is also approved.

The tensor χ𝜌𝜇𝜈 which is skew symmetric in indexes 𝜌 and 𝜇 and whose derivative can

be added to improve the stress tensor has a name of
”
Bellinfante“ tensor.

The final remark concerning this improvement procedure is that even improvement is

not unique. Let’s suppose thatoer start was from a canonical tensor and then we improved

it by adding a proper
”
Bellinfante“ tensor and made the tensor symmetric. But even if

the tensor is symmetric, it is still possible to add to it the following improvement term:

𝑇𝜇𝜈 → 𝑇𝜇𝜈 + 𝜕𝜌𝜕𝜎𝑊𝜇𝜌𝜈𝜎 , (4.81)

where 𝑊 is a tensor of the fourth rank, where it is required from this tensor 𝑊 the same

symmetries as the symmetries of the Riemann tensor. It’s known that the Riemann tensor

has the following symmetries: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑊𝜇𝜌𝜈𝜎 = −𝑊𝜌𝜇𝜈𝜎

𝑊𝜇𝜌𝜈𝜎 = −𝑊𝜇𝜌𝜎𝜈

𝑊𝜇𝜌𝜈𝜎 = 𝑊𝜈𝜎𝜇𝜌

(4.82)

So if there is such a tensor as 𝑊 and it is added up with two derivatives on 𝑊 , then

there will still be a symmetric tensor.

Finally, it is possible to find the symmetric tensor directly from a gravitational theory.

There is a procedure which produce straightforwardly a symmetric stress energy tensor.

But this one has to consider the action for field, which we are interested in coupled to an

arbitrary gravitational background.

It is possible to take our "favorite"field, for instance, scalar field, vector field and so

on and couple it couple our field to arbitrary gravitational background, which essentially

means that our field is coupled to the metric. Then the action has standard form. For

instance, in four dimensions it would be derivative of the Lagrangian density:

𝑆 =

∫︁
d4𝑥L . (4.83)

The Lagrangian density in addition to the field, that is considered, also involves the

space time metric 𝑔𝜇𝜈 with the following determinant:

𝑔 = det 𝑔𝜇𝜈 (4.84)
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It’s well known that under different morphisms

𝑥′𝜇 → 𝑥𝜇 + 𝜉𝜇 , (4.85)

where 𝜉𝜇 is a vector field. 𝜉𝜇 by definition is a vector which depends on the coordinates

of space-time

𝜉𝜇 := 𝜉𝜇 (𝑥) . (4.86)

The metric is known to transform in the following way:

𝛿𝑔𝜇𝜈 = ∇𝜇𝜉𝜈 + ∇𝜈𝜉𝜇 . (4.87)

The transformation of the metric induces a transformation of the action. If a variation

of the action is performed, the action response in the following way:

𝛿𝑆 =

∫︁
d4𝑥

𝛿L

𝛿𝑔𝜇𝜈
(∇𝜇𝜉𝜈 + ∇𝜈𝜉𝜇) . (4.88)

Then the quantity can be introduced, which is stress energy tensor in the presence of

the gravitational field. By definition, this is

𝑇𝜇𝜈 =
2√
−𝑔

𝛿L

𝛿𝑔𝜇𝜈
. (4.89)

In the gravity theory it’s proved that the following identity takes place:

𝜕𝜇
(︀√

−𝑔𝑇 𝜇𝜈𝜉𝜈
)︀⏟  ⏞  

divergence

=
√
−𝑔∇𝜇 (𝑇 𝜇𝜈𝜉𝜈) . (4.90)

It is now possible to open the brackets in the (4.90) and write that

𝜕𝜇
(︀√

−𝑔𝑇 𝜇𝜈𝜉𝜈
)︀

=
√
−𝑔∇𝜇𝑇

𝜇𝜈𝜉𝜈 +
√
−𝑔𝑇 𝜇𝜈∇𝜇𝜉𝜈 . (4.91)

Formula (4.91) means that in fact, it is now possible to come back to formula (4.88)

and rewrite the variation 𝛿𝑆 as

𝛿𝑆 =

∫︁
d4𝑥

√
−𝑔𝑇 𝜇𝜈∇𝜇𝜉𝜈 , (4.92)

where the integral presented in (4.92) can be evaluated by parts:

𝛿𝑆 =

∫︁
d4𝑥𝜕𝜇

(︀√
−𝑔𝑇 𝜇𝜈𝜉𝜈

)︀
−
∫︁

d4𝑥
√
−𝑔∇𝜇𝑇

𝜇𝜈𝜉𝜈 . (4.93)

If it is assumed that fields 𝜉𝜈 vanish at infinity, then the total derivative term does not

contribute and gets out. Since our interest is the action to be invariant with respect to
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default morphisms, then it means that the variation 𝛿𝑆 must vanish for any 𝜉𝜈 . The first

term of the (4.93) will vanish and therefore the one possible variant is

∇𝜇𝑇
𝜇𝜈 = 0 . (4.94)

There is the expression in the (4.94), which looks like the conservation law, but it’s

not true, because the derivative in (4.94) is not the usual derivative but it’s a covariant

derivative.

If we work on the flat background and make the metric in expression (4.94) Minkowski,

then the variant derivative turns into the usual derivative and 𝑇 𝜇𝜈 will be conserved in

the standard sense.

∇𝜇 = 𝜕𝜇 → 𝜕𝜇𝑇
𝜇𝜈 = 0 . (4.95)

On the other hand, from expression (4.89) it can be seen that since metric is symmetric

with respect to indexes 𝜇 and 𝜈, the object which will be obtained by means of the

Lagrangian variation with respect to the symmetric metric will be automatically symmetric.

𝑇 𝜇𝜈 = 𝑇 𝜈𝜇 . (4.96)

There is a way to obtain a symmetric tensor by coupling the field to the general

gravitational background with an arbitrary metric and then upon this object is derived,

it can be seen that it will have a meaning of the stress energy tensor with the usual

conservation law, if we return back in the final equation (4.94 to the flat Minkowski

metric.

Casimir operators

Tensors are objects, which transform themselves under Lorentz transformations. They

are conserved quantities with respect to the time evolution of the dynamical system.

If there is some kind of Lagrangian or Hamiltonian driving the dynamics, then these

quantities are indeed conserved. The numbers, which are computed as components of

tensors, depend on the Lorentz frame in which we compute them. If a rotation of the

Lorentz frame is performed or if our level is boosted, for instance, with respect to the

original frame, then numbers represented by the components of, for instance, 𝑇𝜇𝜈 or 𝑀𝜆
𝜇𝜈

will be changed. They will go to other numbers, which also will conserve with the time.

Because of the dynamics of our system, they always been conserved, but they will be

changed because these objects are tensors.
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From this point of view, you may ask yourself what are the quantities which actually

characterize our dynamical system in such a way that they are independent on the choice

of the Lorentz frame. In representation theory these quantities are known as Casimir’s or

Casimir operators.

The Casimir’s objects commute with all generators of a Poincare group:

[𝐶,𝑃𝜇] = 0 , (4.97)

where 𝐶 is a Casimir’s object.

Expression (4.97) means that if 𝐶 is taken to be a Casimir, then it must commute

with all generators of translations 𝑃𝜇, which are components constructed as conserved

charges related to stress tensor. So

𝑃𝜇 =

∫︁
𝑇 0
𝜇d𝑥⃗ , (4.98)

where it is necessary to integrate over spatial directions. Analogously, Casimir must

commute with all generators of angular momentum

[𝐶,𝑀𝜇𝜈 ] = 0 , (4.99)

which are obtained by

𝑀𝜇𝜈 =

∫︁
𝑀0

𝜇𝜈d𝑥⃗ (4.100)

with respect to the space.

There may be a question: what are the Casimir elements of Casimir operators for the

case of the Poincare group? For the case of the Poincare group, there are two Casimirs.

One Casimir is simply equal to

𝐶1 = 𝑃𝜇𝑃
𝜇 = 𝑃 2

0 − 𝑃 2 . (4.101)

The gotten Casimir object takes the values 𝑚2𝑐2 and therefore

𝑃 2
0 − 𝑝2 = 𝑚2𝑐2 . (4.102)

If the terms in the (4.102) are placed to the one side, it will be possible to see that

something that was obtained is called mass-shell condition for a relativistic particle, which

is going to be studied in detail a little bit later.

𝑃 2
0 − 𝑝2 −𝑚2𝑐2 = 0 . (4.103)
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If the commutation relations between 𝐶1 and another 𝑃𝜎 or generator 𝑀𝜇𝜈 is written,

it will be found out that ⎧⎨⎩[𝑃𝜇𝑃
𝜇, 𝑃𝜎] = 0

[𝑃𝜇𝑃
𝜇,𝑀𝜇𝜈 ] = 0

(4.104)

The second Casimir is constructed by using a certain special vector 𝑊𝜇, which is

constructed in the following way

𝑊𝜇 = 𝜀𝜇𝜈𝜌𝜆𝑃
𝜈𝑀𝜌𝜆 , (4.105)

where we got a fully anti-symmetric tensor. The second Casimir object is called
”
Pauli-

Lubanski“ vector. The property of this vector is that it is orthogonal with respect to the

Lorentz invariant scalar product:

𝑊𝜇𝑃
𝜇 = 0 . (4.106)

The second property is that it may be used to build up the second Casimir of the

Poincare group, which is given by a square of the
”
Pauli-Lubanski“ vector:

𝐶2 = 𝑊𝜇𝑊
𝜇 . (4.107)

It is possible to check by direct calculations that if 𝐶2 is taken and it is commuted

with 𝑃𝜎, it will be found out that

[𝑊𝜇𝑊
𝜇𝑃𝜎] = 0 (4.108)

as well as it can be found with 𝑀𝜌𝜆:

[𝑊𝜇𝑊
𝜇𝑀𝜌𝜆] = 0 . (4.109)

Values of the second Casimir in irreducible representations massive of the Poincare

group will look like as follows

𝐶2 = 𝑚2𝑐 · 𝑠 (𝑠+ 1) , (4.110)

where 𝑠 is a half integer numbers, starting from 0, 1
2
, 1, 3

2
and so on, which is called the

spin.

In other words, massive irreducible representations of the Poincare group are characterized

by two numbers the mass and spin. In fact, this is in acted with characterization of

elementary particles, because every elementary particle has a mass and spin or it is
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massless, but massless is a separate case, it is a separate representations of the Poincare

group, because as can be seen for massless representation 𝐶1 and 𝐶2 will be equal to zero.

In that case, there appears a new Casimir, which is called Helicity. Helicity coincides

with a projection of a spin of a particle on the direction of motion:

𝑝 · 𝑠⃗
|𝑝|

, (4.111)

where (4.111) is a projection of spin on the direction of motion.

The talk about helicity will be in detail, when the discussion will be about the Dirac’s

theory, where it will be possible to realize how helicity appears, why it plays an important

role and why helicity is applied only to the case of massless particles, but not the massive

ones.

It is now necessary to introduce some definitions. First of all, let’s start with representation.

Representation means the representation of abstract generators of the Poincare algebra

by concrete operators, acting in some concrete space of states.

Basically, it is needful to realize pure abstract algebraic relations of the Poincare group.

Those commutators which have been written down in the previous lectures, by means of

concrete operators realized in a concrete Hilbert space. It is necessaty to think about this

objects as about a concrete operators, acting on states in some Hilbert space.

Then it is necessary to introduce a reducible representation. Representation is called

the reducible if there will be no invariant subspaces, where invariant subspaces means

that a vector is taken from the subspace and we act on it with generators. The result of

this action remains belong to the same subspace and it is not possible to get out of the

subspace.

If there are no subspaces except the trivial one and the whole space, then such

representation of a Lie group is called irreducible.

And on the top, a notion of unitarity is added up. Representation is called unitary if

the Lie algebra generators are realized by Hermitian operators. If the Lorentz generators

by Hermitian operators are realized, the next conditions will be true:⎧⎨⎩𝑀+
𝜇𝜈 = 𝑀𝜇𝜈

𝑃+
𝜇 = 𝑃𝜇

(4.112)

The unitary representations are important, because they can tell us that probabilities

that is needed to be computed, will not depend on the particular Poincare frame in which
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it is being computed, because unitarity preserves probability as it is known from courses

on quantum mechanics.

In this way, the interest is in constructing unitary irreducible representations of Poincare

group. It is known that since Poincare group is non compact, in particular, because

it includes the Lorentz group which is non compact, then by the theorem from the

group theory it is known that such unitary representations of non compact group must

necessarily be infinity dimensional. That is why the spaces in which it is possible to

realize such unitary irreducible representations of the Poincare group must be infinity

dimensional, and that is one of the reasons why it is necessary to deal with fields, which

in court, an infinite number of degrees of freedom, on which in quantum theory unitary

irreducible representations of the Poincare group will be realized.
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Lecture 5. Conserved Charges as Symmetry

Generators. Klein-Gordon Field. Mass-Shell Condition

Conserved charges as the symmetry generators

Conserved charges that follow from Noether’s theorem play a role of infinitesimal

generators of symmetries. Symmetry generators means that they play a role of generators

of symmetry, which is a correspond to according to the Noether’s theorem.

To understand this statement it is necessary to recall the construction of the Hamiltonian

formalism for the case of field theory. Normally the start should be from the Lagrangian

description and introduced Lagrangian, Lagrangian density and the action. To pass to

the Hamiltonian formalism, it is neceassary to introduce in addition to the canonical

coordinates 𝜑𝑖 (𝑥), which in this case is played by our fields, a canonical momenta

𝜋𝑖 (𝑥) =
𝛿L

𝛿𝜑̇𝑖
, (5.1)

where the expression looks like an usual expression in classical mechanics. As can be

known, a momentum is a derivative of the Lagrangian with respect to velocity. In this

case, it is also possible to write (5.1) as

𝜋𝑖 (𝑥) =
𝜕L

𝜕 (𝜕0𝜑𝑖 (𝑥))
, (5.2)

where 𝜕0 is a derivative with respect to 𝑥0, which is the same as

𝑥0 = 𝑐𝑡 . (5.3)

The relation between the momentum and the derivative of the Lagrangian density

allows to express the velocity of the field in terms of canonical momentum.

𝜑̇𝑖 (𝑥) → 𝜋𝑖 (𝑥) . (5.4)

Therefore, then it is necessary to construct the Hamiltonian using the standard prescription

of classical mechanics. It is neeeded to construct it as

𝐻 =

∫︁
d𝑥⃗
(︁
𝜋𝑖𝜑̇𝑖

)︁
− 𝐿 , (5.5)

where it is possible to write 𝐿 as an integral of Lagrangian density and get the following

expression:

𝐻 =

∫︁
d𝑥⃗
[︁
𝜋𝑖𝜑̇𝑖 − L

]︁
=

∫︁
d𝑥⃗H , (5.6)
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where H is an Hamiltonian density, which can be written as:

H = 𝜋𝑖𝜑̇𝑖 − L . (5.7)

Then absolutely the same procedure should be implemented, but for the case of

fields. An important role in constructing the Hamiltonian formalism in the usual classical

mechanics is played by an object, which is called Poisson’s bracket, because this bracket

allows to formulate Hamilton’s equations of motion in a compact and a simple way. In

general, it is known that a Poisson’s bracket is an operation on a space of functions or a

phase space. If there is a phase space, which is parameterized by the coordinates 𝑝 and 𝑞,

and then on this phase space, there will be a space over the phase space, which will be a

space of functions, where it is possiblet to define an operation, which is called Poisson’s

bracket, which is a map cross functions into functions (fig. 5.1).

Fig. 5.1. A phase space, parameterized by the coordinates 𝑝 and 𝑞, with space of functions

over the phase space

Any two functions on a phase space it put in correspondence as an a function on the

phase space and the Poisson’s bracket satisfies the following conditions:

1) the Poisson’s bracket is skew symmetric:

{𝑓, 𝑔} = −{𝑔, 𝑓} . (5.8)

2) the Poisson’s bracket is bilinear:

{𝜆𝑓 + 𝜇𝑔, ℎ} = 𝜆{𝑓, ℎ} + 𝜇{𝑔, ℎ} . (5.9)

3) the Poisson’s bracket must satisfy Jacobi identity. If a Poisson’s bracket of 𝑓 and

𝑔 is taken and then bracket with another function ℎ and then add up a cyclic

permutations of these functions 𝑓 , 𝑔 and ℎ, then the result will be equal to:

{{𝑓, 𝑔}, ℎ} + cyclic permutations = 0 . (5.10)
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Since our work is done with fields, for any two local in time functionals, for instance,

𝐹 [𝜋, 𝜑] and 𝐺 [𝜋, 𝜑] depending on momenta and coordinates the Poisson’s bracket will be

defined. Let’s define the Poisson’s bracket as a following functional:

{𝐹,𝐺} =
∑︁
𝑖

∫︁
d𝑥⃗

[︂
𝛿𝐹

𝛿𝜋𝑖 (𝑥)

𝛿𝐺

𝛿𝜑𝑖 (𝑥)
− 𝛿𝐹

𝛿𝜑𝑖 (𝑥)

𝛿𝐺

𝛿𝜋𝑖 (𝑥)

]︂
. (5.11)

In the (5.11) a definition of the canonical Poisson’s bracket over the space of functionals

was written, which now parameterized to depend on canonical coordinates and momenta.

Before functions of 𝑝 and 𝑞 were studied, where 𝑝 and 𝑞 are coordinates on the classical

phase space of classical mechanics. To any point a value, which is the value of the function

at this point, is put in correspondence.

Then it is workable to go on with this definition and compute the Poisson’s brackets

between sort of coordinates on the infinite dimensional phase space, which are fields and

their momenta. A simple exercise to see that if two fields were taken at different space

points and at the same time 𝑡, then the result of evaluation of the Poisson’s bracket

between the fields will be equal to zero:

{𝜑𝑖 (𝑡, 𝑥⃗) , 𝜑𝑗 (𝑡, 𝑦⃗)} = 0 . (5.12)

That is simply, because for the bracket to be non-zero it is necessary to vary one

functional with respect to momenta and the other with respect to the coordinate, but in

the (5.12) there are only coordinates and therefore the Poisson’s bracket would vanish.

The same expression will be right for momenta. If there is a Poisson’s bracket of two

momenta at different space points, then the result will be zero:

{𝜋𝑖 (𝑡, 𝑥⃗) , 𝜋𝑗 (𝑡, 𝑦⃗)} = 0 . (5.13)

Finally, if the bracket between momenta and coordinates is evaluated at different space

points and at the same time 𝑡, then the result will be equal to:

{𝜋𝑖 (𝑡, 𝑥⃗) , 𝜑𝑗 (𝑡, 𝑦⃗)} = 𝛿𝑖𝑗𝛿 (𝑥⃗− 𝑦⃗) . (5.14)

It is possible to group expressions (5.12), (5.13) and (5.14) under the name of generalization

of the canonical Poisson’s bracket in classical mechanics to the case of fields.

It is also important that in the Hamiltonian setting the Poisson’s brackets are equal-

time. It can be seen, because the right hand side of expressions (5.12), (5.13) and (5.14)

does not depend on time.
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It also should be noticed that if different times are selected, it will not be possible to

know what will be the outcome and therefore there is a way to solve equations of motion

for the fields and compute the Poisson’s bracket on the phase space.

If there is such equal time Poisson’s structure as in formulas above, it is possible to

define the time evolution of any functional. For instance, there is a way to say that F

under the Hamiltonian flow set up by our preference choice of the Hamiltonian. Some

function is selected on a phase space, which will be regarded as the Hamiltonian and then

evolution of any function on a phase space can be described by means of the following

formula:

𝐹̇ = {𝐻,𝐹} . (5.15)

In fact, formula (5.15) is the standard equation of classical mechanics, which goes

without any modification to the field theory.

If the time evolution of any functional is defined, it is necessary to compute the equal-

time Poisson’s bracket of 𝐻 with 𝐹 .

For the canonical Poisson’s bracket of 𝑞 and 𝑝 it is possible to write similar to (5.12)-

(5.14) expressions: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{𝑞𝑖, 𝑞𝑗} = 0

{𝑝𝑖, 𝑝𝑗} = 0

{𝑝𝑖, 𝑞𝑗} = 𝛿𝑖𝑗

(5.16)

If, for instance, coordinate 𝑞𝑖 is taken, the 𝑞 with the help of the Hamiltonian 𝐻 will

be equal to:

𝑞𝑖 = {𝐻, 𝑞𝑖} =
𝜕𝐻

𝜕𝑝𝑖
. (5.17)

At the same time, if the time derivative of the momentum is computed, then according

to equation (5.15) in the usual mechanics the following can be found

𝑝̇𝑖 = {𝐻, 𝑝𝑖} = −𝜕𝐻
𝜕𝑞

. (5.18)

Such a way, we got in (5.17) and (5.18) nothing else as Hamilton’s equations of motion.

Therefore (5.15) represents Hamilton’s equations in field theory.

Finally, it is practicable to generalize the procedure for evaluation of the (5.15). It is

necessary to evaluate the Poisson’s bracket in (5.15) and for this purpose it is needed to

evaluate (5.11) and pick up a functional, which will be regarded as a Hamiltonian, and

then for any functional 𝐹 Hamilton’s equations will be obtained. Such a way recalled a

standard Hamiltonian formalism.
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If we remember the general expression for the Noether’s charge, which was recieved

from the Noether’s theorem and which is given by the following formula

𝐽𝑛 =

∫︁
d𝑦⃗𝐽0

𝑛 (𝑦) , (5.19)

where it is necessary to integrate over spatial directions.

Formula (5.19) can be transformed into:

𝐽𝑛 =

∫︁
d𝑦⃗
[︁
−𝜋𝑗

(︁
Φ⃗𝑗,𝑛 (𝜑) − 𝜕𝜇𝜑𝑖𝑋

𝜇
𝑛 (𝜑)

)︁
− L𝑋0

𝑛 (𝜑) + Λ0
𝑛 (𝜑)

]︁
. (5.20)

Then let’s try to compute a canonical Poisson’s bracket in the space of fields for

evaluating the bracket between the field the conserved Noether’s charge. For this case, it

is needed to introduce one more property of the Poisson’s bracket:

{𝑓 · 𝑔, ℎ} = {𝑓, ℎ} · 𝑔 + {𝑔, ℎ} · 𝑓 . (5.21)

Before evaluation of the Poisson’s bracket we also need to remember that:

𝜋𝑗 =
𝜕L

𝜕 (𝜕0𝜑𝑗)
. (5.22)

Due to formulas (5.21) and (5.23) we can write that:

{𝜑𝑖 (𝑥) , 𝐽𝑛} =

∫︁
d𝑦⃗
(︀
{𝜋𝑗 (𝑦) , 𝜑𝑖 (𝑥)} (Φ𝑗,𝑛 (𝜑) − 𝜕𝜇𝜑𝑖𝑋

𝜇
𝑛 (𝜑)) + 𝜋𝑗 (𝑦) {𝜑𝑖 (𝑥) , 𝜕𝜇𝜑𝑗}𝑋𝜇

𝑛 (𝜑) − {𝜑𝑖 (𝑥) ,L (𝑦)}𝑋0
𝑛 (𝜑)

)︀
,

(5.23)

where the nontrivial impact to the Poisson’s bracket was recieved only from first two

terms in the bracket of (5.20)/

Then it is needful to compute the Poisson’s bracket between 𝜑𝑖 (𝑥) and the Lagrangian

density

{𝜑𝑖 (𝑥) ,L} = {𝜑𝑖 (𝑥) ,L (𝜑, 𝜕𝜇𝜑)} , (5.24)

where Lagrangian density is a function of 𝜑 and 𝜕𝜇𝜑. Therefore, the rule presented in

(5.21) can be used and Lagrangian density can be differentiated with respect to 𝜑:

{𝜑𝑖 (𝑥) ,L} =
𝜕L

𝜕 (𝜕𝜇𝜑𝑖)
{𝜑𝑖 (𝑥) , 𝜕𝜇𝜑𝑗} . (5.25)

It also should be noticed that since L is a Lagrangian density and it is known that this

is a function of 𝜑𝑗 and the derivative of 𝜑𝑗, where index 𝑗 means that, in general, there

are many fields, it can be assumed that the bracket acts on any function on the phase
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space in the same way as differentiation. For instance, we would compute the Poisson’s

bracket for the usual case of mechanics, if there are 𝑞𝑖 and a function of 𝑞𝑗 and 𝑝𝑗, as

{𝑞𝑖, 𝑓 (𝑞𝑗, 𝑝𝑗)} =
𝜕𝑓

𝜕𝑞𝑗
{𝑞𝑖, 𝑞𝑗} +

𝜕𝑓

𝜕𝜌𝑗
{𝑞𝑖, 𝑝𝑗} , (5.26)

where it was supposed that the bracket acts as a derivative and there is the rule that if

there is a derivative of a composite function 𝑓 (𝑔 (𝑥)), it could be simplified into

d

d𝑥
𝑓 (𝑔 (𝑥)) =

𝜕𝑓

𝜕𝑔

𝜕𝑔

𝜕𝑥
. (5.27)

Due to rule (5.27), (5.26) can also be written as:

{𝑞𝑖, 𝑓 (𝑞𝑗, 𝑝𝑗)} =
𝜕𝑓

𝜕𝑞𝑗

𝜕𝑞𝑗
𝜕𝑞𝑖

+
𝜕𝑓

𝜕𝜌𝑗

𝜕𝜌𝑗
𝜕𝑞𝑖

. (5.28)

If we return to (5.25), it will be seen that the non-trivial contribution might come only

if 𝜇 equal to zero and it is possible to get that:

{𝜑𝑖 (𝑥) ,L} =
𝜕L

𝜕 (𝜕0𝜑𝑗 (𝑥))
{𝜑𝑖 (𝑥) , 𝜕0𝜑𝑗} . (5.29)

Let’s look at the Poisson’s bracket in (5.29). It is clear that this break will be non-

trivial only if 𝑖 equals to 𝑗.

Then it is possible to find that

{𝜑𝑖 (𝑥) ,L} = 𝜋𝑗{𝜑𝑖 (𝑥) , 𝜕0𝜑𝑗 (𝑦)} . (5.30)

Now it is possible to substitute the gotten result back into the original expression

(5.23) and see, that there is a cancelation between two terms. As the result it will be

obtained that:

{𝜑𝑖 (𝑥) , 𝐽𝑛} =

∫︁
d𝑦⃗{𝜋𝑗 (𝑦) , 𝜑𝑖 (𝑥)} (Φ𝑗,𝑛 (𝜑) − 𝜕𝜇𝜑𝑖𝑋

𝜇
𝑛 (𝜑)) , (5.31)

where the second term in (5.23) also non-trivial only if 𝜇 = 0.

Then (5.14) can be used to simplify formula (5.31):

{𝜑𝑖 (𝑥) , 𝐽𝑛} =

∫︁
d𝑦⃗𝛿𝑖𝑗𝛿 (𝑥⃗− 𝑦⃗) (Φ𝑗,𝑛 (𝜑) − 𝜕𝜇𝜑𝑖𝑋

𝜇
𝑛 (𝜑)) . (5.32)

Important to mention that delta-functions 𝛿 (𝑥⃗− 𝑦⃗) and 𝛿𝑖𝑗 also can be used in order to

get the final expression:

{𝜑𝑖 (𝑥) , 𝐽𝑛} = Φ𝑖,𝑛 − 𝜕𝜇𝜑𝑖𝑋
𝜇
𝑛 . (5.33)

78



THE PRINCIPLES OF QUANTUM FIELD THEORY

GLEB ARUTYUNOV

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

What is written down in the (5.33) is nothing else as variation of the form of the field:

{𝜑𝑖 (𝑥) , 𝐽𝑛} = 𝛿𝑛𝜑𝑖 . (5.34)

Sometimes the variation of the form (5.34) in classical differential geometry is called

the Lie derivative.

If generators 𝐽𝑛 are summed with parameters 𝜀𝑛 of symmetry transformations, it will

be obtained that:

{𝜑𝑖 (𝑥) , 𝐽𝑛𝜀
𝑛} = (Φ𝑖,𝑛 − 𝜕𝜇𝜑𝑖𝑋

𝜇
𝑛 ) 𝜀𝑛 = 𝛿𝜑𝑖 , (5.35)

where we got on the right side just a variation of the form of the field 𝜑𝑖 under infinitesimal

transformations. And this is exactly what was meant by a statement that infinitesimal

variations of the form or infinitesimal symmetry transformations are generated by the

conserved Noether’s charges with respect to the canonical Poisson’s structure.

𝛿𝜑𝑖 = {𝜑𝑖 (𝑥) , 𝐽} . (5.36)

It is possible to give a concrete important example, which is a demonstration of the

property that conserved charges shows themselves up as symmetry generators.

Let’s consider, for instance, time translation. It is known that this symmetry corresponds

to the conservation of energy. Time variable gets translated by adding to 𝑥0 infinitesimal

parameter 𝜀:

𝑥0 → 𝑥′0 = 𝑥0 + 𝜀 . (5.37)

Let’s also consider for simplicity just single scalar field. It is known that there is a

conserved current corresponding to the symmetry and this current is component of a

stress energy tensor 𝑇 𝜇0 . As it well known this component is conserved and the local

conservation of energy for this component is

𝜕𝜇𝑇
𝜇
0 = 0 . (5.38)

The corresponding Noether’s charge for this component has the next form:

𝐽 =

∫︁
d𝑥⃗𝑇 0

0 (𝑥) , (5.39)

where there was an integration over the spatial directions.

It also should be noticed that if 𝐽 is differentiated with respect to 𝑥0, the following

will be recieved
d

d𝑥0
𝐽 = 0 . (5.40)
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Let’s remember the expression for the stress-energy tensor for the case of a single

scalar field. It is found that

𝑇 𝜇𝜈 =
𝜕L

𝜕 (𝜕𝜇𝜑)
𝜕𝜈𝜑− 𝛿𝜇𝜈L . (5.41)

Our takk is about 𝑇 0
0 component and due to this fact it is possible to place 0 and 0

instead of indexes 𝜇 and 𝜈 and get that

𝑇 0
0 =

𝜕L

𝜕 (𝜕0𝜑)
𝜕0𝜑− L . (5.42)

Then the following may be done. It is known that the expression

𝜕L

𝜕 (𝜕0𝜑)
(5.43)

is momentum of the field 𝜑 and therefore in expression (5.42) the momentum multiplied

by velocity minus Lagrangian density is used, but according to the Hamiltonian formalism

the gotten expression is nothing else as a Hamiltonian density of the field:

H =
𝜕L

𝜕 (𝜕0𝜑)
𝜕0𝜑− L = 𝜋𝜕0𝜑− L . (5.44)

Therefore, the Hamiltonian density conserve Noether’s charge.

In this case, 𝐽 can be expressed as

𝐽 =

∫︁
d𝑥⃗ (𝜋𝜕0𝜑− L) =

∫︁
d𝑥H . (5.45)

If the goal is to have the proper normalization constants, it is necessary to suggest that

𝐽 =
1

𝑐
𝐻 . (5.46)

So, next expression is recieved

𝐻 = 𝑐

∫︁
d𝑥H . (5.47)

So, Hamiltonian appears to coincide with a Noether’s charge corresponding to time

translations. This means that in fact,

{𝜑 (𝑥) , 𝐽} = −𝜕0𝜑 (𝑥) , (5.48)

where the fact that for a scalar field the response Φ on translations of coordinates and

time is equal to zero and 𝑋𝜇
𝑛 is proportional to 𝛿𝜇0 was used.
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It also should be noticed that other components responsible for the conservation of

the total momentum are related to the

𝑃𝑖 =

∫︁
d𝑥⃗𝑇 0

𝑖 , (5.49)

where 𝑖 is running from 1 to 3. This would be the next example which will be studied,

but before this it is necessary to use formula (5.46) to get that

{𝜑 (𝑥) , 𝐻} = − 𝜕

𝜕𝑡
𝜑 (𝑥) . (5.50)

If the place of 𝜑 and 𝐻 is changed, according to the rule of replacement of the Poisson’s

bracket the next formula will be obtained:

{𝐻,𝜑 (𝑥)} = 𝜑̇ (𝑥) . (5.51)

The exact manifestation of Hamilton’s equations of motion was received in the (5.51),

which was declared at the beginning of lecture. It can be seen that the infinitesimal

generator of time translations according to this formalism is nothing else as the Hamiltonian

for the scalar field. It is possible to make a conclusion that the Hamiltonian generates

time translation. On the other hand, translation of time is the symmetry, such that the

corresponding conserved Noether’s charge coincides with the Hamiltonian according to

the Noether’s theorem and the Hamiltonian generates infinitesimal translations in time.

It is possible to do more general setting without split into spatial components. Corresponding

to momentum conservation and energy conservation it is possible to construct the generator

𝑃𝜇, which is a generator of space-time shifts, where index 𝜇 running from 1 to 3. According

to this discussion it will be found out that the 𝑃𝜇 will be equal to

𝑃𝜇 =

∫︁
d𝑥⃗
(︀
𝜋𝜌𝜕𝜇𝜑𝜌 − L𝛿0𝜇

)︀
. (5.52)

It is also attainable to ask the same question about space-time rotations. It is known

that they are generated by the components of the angular momentum 𝑀𝜇𝜈 :

𝑀𝜇𝜈 =

∫︁
d𝑥⃗𝑀0

𝜇𝜈 (5.53)

A very similar computation should be completed and it can be completed as an

additional exercise. As a result the following expression should be found:

𝑀𝜇𝜈 =

∫︁
d𝑥⃗
(︀
𝜑𝜇𝜋𝜈 − 𝜑𝜈𝜋𝜇 + 𝑥𝜈

(︀
𝜋𝜌𝜕𝜇𝜑𝜌 − L𝛿0𝜇

)︀
− 𝑥𝜇

(︀
𝜋𝜌𝜕𝜈𝜑𝜌 − L𝛿0𝜈

)︀)︀
. (5.54)
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Such a way we got expressions for two generators of Poincare group (5.52) and (5.54)

as functionals on a phase space generated by fields 𝜑𝜇 and momentums 𝜋𝜇. Even more to

that, it is possible to compute Poisson’s brackets between the gotten functionals by using

fundamental Poisson’s brackets. And it will be obtained that with respect to Poisson’s

brackets generators will reproduce the standard relations between the generators of the

Poincare algebra:⎧⎨⎩{𝑀𝜇𝜈 , 𝑃𝜎} = 𝜂𝜈𝜎𝑃𝜇 − 𝜂𝜇𝜎𝑃𝜈

{𝑀𝜇𝜈 ,𝑀𝜌𝜎} = 𝜂𝜈𝜌𝑀𝜇𝜎 − 𝜂𝜇𝜌𝑀𝜈𝜎 − 𝜂𝜈𝜎𝑀𝜇𝜌 + 𝜂𝜇𝜎𝑀𝜈𝜌

(5.55)

It should be noticed that in quantum theory all Poisson’s brackets will be replaced by

commutators. Such a way it will be possible to get relations between Poincare generators

as operators, and then this will be a relations of the Lie algebra of the Poincare group.

Now let’s come to the next important topic which is called Klein-Gordon field.

Klein-Gordon field

First of all, let’s write the action for this field:

𝑆 [𝜑] =
1

𝑐

∫︁
d4𝑥

[︂
1

2
𝜕𝜇𝜑 (𝑥) 𝜕𝜇𝜑 (𝑥) − 1

2

(︁𝑚𝑐
~

)︁2
𝜑2 (𝑥)

]︂
, (5.56)

where it was continued to denote the field as 𝜑 (𝑥). It was recieved that the Klein-Gordon

field is a massive relativistic scalar field. The first term in brackets of the (5.56) is a

term, which contains kinetic energy and it has already been derived something similar in

the first lecture. This term was derived from the discrete approach, when the model of

masses connected by springs in the limiting case to infinity case and the length of springs

tended to zero was considered. And on the top of that one may add something, which is

proportional to 𝜑2 multiplied with the coefficient, which is designed in such a way that

the physical dimension of the kinetic energy and the term which contains 𝜑2 is the same.

Four-dimensional integration measure d4𝑥 is understood as

d4𝑥 = d𝑥0d𝑥1d𝑥2d𝑥3 , (5.57)

where as it is known

d𝑥0 = 𝑐d𝑡 (5.58)

and, therefore, the speed of light in front of the action stands to cancel.
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The action is relativistic because derivatives 𝜕𝜇 and 𝜕𝜇 are paired in such a way that

the corresponding term will be invariant under Lawrence transformations.

Field 𝜑 itself is a scalar and it is known how it transforms under coordinate transformations.

From the action 𝑆 it is attainable to straightforwardly derive equations of motion and

they have the following form: (︂
𝜕𝜇𝜕

𝜇 +
(︁𝑚𝑐

~

)︁2)︂
𝜑 (𝑥) = 0 . (5.59)

Equation (5.59) is the Euler-Lagrange equation.

It is also possible to rewrite (5.59) more explicitly in the following way:(︂
1

𝑐2
𝜕2

𝜕𝑡2
− 𝜕2

𝜕𝑥2𝑖
+ ()2

)︂
𝜑 (𝑥) = 0 . (5.60)

Equation (5.60) has a name of Klein-Gordon equation. Sometimes equation (5.59) also

written in a way where the operator 𝜕𝜇𝜕𝜇 is replaced by

� = 𝜕𝜇𝜕
𝜇 . (5.61)

It also can be noticed that in fact, the combination 𝑚𝑐
~ in an inverted way has a

meaning of

𝜆 =
~
𝑚𝑐

, (5.62)

where 𝜆 has a dimension of length and is called Compton wavelengths associated with

the particle of mass 𝑚.

Usually people prefer to work in the natural units, where

[~] = [𝑐] = 1 (5.63)

and therefore the term 𝑚𝑐
~ is simply becomes 𝑚. That is why the action for the field 𝜑

can be written as

𝑆 [𝜑] =

∫︁
d4𝑥

(︂
1

2
𝜕𝜇𝜑𝜕

𝜇𝜑−𝑚2𝜑2

)︂
. (5.64)

It can be seen that if standard units are selected, then it is possible to write the action

in the following form:

𝑆 [𝜑] =

∫︁
d𝑡d𝑥

[︂
1

2𝑐2
𝜑̇2 − 1

2

(︁
∇⃗𝜑
)︁2

− 1

2

(︁𝑚𝑐
~

)︁2
𝜑2

]︂
. (5.65)

Now it is available to straightly develop the Hamiltonian formalism and this is something

that is needed for quantization. So, it is possible to derive canonical momentum for the

field 𝜑:

𝜋 (𝑥) =
𝛿𝐿

𝜕𝜑̇ (𝑥)
. (5.66)
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By the way, what is written down in the (5.65) is an integral over time of Lagrangian:

𝑆 [𝜑] =

∫︁
d𝑡𝐿 . (5.67)

Also it can be seen that if the Lagrangian is differentiated or the variation of the

Lagrangian is taken with respect to 𝜑̇, it will be found that:

𝜋 (𝑥) =
𝜑̇ (𝑥)

𝑐2
=

1

𝑐
𝜕0𝜑 (𝑥) . (5.68)

If the canonical procedure of passing from Lagrangian to the Hamiltonian is used, the

Hamiltonian for the Klein-Gordon field will be obtained, which has the following form:

𝐻 =
1

2

∫︁
d𝑥⃗

[︂
𝑐2𝜋2 + 𝜕𝑖𝜑𝜕𝑖𝜑+

(︁𝑚𝑐
~

)︁2
𝜑2

]︂
. (5.69)

It is also interesting to know what is the physical dimension of the field 𝜑. So this 𝜑

will be denoted in the square brackets [𝜑] and this will be physical notion for the physical

dimension. Such a notation is used for dimension of any physical quantity. It is just taken

in square brackets and transferred to the physical dimension.

It is known that the physical dimension of the Hamiltonian is a dimension of energy:

[𝐻] = 𝜀 . (5.70)

It is possible to apply this approach to the (5.69) and get that

[𝜀] = 𝑙3 × 1

𝑙2
× [𝜑]2 = 𝑙 [𝜑]2 , (5.71)

where the fast that d𝑥⃗ has a dimension of 𝑙3 and the inverse Compton length
(︀
𝑚𝑐
~

)︀2 has

a dimension of 1
𝑙2

was used. Such a way it will be recieved that

[𝜑] =

√︂
𝜀

𝑙
. (5.72)

Such a quantity in classical physics 𝜀
𝑙
, which has a meaning of energy per unit length, is

called tension. So field 𝜑 has a physical dimension of a square root of tension.

It is possible to use the same procedure to find the physical dimension of the momentum.

By doing analogous computation it will be found that

[𝜋] =
1

𝑐𝑙

√︂
𝜀

𝑙
. (5.73)

It is also attainable to rewrite (5.73) as

[𝜋] =

√︂
𝜀

𝑐2𝑙3
=

√︂
𝑚𝑐2

𝑐2𝑙3
=

√︂
𝑚

𝑙3
. (5.74)
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It was obtained that the momentum has a physical dimension of square root of mass

divided by volume or square root of mass density. If the action of the field 𝜑 is considered,

it will be seen that it is possible to compute the physical dimension of the action:

[𝑆] =
1

𝑐
× 𝑙4 × 1

𝑙2
× [𝜑]2 =

𝑙2

𝑐

𝜀

𝑙
=
𝑙 × 𝜀

𝑐
(5.75)

The length divided by velocity was recieved in the (5.75), which gives us time and it

can be finally computed that:

[𝑆] = 𝑡× 𝜀 . (5.76)

Also it should be noticed that time multiplied by energy is nothing else as momentum

multiplied by length, which is the same as as angular momentum:

[𝑆] = 𝑝× 𝑙 = [~] . (5.77)

This is a very important fact that the physical dimension of action is always the same

as a dimension of the Planck constant or a dimension of the angular momentum. It does

not only concern a scalar field it concerns any field.

Another important fact is that if there are some two functionals of field momentum

and the field itself, for instance, 𝐹 [𝜋, 𝜑] and 𝐺 [𝜋, 𝜑].

Then it will be possible to find the physical dimension of the equal time Poisson’s

bracket given by the formula that was discussed at the beginning of the lecture. The

physical dimension of this bracket, which will be denoted as square bracket of {𝐹,𝐺}, will

be offset from the physical dimension of the product:

[𝐹 ] · [𝐺] (5.78)

by ~. In other words, it is possible to write that:

[{𝐹,𝐺}] =
[𝐹 ] · [𝐺]

~
. (5.79)

This can be easily understood from the definition of the Poisson’s bracket. It is known

that the Poisson’s bracket is a differential operation, which explicitly given by the following

formula:

{𝐹,𝐺} =

∫︁
d𝑥⃗

[︂
𝛿𝐹

𝛿𝜋 (𝑥)

𝛿𝐺

𝛿𝜑 (𝑥)
− 𝛿𝐹

𝛿𝜑 (𝑥)

𝛿𝐺

𝛿𝜋 (𝑥)

]︂
, (5.80)

It has been already computed that dimensions of 𝜋 (𝑥) and 𝜑 (𝑥) are:⎧⎨⎩[𝜋 (𝑥)] = 1
𝑐𝑙

√︀
𝜀
𝑙

[𝜑 (𝑥)] =
√︀

𝜀
𝑙

(5.81)
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Therefore, in order to compute the dimension of the right hand side of the (5.80)

first of all it is necessary to find what is the dimension of the variational derivative. To

complete this it is necessary to consider what is the variation 𝛿𝐹 :

𝛿𝐹 =

∫︁
d𝑥⃗

𝛿𝐹

𝛿𝜑 (𝑥)
𝛿𝜑 (𝑥) . (5.82)

Thus, the result is in (5.82) is what is called variation of functional 𝐹 . From this formula

it can be seen that the dimension of the variation is the same as a dimension of 𝐹 and

equal to:

[𝛿𝐹 ] = [𝐹 ] = 𝑙3 ×
[︂
𝛿𝐹

𝛿𝜑

]︂
× [𝜑] , (5.83)

where the fact that the integral over spatial coordinates equal to 𝑙3 and that dimension

of 𝛿𝜑 is the same as a dimension of 𝜑 was used.

It is also possible to simplify (5.83) and get that:

[𝛿𝐹 ] =

[︂
𝛿𝐹

𝛿𝜑

]︂
× 𝑙3 ×

√︂
𝜀

𝑙
. (5.84)

It is practicable to express
[︁
𝛿𝐹
𝛿𝜑

]︁
from the (5.84) and get that:[︂
𝛿𝐹

𝛿𝜑

]︂
=

[𝐹 ]

𝑙5/2 × 𝜀1/2
. (5.85)

Before evaluation of the dimension of (5.80) it is also necessary to compute variational

derivative with respect to the momentum 𝜋 (𝑥). To make this we need to find variation

of 𝐺:

[𝛿𝐺] = [𝐺] = 𝑙3 ×
[︂
𝛿𝐺

𝛿𝜋

]︂
× [𝜋] =

[︂
𝛿𝐺

𝛿𝜋

]︂
𝑙3
√︂

𝜀

𝑐2𝑙3
. (5.86)

The final expression for the (5.86) will have a next view:[︂
𝛿𝐺

𝛿𝜋

]︂
=

[𝐺] × 𝑐

𝑙3/2 × 𝜀1/2
. (5.87)

Now let’s compute the dimension of the Poisson bracket. It can be seen that according

to the definition (5.80), it can be obtained that

[{𝐹,𝐺}] = 𝑙3 × [𝐹 ]

𝑙5/2 × 𝜀1/2
× [𝐺] × 𝑐

𝑙3/2 × 𝜀1/2
. (5.88)

If (5.88) is simplified, it will be found that:

[{𝐹,𝐺}] =
[𝐹 ] × [𝐺] × 𝑐

𝑙 × 𝜀
=

[𝐹 ] × [𝐺]

𝑡× 𝜀
=

[𝐹 ] × [𝐺]

~
. (5.89)
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It has been declared that the dimension of the Poisson’s bracket of two functionals is

not equal to the product of the dimensions of this functionals but it’s offset from them

by 1/~:

[{𝐹,𝐺}] =
[𝐹 ] × [𝐺]

~
. (5.90)

Then let’s return back to the Klein-Gordon equation and will write it down in the

Hamiltonian form.

Let’s write the evolution of the field and the momentum, which will be given by the

Poisson’s bracket of the field and the momentum with the Hamiltonian:⎧⎨⎩𝜑̇ (𝑥) = {𝐻,𝜑 (𝑥)}

𝜋̇ (𝑥) = {𝐻, 𝜋 (𝑥)}
(5.91)

Expressions in the (5.91) are Hamiltonian equations of motion. If this Poisson’s brackets

are evaluated , it will be obtained that:⎧⎨⎩𝜑̇ = 𝑐2𝜋

𝜋̇ = 𝜕2𝑖 𝜑−
(︀
𝑚𝑐
~

)︀2
𝜑

(5.92)

It is possible to exclude momentum of the field in the (5.92) by taking a second

derivative of 𝜑:

𝜑 = 𝑐2𝜋̇ = 𝑐2𝜕2𝑖 𝜑− 𝑐2
(︁𝑚𝑐

~

)︁2
𝜑 (5.93)

If both sides of the (5.93) are sevided by 𝑐2 and everything is transferred to the left

hand side, thw dollowing will be obtained

1

𝑐2
𝜑− 𝜕2𝑖 𝜑+

(︁𝑚𝑐
~

)︁2
𝜑 = 0 , (5.94)

which is exactly the Klein-Gordon equation.

Also it is possible to rewrite (5.94) in the following form:(︂
1

𝑐2
𝜕2

𝜕𝑡2
− 𝜕2

𝜕𝑥2𝑖
+
(︁𝑚𝑐

~

)︁2)︂
𝜑 = 0 , (5.95)

The next important point to discuss is so called mass-shell condition and in a way this

scalar field on a mass-shell amounts just to solving the Klein-Gordon equation. So there

is the Klein-Gordon equation and now our goal is to solve it. How to do it?
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How to solve Klein-Gordon equation?

The most efficient way to look at the solutions and to understand how solutions look

like is to go to the Fourier space. So it is just necessary to make a Fourier transform by

using the Fourier integral:

𝜑 (𝑥) =
1

(2𝜋)3/2

∫︁
d4𝑘𝑒𝑖𝑘𝑥𝜑 (𝑘) , (5.96)

where 𝜑 (𝑘) is a Fourier image of the field 𝜑.

The expression 𝑘𝑥 in the exponent of the (5.96) is a Lawrence invariant scalar product,

which is by definition:

𝑘 · 𝑥 = 𝑘𝜇𝑥
𝜇 = 𝑘0𝑥0 − 𝑘⃗ · 𝑥⃗ . (5.97)

Very often the value 𝑘⃗ from the product (5.97) has a name of wave vector. It is also

possible to place 𝑥0 into this equation and get that:

𝑘 · 𝑥 = 𝑐𝑘0 · 𝑡− 𝑘⃗ · 𝑥⃗ = 𝜔𝑡− 𝑘⃗ · 𝑥⃗ , (5.98)

where 𝜔 is called frequency and from this equation:

𝑘0 =
𝜔

𝑐
. (5.99)

It also should be noticed that if (5.98) is placed into the exponent, it will be obtained

that

𝑒𝑖𝑘𝑥 = 𝑒𝑖(𝜔𝑡−𝑘⃗·𝑥⃗) (5.100)

and in quantum mechanics this combination is usually called plane wave.

So Fourier transform for the field 𝜑 (𝑥) is in fact the decomposition of a plane waves.

And it can be said that the integral in the (5.96) is an integral of a plane waves which is

taken.

Then it is necessary to take this Fourier representation of field 𝜑 (𝑥) and plug it in

Klein-Gordon equation and see what will be recieved for the corresponding Fourier image.

One more thing that it should be noticed that very often people use in the books

slightly different representation for the Fourier transform, namely, they use so-called

energy type variables. It may be found very popular in quantum mechanics, where Einstein

and de-Broil formulas are used, which relate energy, frequency and the momentum with a

wave vector. It’s like a transition between wave characteristics and the particle characteristics.

This is done with the help of the Einstein formula where energy is equal to

𝐸 = ~𝜔 . (5.101)
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Formula (5.101) was discovered by Einstein, when he studied the photo effect.

The second formula, which is due to de-Broil is that momentum of a particle is

related to the wave vector of the corresponding wave process, represented by the particle.

According to the formula

𝑝 = ~𝑘⃗ . (5.102)

It is possible to express 𝜔 and 𝑘⃗ from formulas (5.101) and (5.102) and get that

𝜔 =
𝐸

~
and 𝑘⃗ =

𝑝

~
. (5.103)

When 𝜔𝑡 − 𝑘⃗ · 𝑥⃗ is replaced with the new variables, then the exponent will have the

next form:

𝑒𝑖(𝜔𝑡−𝑘⃗·𝑥⃗) → 𝑒𝑖(𝐸·𝑡−𝑝 ·𝑥⃗ )/~ . (5.104)

The same plane-wave was recieved in the (5.104), but written by using energy type

variables. In this case also, when the expression for the field 𝜑 is written, the next

expression will be obtained:

𝜑 (𝑥) =

∫︁
d𝐸d𝑝

(2𝜋)3/2 𝑐~4
𝑒𝑖(𝐸𝑡−𝑝 𝑥⃗ )/~𝜑 (𝑝) . (5.105)

The final thing is that if one of representations is taken, for instance, the representation

presented in the (5.105) and plug it into the Klein-Gordon equation, it will be discovered

that Fourier image satisfies the following equation:[︃(︂
𝐸

𝑐

)︂2

− 𝑝 2 −𝑚2𝑐2

]︃
𝜑 (𝑝) = 0 , (5.106)

where 𝜑 depends on 𝑝𝜇:

𝑝𝜇 =
(︀
𝑝0, 𝑝

)︀
=

(︂
𝐸

𝑐
, 𝑝

)︂
. (5.107)

According to (5.107), it is possiblet to rewrite (5.106) in the following form:[︀
𝑝𝜇𝑝

𝜇 −𝑚2𝑐2
]︀
𝜑 (𝑝) = 0 . (5.108)

There may be a thought that equation (5.108) has only trivial solution 𝜑 (𝑝) = 0,

because it is possible to think that the only thing to do is to just cancel the bracket before

𝜑 (𝑝). This would be so if the usual functions are used, but, in fact, one of the important

things, which happen in quantum field theory and also in classical field theory, is that,

in general, there should not be a thought about the field as about usual function on
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space-time. The right way is to think about the field as a distribution. So, if there is 𝜑 (𝑥)

or 𝜑 (𝑝), they will be distributions on space-time. Another name for this distributions is

generalized functions.

A very characteristic example of a distribution is, for instance, Dirac’s delta function.

This is an example of a function, which is should not be understood as a usual function,

but rather it is a distribution. Such a way distributions are linear continuous functionals

on a space of basic functions. In any case, if the field 𝜑 is understood in the distributional

sense, then equation (5.108) has the following solution:

𝜑 (𝑝) = 𝛿
(︀
𝑝2 −𝑚2𝑐2

)︀
𝜙 (𝑝) , (5.109)

where 𝜙 (𝑝) is a good continuous function without having any zero, where 𝑝2 −𝑚2𝑐2 = 0.

The condition

𝑝𝜇𝑝
𝜇 = 𝑚2𝑐2 (5.110)

is called mass-shell condition, because it gives a relationship between the energy and the

particle momentum. According to this statement (5.110) has next alternative form:

𝐸2 = 𝑝 2𝑐2 +𝑚2𝑐4 . (5.111)

The condition (5.111) is exactly the relation between energy and momentum of a single

relativistic particle from the special relativity:

𝐸 = ±
√︀
𝑝 2𝑐2 +𝑚2𝑐4 . (5.112)
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Lecture 6. More on Klein-Gordon equation. Canonical

Quantization

How to solve Klein-Gordon equation?

Let’s continue with solving the Klein-Gordon equation. It has been already introduced

the Fourier transform of the classical field 𝜑 (𝑥). Such a way, the next transform is made:

𝜑 (𝑥) → 𝜑 (𝑝) (6.1)

and it was found out that for the Fourier image of 𝜑 solution exists in the sense of

generalized functions:

𝜑 (𝑝) = 𝛿
(︀
𝑝2 −𝑚2𝑐2

)︀
𝜙 (𝑝) , (6.2)

where 𝜑 (𝑝) is a solution of the Klein-Gordon equation in the momentum space.

And the condition

𝑝2 −𝑚2𝑐2 = 0 (6.3)

is called mass-shell condition for relativistic particle and it gives a standard relativistic

relationship, because between the energy and the momentum of a particle.

If (6.3) is written with the help of a 3-dimensional vector of momentum and energy,

then it will have the following form:(︂
𝐸

𝑐

)︂2

− 𝑝 2 −𝑚2𝑐2 = 0 . (6.4)

The solution of the (6.4) is given by

𝐸 = ±𝑐
√︀
𝑝 2 +𝑚2𝑐2 . (6.5)

There are two solutions with a positive and a negative energy. If the goal is to depict the

function 𝐸 as a function of the three dimensional momentum, a two sheeted hyperboloid

as it shown on the (fig. 6.1) will be obtained.

Then let’s take the solution (6.5) and return it back into the Fourier transform formula

and write the field 𝜑 (𝑥) as:

𝜑 (𝑥) =

∫︁
d𝐸d𝑝

(2𝜋)3/2 𝑐~4
𝛿𝑝2 −𝑚2𝑐2𝑒𝑖(𝐸𝑡−𝑝 𝑥⃗ )/~𝜙 (𝑝) , (6.6)
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Fig. 6.1. The function 𝐸 as a function of the three dimensional momentum

where it is also possible to write the (6.6) in the natural units and take

𝑐~4 = 1 . (6.7)

In the Fourier transform there is a delta-function and this delta-function is useful,

because it is possible to use it in order to make an explicit integration. At least, it is

possible to integrate over energy variable 𝐸 and for that it is necessary to apply the

formula of a delta-function of a composite variable:

𝛿 (𝑓 (𝑥)) =
∑︁
𝑖

𝛿 (𝑥− 𝑎𝑖)

|𝑓 ′ (𝑎𝑖)|
, (6.8)

where it is apologized that: ⎧⎨⎩𝑓 (𝑎𝑖) = 0

𝑓 ′ (𝑎𝑖) ̸= 0
(6.9)

Formula (6.8) can be called as a formula for change of variables in the delta-function.

Let’s apply (6.8) for the next delta-function

𝛿

(︂
𝐸2

𝑐2
− 𝑝 2 −𝑚2𝑐2

)︂
, (6.10)

where (6.10) can be gotten from the 𝛿 (𝑝2 −𝑚2𝑐2) using (6.5).

Then expression (6.8) will be used for the delta-function 𝛿 (𝑝2 −𝑚2𝑐2) :

𝛿
(︀
𝑝2 −𝑚2𝑐2

)︀
=
𝑐𝛿
(︁
𝐸 − 𝑐

√︀
𝑝 2 +𝑚2𝑐2

)︁
2
√︀
𝑝 2 +𝑚2𝑐2

+
𝑐𝛿
(︁
𝐸 + 𝑐

√︀
𝑝 2 +𝑚2𝑐2

)︁
2
√︀
𝑝 2 +𝑚2𝑐2

. (6.11)
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The (6.11) will be easy to understand, if the delta-function is represented as:

𝛿 (𝑓 (𝐸)) , (6.12)

where

𝑓 (𝐸) =
𝐸2

𝑐2
− 𝑝 2 −𝑚2𝑐2 . (6.13)

Such a way 𝑓 ′ (𝐸) will be equal to:

𝑓 ′ (𝐸) =
2𝐸

𝑐2
. (6.14)

The derivative 𝑓 ′ (𝐸) should be evaluated at zeros of the function 𝑓 (𝐸). In one case,

there is

𝑓 ′ (𝐸)

⃒⃒⃒⃒
⃒
𝐸=𝑐

√
𝑝 2+𝑚2𝑐2

=
2
√︀
𝑝 2 +𝑚2𝑐2

𝑐
. (6.15)

The same should be done with a negative root and then the formula will be obtained:

𝑓 ′ (𝐸)

⃒⃒⃒⃒
⃒
𝐸=−𝑐

√
𝑝 2+𝑚2𝑐2

= −2
√︀
𝑝 2 +𝑚2𝑐2

𝑐
. (6.16)

The answer, which will be obtained, if delta-function 𝛿 (𝑝2 −𝑚2𝑐2) is integrated in

(6.6) is:

𝜑 (𝑥) =
𝑐

(2𝜋)3/2 ~4

[︂∫︁
d𝑝

2𝐸
𝑒𝑖(𝐸𝑡−𝑝 𝑥⃗ )/~

]︂
𝜙 (𝐸, 𝑝 ) +

∫︁
d𝑝

2𝐸
𝑒−𝑖(𝐸𝑡+𝑝 𝑥⃗ )/~𝜙 (−𝐸, 𝑝 ) , (6.17)

where 𝐸 here is not an independent variable anymore, but represents a positive branch

of the dispersion relation (6.5):

𝐸 = 𝑐
√︀
𝑝 2 +𝑚2𝑐2 . (6.18)

It is also possible to make a change 𝑝 → −𝑝 in the second integral of the (6.17) and

get the formula which people usually use:

𝜑 (𝑥) =
𝑐

(2𝜋)3/2 ~4

[︂∫︁
d𝑝

2𝐸
𝑒𝑖(𝐸𝑡−𝑝 𝑥⃗ )/~

]︂
𝜙 (𝐸, 𝑝 ) +

∫︁
d𝑝

2𝐸
𝑒−𝑖(𝐸𝑡+𝑝 𝑥⃗ )/~𝜙 (−𝐸,−𝑝 ) , (6.19)

where the first term in the bracket is called positive frequency part of 𝜑 (𝑥) and the second

integral is called negative frequency of 𝜑 (𝑥).

It also should be noticed that d𝑝 does not change the sign, when 𝑝 → −𝑝 is

transformed, because Jacobian modulus is always positive.
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The standard way to proceed further is to introduce the complex amplitudes. One of

them is called 𝑎* (𝑝) and this is taken to be

𝑎* (𝑝 ) =
𝜙 (𝐸, 𝑝 )

~3
√

2𝐸
. (6.20)

Analogously, one defines an amplitude 𝑎 (𝑝), which is by definition is:

𝑎 (𝑝 ) =
𝜙 (−𝐸,−𝑝 )

~3
√

2𝐸
. (6.21)

The gotten functions or amplitudes are only functions of momentum, because 𝐸 is also

a function of momentum and it comes from this function which was originally a function

of 4-momentum 𝑝 in the case of 4-dimensional Minkowski space. In other words, function

of 𝐸 and the function of 3-dimensional momentum 𝑝 . It is known that because the delta-

function has been integrated, 𝐸 in the (6.19) is not an independent variable, but it is a

positive solution (6.18).

Then it is also possible to check that for a real scalar field amplitudes 𝑎 and 𝑎* right

the following

𝜙* (𝐸, 𝑝 ) = 𝜙 (−𝐸,−𝑝 ) . (6.22)

Expression (6.22) comes from considering the Fourier transform and using the fact

that our talk is about the real scalar field. Therefore 𝜑 (𝑥) is a real function. Then on

Fourier amplitude there will be the relation (6.22) and this tells us that amplitudes 𝑎

and 𝑎* are simply complex conjugate of each other. That’s why the star (*) has a simple

meaning of complex conjugation.

The Fourier transform, which is used to solve the Klein-Gordon equation, in terms of

amplitudes 𝑎 and 𝑎* takes the following form:

𝜑 (𝑥) = 𝑐~1/2
∫︁

d𝑝

(2𝜋~)3/2
1√
2𝐸

[︀
𝑎* (𝑝 ) 𝑒𝑖(𝐸𝑡−𝑝 𝑥⃗ )/~ + 𝑎 (𝑝 ) 𝑒−𝑖(𝐸𝑡+𝑝 𝑥⃗ )/~

]︀
. (6.23)

Then obviously it is also possible to compute the expression for canonical momentum.

It is known that canonical momentum is equal to

𝜋 (𝑥) =
d𝜑 (𝑥)

d𝑡
. (6.24)

Computing the time derivative from (6.24), the following will be obtained:

𝜋 (𝑥) =
𝑖

2𝑐~1/2

∫︁
d𝑝

(2𝜋~)3/2

√
2𝐸
[︀
𝑎* (𝑝 ) 𝑒𝑖(𝐸𝑡−𝑝 𝑥⃗ )/~ − 𝑎 (𝑝 ) 𝑒−𝑖(𝐸𝑡+𝑝 𝑥⃗ )/~

]︀
. (6.25)

94



THE PRINCIPLES OF QUANTUM FIELD THEORY

GLEB ARUTYUNOV

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

The important point is the following: it will be seen that the Hamiltonian, which will

be obtained, will be well defined and corresponds only to solutions with positive energy

and this can be seen in the following way. The idea now is to take our original Hamiltonian

𝐻 and rewrite it in terms of complex amplitudes 𝑎 and 𝑎*. What the thing that should

be done is to take just the Hamiltonian 𝐻, which is equal to:

𝐻 =
1

2

∫︁
d𝑥⃗

[︂
𝑐2𝜋2 + 𝜕𝑖𝜑𝜕𝑖𝜑+

(︁𝑚𝑐
~

)︁2
𝜑2

]︂
. (6.26)

So what is necessary to make next is to take expressions for 𝜑 (𝑥) (6.23) and for 𝜋 (𝑥)

and place it instead of 𝜑 (𝑥) and for 𝜋 (𝑥) in the (6.26).

When this substitution is done, one integration over 𝑥⃗ and two integration over

momentum 𝑝 will be recieved. It is possible to exchange the order of integration and

it is practicable to integrate over 𝑥⃗ firstly. This will affect only on exponentials, because

only they contain variable 𝑥⃗ . So integration over 𝑥⃗ will give us a delta-function. Delta-

function will depend on the difference of momentum related to one copy of 𝜑 and another

will be related to another copy of 𝜑. This means that it is possible to use the delta-function,

which is obtained after integration over 𝑥⃗ to integrate over one momentum variable. At

the end we will be left over with just one integration over momentum. In the process of

evaluating 𝐻 it is needed to use the expression for delta-function, which has the following

form:

𝛿 (𝑝 ) =

∫︁
d𝑥⃗

(2𝜋~)3
𝑒𝑖𝑝 𝑥⃗ /~ . (6.27)

Then, if the integration over 𝑥 is done, the result for the Hamiltonian will look as

follows:

𝐻 =
1

~

∫︁
d𝑝𝐸 (𝑝 ) 𝑎* (𝑝 ) 𝑎 (𝑝 ) , (6.28)

where 𝐸 (𝑝 ) has the form of (6.18).

The expression for the Hamiltonian (6.28) has been written down in terms of complex

amplitudes and the Hamiltonian is real and expression 𝑎* (𝑝 ) 𝑎 (𝑝 ) is positive and equal

to:

𝑎* (𝑝 ) 𝑎 (𝑝 ) = |𝑎 (𝑝 )|2 . (6.29)

It is also possible to rewrite the Hamiltonian in terms of frequency 𝜔 (𝑝), which is

related to the energy by Einstein formula:

𝐸 (𝑝 ) = ~𝜔 (𝑝 ) . (6.30)
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Expression (6.30) will remove Plank’s constant from expression (6.28). If (6.29) is

rewritten with the help of (6.30), then the Hamiltonian takes the form:

𝐻 =

∫︁
d𝑝 𝜔 (𝑝 ) 𝑎* (𝑝 ) 𝑎 (𝑝 ) . (6.31)

Further, it is possible to rewrite also an expression for 𝜑 (𝑥) in terms of frequency:

𝜑 (𝑥) = 𝑐

∫︁
d𝑘⃗

(2𝜋)3/2
1√︂

2𝜔
(︁
𝑘⃗
)︁ (︁𝑎(︁𝑘⃗)︁ 𝑒−𝑖(𝜔𝑡−𝑘⃗ 𝑥⃗ ) + 𝑎*

(︁
𝑘⃗
)︁
𝑒𝑖(𝜔𝑡−𝑘⃗ 𝑥⃗ )

)︁
. (6.32)

The piece in the (6.32), which is related to 𝑎*
(︁
𝑘⃗
)︁

is called positive frequency and

𝑎 is called negative frequency. The positive and negative is a convention. Sometimes in

the books, people use an opposite convention, they call what we call positive frequency

negative and what we call negative, they call positive. The definition depends on which

literature, you take. This is related to the fact that an opposite way to cause this amplitude

is related to ideas that if it is possible to see the Schrodinger equation:

𝑖~
𝜕

𝜕𝑡
𝑒−𝑖𝜔𝑡 = ~𝜔⏟ ⏞ 

𝐸

𝑒−𝑖𝜔𝑡 , (6.33)

then the wave with a negative frequency −𝑖𝜔𝑡 corresponds to the positive solution.

If the sign in exponent of (6.33) is changed, then the following expression will be

obtained:

𝑖~
𝜕

𝜕𝑡
𝑒𝑖𝜔𝑡 = −𝐸𝑒𝑖𝜔𝑡 . (6.34)

That’s why in the literature sometimes exponent of −𝑖𝜔𝑡 associated oscillator to it is

called positive frequency. But this convention will not be used since Schrodinger equation

is not important in our case and Klein-Gordon equation is used. Therefore, positive

frequency will be associated with positive exponent of 𝑖𝜔𝑡 correspondent in quantum

theory to creation operators. The exponent of −𝑖𝜔𝑡 will correspond negative frequency

and annihilation operators.

Let’s look at the physical meaning of amplitudes 𝑎* and 𝑎. It can be seen that from the

solution for field 𝜑 (𝑥) it is useful to define the time-dependent amplitudes. So, 𝑎* (𝑝 , 𝑡)

we can associate with 𝑎* (𝑝 ): ⎧⎨⎩𝑎* (𝑝 , 𝑡) = 𝑎* (𝑝 ) 𝑒𝑖𝜔𝑡

𝑎 (𝑝 , 𝑡) = 𝑎 (𝑝 ) 𝑒−𝑖𝜔𝑡
(6.35)
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It can be seen that this time-dependent amplitudes can be obtained as a solution of

the Hamilton’s equations of motion for 𝑎 and 𝑎* and Hamilton’s equations means that⎧⎨⎩
d𝑎
d𝑡

= {𝐻, 𝑎}
d𝑎*

d𝑡
= {𝐻, 𝑎*}

(6.36)

where 𝐻 is a Hamiltonian, given by formula (6.31). The Poisson bracket is the usual

oscillator bracket, which is equal to

{𝑎 (𝑝 ) , 𝑎* (𝑝 ′)} = 𝑖𝛿 (𝑝 − 𝑝 ′) , (6.37)

where now there is an infinite collection of oscillators parameterized by the continuous

parameter 𝑝. It is also possible to write following Poisson’s brackets:

{𝑎 (𝑝 ) , 𝑎 (𝑝 ′)} = 0 = {𝑎* (𝑝 ) , 𝑎* (𝑝 ′)} . (6.38)

Such a way a system in terms of complex amplitudes and its equations of motion

according to the Hamiltonian formalism were described, where Hamiltonian is given by

formula (6.31).

If the classical massive Klein-Gordon field is considered, it is possible to say that this

is nothing is just an infinite collection of harmonic oscillators, which oscillate with the

relativistic frequency 𝜔 (𝑝 ).

Such a representation of a scalar Klein-Gordon field 𝜑 (𝑥) in terms of complex amplitudes

𝑎 and 𝑎* is called holomorphic representation.

If the Poisson’s bracket is used between the oscillators and use this expression is used

for fields 𝜑 (𝑥) and 𝜋 (𝑥), which we have showed before, it is possible to compute the

Poisson’s bracket between 𝜑 (𝑥) and 𝜑 (𝑥′), as well as between 𝜑 (𝑥) and 𝜋 (𝑥′) and also

between 𝜋 (𝑥) and 𝜋 (𝑥′): ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{𝜑 (𝑥) , 𝜑 (𝑥′)} = 0

{𝜑 (𝑥) , 𝜋 (𝑥′)} = 𝑖𝛿 (𝑥− 𝑥′)

{𝜋 (𝑥) , 𝜋 (𝑥′)} = 0

(6.39)

Such a way the standard formulas were restored for canonical Poisson’s brackets

between field and its momentum, that has been already discussed.

It is also available to write down expressions for other generators of the Poincare group.

For instance, Hamiltonian is one of the generators of the Poincare group, but there are
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other generators: spatial shifts, spatial rotations and Lorenz boosts. Let’s now use this

holomorphic representation to obtain expression for other generators of Poincare group

in terms of amplitudes 𝑎 and 𝑎*.

In particular, let’s write down the expression for generators of spatial shifts

𝑃𝑖 =

∫︁
d𝑥⃗ 𝜋𝜕𝑖𝜑 (6.40)

in terms of oscillators, which takes the following form:

𝑃𝑖 =
1

~

∫︁
d𝑝 𝑝𝑖𝑎

* (𝑝 ) 𝑎 (𝑝 ) . (6.41)

Generators of spatial rotations 𝑀𝑖𝑗 is given by:

𝑀𝑖𝑗 =

∫︁
d𝑥⃗ (𝑥𝑗𝜕𝑖𝜑− 𝑥𝑖𝜕𝑗𝜑) , (6.42)

where this rotation generators were obtained from Noether’s theorem. If solution for the

field 𝜑 is substituted in terms of complex amplitudes, the following expression will be

found:

𝑀𝑖𝑗 = 𝑖

∫︁
d𝑝 𝑎* (𝑝 ) (𝑝𝑖𝜕𝑗 − 𝑝𝑗𝜕𝑖) 𝑎 (𝑝 ) . (6.43)

Then it is necessary to find expression for Lorenz boosts. It has the following form:

𝑀0𝑖 =
1

𝑐

∫︁
d𝑥⃗ 𝑥𝑖H − 𝑐𝑡𝑃𝑖 . (6.44)

So Lorenz boosts are the most complicated generators and they have explicit dependence

on time that one of the features of this generators.

If (6.31) is rewritten in terms of oscillators, the following expression will be obtained:

𝑀0𝑖 =
𝑖

2𝑐

∫︁
d𝑝𝐸 (𝑝 ) (𝑎* (𝑝 ) 𝜕𝑖𝑎 (𝑝 ) − 𝜕𝑖𝑎

* (𝑝 ) 𝑎 (𝑝 )) − 𝑐𝑡𝑃𝑖 , (6.45)

where 𝑃𝑖 is the same thing as in the (6.41), which is given in terms of oscillators.

So Lorenz boost have an explicit time-dependence and this is a manifestation of the fact

that in the Hamiltonian formulation the boost symmetries broken. This is not surprising,

because in order to develop the Hamiltonian formalism it is necessary to fix the direction

of time.

In the Hamiltonian formalism time plays always a distinguished role, while on the

other hand, it is known that when Lorenz boost is done, the time direction is mixed with

spatial directions.
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If a boost is considered, then it is possible to get an explicit time dependence in the

expression for this generator, but the conservation law provided by the Noether’s theorem

is of course the law, which holds. So, if a total derivative of boost generator over time is

taken, it is known that in the Hamiltonian mechanics, if our generator has an explicit time

dependence and it is needed to compute the total derivative accurately, first the partial

derivative is computed, keeping all the other variables fixed and the boost is differentiated

over its explicit time dependence and then a Poisson bracket of the Hamiltonian is added

up with 𝑀0𝑖:
d𝑀0𝑖

d𝑡
=
𝜕𝑀0𝑖

𝜕𝑡
+ {𝐻,𝑀0𝑖} . (6.46)

That is how time evolution equation should be written for any function, which has an

explicit time dependence, and therefore, if this expression for the boost is differentiated

with respect to the time variable, it will be obtained that:

d𝑀0𝑖

d𝑡
= {𝐻,𝑀0𝑖} − 𝑐𝑃𝑖 . (6.47)

In other words, if 𝑀0𝑖 is conserved in time, then the total derivative d𝑀0𝑖

d𝑡
is equal to

zero and from here it is available to get an expression that the Poisson bracket

{𝐻,𝑀0𝑖} = 𝑐𝑃𝑖 . (6.48)

Expression (6.48) is nothing else as a part of the Poincare algebra. So 𝐻 generates

shifts in time and shifts in time commuting with boosts with respect to the Poisson bracket

produce the generators of shifts in spatial directions. This is one way how relations of the

Poincare algebra may be reproduced. But if the Poisson bracket between the oscillators

is used and the Poisson relations of all these generators is computed between themselves,

it will be discovered that they form nothing else as Poincare algebra with respect to this

Poisson brackets for oscillator variables 𝑎 and 𝑎*.

The classical part is finished and the work with classical fields is also finished. The

Klein-Gordon equation was solved and rewrote all physical quantities such as Hamiltonian

and generators of the Poincare group were rewritten. Then the canonical quantization will

be proceeded.

Canonical quantization

Canonical quantization consists in replacing the equal time Poisson bracket of classical

fields with quantum Poisson brackets with what is called quantum Poisson bracket denoted
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by the same expression as a classical Poisson bracket with a subscript ~:

{, } → {, }~ . (6.49)

The realization of this quantum Poisson bracket is known and according to Dirac, this

quantum Poisson bracket must be equal to:

𝑖

~
[, ] . (6.50)

Expression (6.50) represents a Dirac way of quantizing fields and it’s called canonical

quantization.

On the one hand, one uses for the quantum Poisson bracket expression (6.49), while

for the right hand side of this quantum Poisson bracket one uses the same expression

as for the classical Poisson bracket. This means that when we quantize, we promote our

classical field 𝜑 (𝑥) becomes an operator. The same with momentum 𝜋 (𝑥): it becomes an

operator, acting in some space, which will be described a bit later.

The essential point is that this operators 𝜑 (𝑥) and 𝜋 (𝑥) have the following quantum

Poisson brackets:

{𝜑 (𝑡, 𝑥⃗ ) , 𝜑 (𝑡, 𝑦⃗ )}~ =
𝑖

~
[𝜑 (𝑡, 𝑥⃗ ) , 𝜑 (𝑡, 𝑦⃗ )] . (6.51)

In expression (6.51) the equal time Poisson bracket is replaced with an equal time

commutator. Since this canonical quantization is considered the quantum Poisson bracket

is replaced by the value of the classical Poisson bracket which is zero, therefore:

𝑖

~
[𝜑 (𝑡, 𝑥⃗ ) , 𝜑 (𝑡, 𝑦⃗ )] = 0 . (6.52)

This means that fields commutes at different space points, but at the same moment

of time. The same should be done for canonical momenta. Also there is zero on the right

hand side:

{𝜋 (𝑡, 𝑥⃗ ) , 𝜋 (𝑡, 𝑦⃗ )}~ =
𝑖

~
[𝜋 (𝑡, 𝑥⃗ ) , 𝜋 (𝑡, 𝑦⃗ )] = 0 , (6.53)

while for the quantum Poisson bracket between momentum and field the following is

obtained:

{𝜋 (𝑡, 𝑥⃗ ) , 𝜑 (𝑡, 𝑦⃗ )}~ =
𝑖

~
[𝜋 (𝑡, 𝑥⃗ ) , 𝜑 (𝑡, 𝑦⃗ )] = 𝛿 (𝑥⃗ − 𝑦⃗ ) . (6.54)

Expression (6.54) can be rewritten as a equal time commutator of canonical momentum

with the field is given by:

[𝜋 (𝑡, 𝑥⃗ ) , 𝜑 (𝑡, 𝑦⃗ )] = −𝑖~𝛿 (𝑥⃗ − 𝑦⃗ ) . (6.55)
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It’s more convenient to write it as a following commutator:

[𝜑 (𝑡, 𝑥⃗ ) , 𝜋 (𝑡, 𝑦⃗ )] = 𝑖~𝛿 (𝑥⃗ − 𝑦⃗ ) . (6.56)

Relations between quantum fields are called canonical commutation relations. Similarly,

upon quantization the classical amplitudes 𝑎* and 𝑎 are replaced by operators 𝑎† and 𝑎:⎧⎨⎩𝑎* (𝑝 ) → 𝑎† (𝑝 )

𝑎 (𝑝 ) → 𝑎 (𝑝 )
(6.57)

They are understood as creation and annihilation operators. Meaning of creation and

annihilation will be clarified a little bit later. So the creation and annihilation operators for

harmonic oscillator labeled by this momentum variable 𝑝 and the commutation relation

between 𝑎 and 𝑎† are given by the formula:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[𝑎 (𝑝 ) , 𝑎 (𝑝 ′)] = 0[︀
𝑎† (𝑝 ) , 𝑎† (𝑝 ′)

]︀
= 0[︀

𝑎 (𝑝 ) , 𝑎† (𝑝 ′)
]︀

= ~𝛿 (𝑝 − 𝑝 ′)

(6.58)

In a way, it can be said that now an abstract algebra generated by generators 𝑎 (𝑝 )

and 𝑎† (𝑝 ) is studied. This algebra satisfies the commutation relations (6.58).

The commutativity of fields at different space-time points, but at the same moment of

time is important. In fact, from the quantum mechanical point of view commutativity of

operators means that these operators can be measured simultaneously. The eigenvalues

for this operators can be simultaneously measured. This fields then are independent

observable. It is like the same field, but taken as the one and the same moment of time,

but at different space points represent different observables, because the values of this

field at the same time, but at different space time points commute.

Then, an important representation will be constructed for this moment abstract variables

𝑎 and 𝑎†. Construction of representation means that the 𝑎 and 𝑎† will be identified as

concrete operators acting in some space. It is needed that this space to be also the Hilbert

space. The norm in this space will be introduced and the 𝑎 and 𝑎† will be realized as

explicit operators acting on this space. The construction of this particularly important

representation of quantum field theory is carried out in the following way: first of all, it

is needed to introduce a state in the direct notation bra and ket to introduce a particular

state, which can be called as vacuum state

|0⟩ , (6.59)
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which is a state without particles from physical point of view. Then it is assumed that this

vacuum state is specified by the condition that, when any of the annihilation operators

act on it, it gives zero:

𝑎 (𝑝 ) |0⟩ = 0 . (6.60)

That’s why these operators have a name of annihilation operators. So, annihilation operators

annihilate the vacuum state. Acting on this state with creation operators, which are 𝑎† (𝑝 )

will create a one particle state with momentum 𝑝 , which is denoted in this way as:√︀
2𝜔 (𝑝 )𝑎† (𝑝 ) |0⟩ = |𝑝 ⟩ , (6.61)

where a normalization
√︀

2𝜔 (𝑝 ) is indroduced.

In expression (6.61) it is recieved that 𝑎† acting on the vacuum gives one particle

states, which are labeled by the momentum 𝑝 .

So, our start was from the vacuum |0⟩, then one particle state with momentum |𝑝 1⟩ was

constructed. Then it is possiblet to construct a state of two particles with momentums 𝑝 1

and 𝑝 2 - |𝑝 1, 𝑝 2⟩ and so on. More and more creation operators with different momentum

are applied and then some number of particles are created, which in physical interpretation

carries this momentum from 𝑝 1 up to 𝑝 𝑛 - |𝑝 1, . . . , 𝑝 𝑛⟩. The space of all these states from

vacuum up to 𝑛’s particle state is called Fock space. Sometimes the representation of field

operators in the Fock space is called representation of second quantization. This term will

be explained a little bit later. Where does it come from? Why second? What does it mean

second quantization? Why people talk about second quantization, when they talk about

representation of field operators in the infinity dimensional Fock space?

So, the question is why this is a representation. In the Fock space operators 𝑎 and 𝑎†

act in the following way: operator 𝑎† simply adds a new particle with momentum 𝑝 . If

the creation operator is taken and applied to a state, which has already 𝑛 particles in it

like, for instance, state |𝑝 1, . . . , 𝑝 𝑛⟩, then what this operator does, it’s just adds a new

particle:

𝑎† (𝑝 ) |𝑝 1, . . . , 𝑝 𝑛⟩ =
1√︀

2𝜔 (𝑝 )
|𝑝 , 𝑝 1, . . . , 𝑝 𝑛⟩ , (6.62)

where to keep the normalization it is necessary to divide by the square root of 2𝜔 (𝑝 ).

The action operator or annihilation operator 𝑎 (𝑝 ) is a bit more complicated. When

this operator acts on a state with 𝑛 particles, it’s supposed to annihilate:

𝑎 (𝑝 ) |𝑝 1, . . . , 𝑝 𝑛⟩ = ~
√︀

2𝜔 (𝑝 )
𝑛∑︁
𝑖=1

𝛿 (𝑝 − 𝑝 𝑖)
⃒⃒⃒
𝑝 1, . . . , ˆ⃗𝑝𝑖, . . . , 𝑝 𝑛

⟩
, (6.63)

102



THE PRINCIPLES OF QUANTUM FIELD THEORY

GLEB ARUTYUNOV

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

where ~
√︀

2𝜔 (𝑝 ) is normalization and ˆ⃗𝑝𝑖 means that this particle is absent. And also it

is needed to show distinguish action on the vacuum:

𝑎 (𝑝 ) |0⟩ = 0 . (6.64)

So, all the 𝑎† operators commute between themselves, all 𝑎 operators commute between

themselves, that it is possible to verify that this actions are compatible with the non trivial

property is that what happens when 𝑎 (𝑝 ) and 𝑎† (𝑝 ) meets. Let’s write:

𝑎 (𝑝 ) 𝑎† (𝑝 ′) (6.65)

and then let’s act with this operators on the 𝑛 particle state and use formulas (6.62) and

(6.63):

𝑎 (𝑝 ) 𝑎† (𝑝 ′) |𝑝 1, . . . , 𝑝 𝑛⟩ =
1√︀

2𝜔 (𝑝 ′)
𝑎 (𝑝 ) |𝑝 ′, 𝑝 1, . . . , 𝑝 𝑛⟩ . (6.66)

Thenit is neessary to use 𝑎 (𝑝 ) operator:

𝑎 (𝑝 ) 𝑎† (𝑝 ′) |𝑝 1, . . . , 𝑝 𝑛⟩ = ~𝛿 (𝑝 − 𝑝 ′) |𝑝 1, . . . , 𝑝 𝑛⟩+

+~
√︁

𝜔(𝑝 )
𝜔(𝑝 ′)

∑︀𝑛
𝑖=1 𝛿 (𝑝 − 𝑝 𝑖)

⃒⃒⃒
𝑝 ′, 𝑝 1, . . . , ˆ⃗𝑝𝑖, . . . , 𝑝 𝑛

⟩
.

(6.67)

Now the goal is to act with an opposite order of operators:

𝑎† (𝑝 ′) 𝑎 (𝑝 ) |𝑝 1, . . . , 𝑝 𝑛⟩ = ~
√︀

2𝜔 (𝑝 )
𝑛∑︁
𝑖=1

𝛿 (𝑝 − 𝑝 𝑖) 𝑎
† (𝑝 ′)

⃒⃒⃒
𝑝 1, . . . , ˆ⃗𝑝𝑖, . . . , 𝑝 𝑛

⟩
. (6.68)

Finally, the operator 𝑎† (𝑝 ′) will add one more particle and we will get:

𝑎† (𝑝 ′) 𝑎 (𝑝 ) |𝑝 1, . . . , 𝑝 𝑛⟩ = ~

√︃
𝜔 (𝑝 )

𝜔 (𝑝 ′)

𝑛∑︁
𝑖=1

𝛿 (𝑝 − 𝑝 𝑖)
⃒⃒⃒
𝑝 ′, 𝑝 1, . . . , ˆ⃗𝑝𝑖, . . . , 𝑝 𝑛

⟩
. (6.69)

Then it is necessary to compare the results of two gotten expressions (6.67) and (6.69)

for actions of operators 𝑎 and 𝑎†, but in different order. If we subtract from the first

actions, the second one, an expression for the commutator will be recieved. If a state with

𝑛 particles is studied or, in other words, a more or less arbitrary state with any number

of particles is considered, it will be clear that under the commutator the second term of

(6.67) cancels the first term of (6.69). Such a way, we will get the following formula:[︀
𝑎 (𝑝 ) , 𝑎† (𝑝 ′)

]︀
|𝑝 1, . . . , 𝑝 𝑛⟩ = ~𝛿 (𝑝 − 𝑝 ′) |𝑝 1, . . . , 𝑝 𝑛⟩ . (6.70)

The gotten expression is valid for any state in the Fock space. The number of particles

plays no role. Therefore, it can be said that the representation of algebra of operators 𝑎

and 𝑎† has been realized.
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This way shows how to prove that representation of the oscillator algebra of creation

and annihilation operators in the Fock space has been constructed.

An arbitrary state in the Fock space is a superposition of 𝑛 particle states. An arbitrary

state, which can be denoted by 𝜒, will be given by:

|𝜒⟩ =
∞∑︁
𝑛=0

1√
𝑛!

∫︁ 𝑛∏︁
𝑖=1

d𝑝 𝑖√︀
2𝜔 (𝑝 𝑖)

𝜒𝑛 (𝑝 1, . . . , 𝑝 𝑛) |𝑝 1, . . . , 𝑝 𝑛⟩ . (6.71)

Expression (6.71) represents a superposition, where states with a different number of

particles are superposed and this is reflected by the term with sum from zero to infinity

and also particles with different momentum are superposed.

The momentum could be different, but since momentum continues, summing over

continuous variable is the same as to integrate over this variable and arbitrary coefficients

in front of different momentum can be implemented by putting functions 𝜒𝑛 (𝑝 1, . . . , 𝑝 𝑛).

Of course, it is possible to compute the norm of such a state. First of all, there is an

assumption about the vacuum state that this is a state with a well defined norm equal to

one. The norm of this state is scalar product of the state with itself and by definition is

taken to be equal to one:

⟨0|0⟩ = 1 . (6.72)

It is possible to use the definition of the 𝑛 particle states to compute the scalar product

of states with different particles:

⟨𝑞⃗ 1, . . . , 𝑞⃗ 𝑛|𝑝 1, . . . , 𝑝𝑚⟩ . (6.73)

What is meant by definition is that it is understood that if a state is created by acting

with a creation operator on the vacuum, then conjugation means that the conjugate state

will be a state with bra vacuum acted by 𝑎 (𝑝 ):

𝑎† (𝑝 ) |0⟩ → ⟨0| 𝑎 (𝑝 ) . (6.74)

In other words, operators 𝑎 and 𝑎† are considered to be Hermitian conjugate to each other.

Then, if then this assumption or this convention is used for how the conjugate states are

understood, then it is possible to write in terms of annihilation operators the bra state

⟨𝑞⃗ 1, . . . , 𝑞⃗ 𝑛| and with creation operators the ket state |𝑝 1, . . . , 𝑝 𝑛⟩. Then it is needed to

move operators of annihilation through the creation operators to reach the right vacuum

and produce zero:

(6.73) =
𝑛∏︁
𝑘=1

√︀
2𝜔 (𝑞⃗ 𝑘)

𝑚∏︁
𝑙=1

√︀
2𝜔 (𝑝 𝑙)

⟨︀
0
⃒⃒
𝑎 (𝑞⃗ 1) . . . 𝑎 (𝑞⃗ 𝑛) 𝑎† (𝑝 1) . . . 𝑎

† (𝑝𝑚)
⃒⃒
0
⟩︀

(6.75)
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Then it is necessary to use commutation relations between 𝑎 and 𝑎† to move 𝑎 through

𝑎† to the right. Such a way 𝑎 will reach the right vacuum and annihilate it and then

analogously 𝑎† move to the left and then annihilate the left vacuum. Every time 𝑎 is

commuted through 𝑎† a delta-function will be recieved, due to the commutation relations

between 𝑎 and 𝑎†. If this computations are done, the following result will be obtained:

(6.73) = 𝛿𝑚𝑛
∑︁
P

𝑛∏︁
𝑖=1

(2~𝜔 (𝑝 𝑖)) 𝛿 (𝑝 𝑖 − 𝑞⃗ P𝑖) . (6.76)

where symbol P means a sum of all permutations. Permutation is understood as a map

P =

(︃
1 2 . . . 𝑛

𝛼1 𝛼2 . . . 𝛼𝑛

)︃
(6.77)

and permutation is a bijective map from {1, 2, . . . , 𝑛} to itself. That is what is called a

symmetric group. So, such bijective maps from 1 to 𝑛 form a symmetric group, which

mathematical name is 𝑆𝑛. And permutation is an element of the group 𝑆𝑛.

Expression (6.77) shows how the scalar product between particles with definite momentum

looks like. If now the scalar product is used to compute the scalar product of an arbitrary

state ⟨𝜓|𝜒⟩, which are built on the functions 𝜓 and 𝜒, the following result will be found:

⟨𝜓|𝜒⟩ =
∞∑︁
𝑛=0

∫︁
𝜓*
𝑛 (𝑝 1, . . . , 𝑝 𝑛)𝜒𝑛 (𝑝 1, . . . , 𝑝 𝑛)

𝑛∏︁
𝑖=1

d𝑝 𝑖 . (6.78)

This is, in a way the standard scalar product, which will be used use in quantum mechanics

to make the space of square integrable functions on a space 𝑅𝑛 or simply on 𝑅 to become

a Hilbert space. The (6.78) represents a structure of the Hilbert space is introduced by

means of the scalar product and in a sense this is the quantum mechanical generalization

or simply generalization to the case of infinite number of particles of the standard quantum

mechanical scalar product, which supplies the space of square integrable functions with

the structure of the Hilbert space. So, Fock space is a Hilbert space. This also partially

explains why the
√︀

2𝜔 (𝑝 ) is introduced in the definition of states obtained by creation

operator, it’s explained by the fact that, if a scalar product of two states is considered,

for instance, of two one particle states ⟨𝑝 |𝑞⃗ ⟩, then it gives us:

⟨𝑝 |𝑞⃗ ⟩ = 2~𝜔 (𝑝 ) 𝛿 (𝑝 − 𝑞⃗ ) , (6.79)

which is the same as

⟨𝑝 |𝑞⃗ ⟩ = 2𝑐𝑝0𝛿 (𝑝 − 𝑞⃗ ) , (6.80)
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if it is written in terms of zero component of the momentum, then the scalar product,

because of the factor 2~𝜔 (𝑝 ), is relativistic invariant.

What does it mean? It means that if the Lorentz transformation with 𝑝 and 𝑞 or is

done, in other words, go to another frame by applying Lorentz transformation on both 𝑝

and 𝑞:

𝑝′𝜇 = Λ𝜇
𝜈𝑝

𝜈 , 𝑞′𝜇 = Λ𝜇
𝜈𝑞

𝜈 , (6.81)

then the product ⟨𝑝 |𝑞⃗ ⟩ will be relativistic invariant.

So, if ⟨Λ𝑝 |Λ𝑞⃗ ⟩ is done, where Λ is an arbitrary Lorentz transformation, then the scalar

product remains invariant:

⟨Λ𝑝 |Λ𝑞⃗ ⟩ = ⟨𝑝 |𝑞⃗ ⟩ . (6.82)
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Lecture 7. Second Quantization. Commutation and

Green’s Functions, Pauli-Jordan Function

Last lecture the procedure of canonical quantization was discussed, where the Poisson

brackets for fields and the momenta of the fields have been essentially replaced with

quantum Poisson brackets that are commutators and the construction of the Fock space

has been also discussed, which is an infinitive dimensional Hilbert space constructed by a

successive application of creation operators to the unique vacuum state.

In this lecture our goal is to develop these operator concepts.

Now it is possible to come to the question about the Hamiltonian. In the classical

theory it is known that the Hamiltonian can be written in terms of creation and annihilation

operators in the following way:

𝐻 =

∫︁
d𝑝 𝜔 (𝑝 ) 𝑎* (𝑝 ) 𝑎 (𝑝 ) . (7.1)

The (7.1) was a classical expression for the Hamiltonian. If a similar computation for

the Hamiltonian 𝐻 in quantum field theory is done, of course, it is known that 𝑎* (𝑝 )

and 𝑎 (𝑝 ) will be replaced by 𝑎† (𝑝 ) and 𝑎 (𝑝 ), but it should be done carefully, because

these two operators: 𝑎† (𝑝 ) and 𝑎 (𝑝 ), do not commute with each other and, therefore,

the order of these operators in any operator expression, which was constructed with the

help of the 𝑎 and 𝑎†, matters. For the case of the Hamiltonian one accepts to write the

following expression for the quantum Hamiltonian:

𝐻 =

∫︁
d𝑝 𝜔 (𝑝 ) 𝑎† (𝑝 ) 𝑎 (𝑝 ) (7.2)

meaning that operator 𝑎† stands on the left from an operator 𝑎. This way of ordering of

operators 𝑎 and 𝑎† is called normal ordering. In other words, normal ordering is a rule of

ordering of operators 𝑎 and 𝑎† in such a way that operators 𝑎† always go to the left or

always stand on the left from the operator 𝑎.

In other words, if there is a certain expression from operators 𝑎 and 𝑎†

𝑎𝑎†𝑎𝑎†𝑎 (7.3)

and then the procedure of normal ordering is applied to this expression, then this expression

should go to

𝑎†𝑎†𝑎𝑎𝑎 . (7.4)
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It should be recalled that the order of operators 𝑎 between themselves and 𝑎†-s between

themselves does not matter, because operators 𝑎 commute between themselves and 𝑎† also

commute. Their relative order does not matter, but what matters is that all 𝑎†-s stand

on the left from operators 𝑎. To symbolize this way of ordering people use the special

notation, which is called normal ordering and they write double dots on the left from the

expression, which will be put in normal order and to the right of it. So, expression (7.3)

in the normal order form is given by the expression:

: 𝑎𝑎†𝑎𝑎†𝑎 : . (7.5)

The same idea of normal ordering is also applied to fields. If there is a set of fields

{𝜑1 (𝑥⃗ 1) , . . . 𝜑𝑛 (𝑥𝑛)} and our goal is to put their product in normal order, that means

that in the resulting expression first of all all the fields will be written in terms of creation

and annihilation operators and then all creation operators will be placed to the left from

all annihilation operators.

The idea of adopting such ordering prescription goes to the fact that the energy of any

state in Fock space becomes a well-defined quantity. In particular, vacuum carries zero

energy, because if 𝐻 is applied to the vacuum state then that would be

𝐻 |0⟩ =

∫︁
d𝑝 𝜔 (𝑝 ) 𝑎† (𝑝 ) 𝑎 (𝑝 ) |0⟩ . (7.6)

Since vacuum is annihilated by operator 𝑎 (𝑝 ), then the result of application of 𝐻 to

the vacuum state will give us zero. On the other hand, if the Hamiltonian is written in

the opposite way or if anti-normal ordering is assumed, for instance, where 𝑎† is placed

to the right, then, in fact, our Hamiltonian will create first a one particle state out of the

vacuum and then this one particle state will be annihilated by means of operator 𝑎:

𝑎 (𝑝 ) 𝑎† (𝑝 ) |0⟩ . (7.7)

As can be seen, in order to compute the result of this action it is necessary to compute

𝑎 (𝑝 ) through 𝑎† (𝑝 ), which will result into the 𝛿 (0), because it would be 𝛿 (𝑝 − 𝑝 ). So, the

𝛿 (0) is actually infinite and in this case it can be seen that the action of the Hamiltonian

on the vacuum state will give us a non-sensic equation, because the result of application

will give us just zero. In order to prevent the problem with defining the Hamiltonian

of any state in the Fock space and just to make it well defined, it is possible to apply

the normal ordering prescription. It’s very important to remember about this, that in

quantum field theory for operators acting in the Fock space one usually uses the normal
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order and prescription. In particular, this is done for the Hamiltonian in order to render

the energy of Fock states well defined.

Now if our field 𝜑 is considered again, then in terms of creation and annihilation

operators the field 𝜑, which now is an operator has the following expansion. First of all

there is the measure factor. If it is written with all ~ and 𝑐 constants it will look like:

𝜑 (𝑥) = 𝑐

∫︁
d𝑝

(2𝜋~)3/2
1√︀

2𝜔 (𝑝 )

(︀
𝑎† (𝑝 ) 𝑒𝑖(𝐸𝑡−𝑝 𝑥⃗ )/~ + 𝑎 (𝑝 ) 𝑒−𝑖(𝐸𝑡−𝑝 𝑥⃗ )/~

)︀
. (7.8)

Let’s now take the positive frequency part of the field 𝜑 (𝑥⃗ ), which contains 𝑎†. This

piece will be denoted as 𝜑+:

𝜑+ (𝑥⃗ , 0) = 𝑐

∫︁
d𝑝

(2𝜋~)3/2
𝑎+ (𝑝 ) 𝑒−𝑖𝑝 𝑥⃗ /~ . (7.9)

Let’s take the vacuum state and act on this vacuum state by operator 𝜑+. Such a way

shows that:

𝜑+ (𝑥⃗ , 0) |0⟩ = 𝑐

∫︁
d𝑝

(2𝜋~)3/2
1√︀

2𝜔 (𝑝 )
𝑒−𝑖𝑝 𝑥⃗ /~ |𝑝 ⟩ . (7.10)

In particular, if another one particle state with a non-trivial momentum 𝑝 is taken

and a bra state ⟨𝑝 | is taken, then it will be seen that⟨︀
𝑝
⃒⃒
𝜑+ (𝑥⃗ , 0)

⃒⃒
0
⟩︀

=
𝑐

(2𝜋~)3/2

∫︁
𝛿𝑞⃗√︀

2𝜔 (𝑞⃗ )

⟨︀
𝑝
⃒⃒
𝑎+ (𝑞⃗ )

⃒⃒
0
⟩︀
𝑒−𝑖𝑞 𝑥⃗ /~ , (7.11)

where the variable, over which the integration is, is denoted by 𝑞⃗ and 𝑝 is a certain fixed

momentum, which defines the one particle state ⟨𝑝 |. It is possible to compute the quantity

described by (7.11) and it is necessary, first of all, to write down an expression for a state

⟨𝑝 |. It is known that it can be represented as:

⟨𝑝 | = ⟨0| 𝑎 (𝑝 )
√︀

2𝜔 (𝑝 ) . (7.12)

When (7.12)is plugged in the scalar product from (7.11), 𝑎 (𝑝 ) will be commuted with

𝑎† (𝑞⃗ ) and 𝑎 (𝑝 ) will be moved to the right vacuum to annihilate it and as a result of this

evaluation the delta function on 𝑝 − 𝑞⃗ will be obtained:⟨︀
0
⃒⃒
𝑎 (𝑝 ) 𝑎+ (𝑞⃗ )

⃒⃒
0
⟩︀
∼ 𝛿 (𝑝 − 𝑞⃗ ) ⟨0|0⟩ ∼ 𝛿 (𝑝 − 𝑞⃗ ) . (7.13)

Then it is necessary to substitute expression (7.13) into the integral (7.11). Such a

way, it will be seen that the result of the evaluation will become simply an integral of a

delta function and when the delta function is integrated it will be found that:⟨︀
𝑝
⃒⃒
𝜑+ (𝑥⃗ , 0)

⃒⃒
0
⟩︀

=
𝑒−𝑖𝑝 𝑥⃗ /~

(2𝜋~)3/2
. (7.14)
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Expression (7.14) is recognized from quantum mechanics. It is known that this is a wave

function of a free particle. Every particle moving with momentum 𝑝 . In other words, the

procedure of applying the positive frequency part to the vacuum positive frequency part

of our scalar field to the vacuum creates a particle with a standard quantum mechanical

wave function, which corresponds to free particle moving with momentum 𝑝 .

Let’s also make a comment about the procedure of constructing the Fock space, which

also is known under the name second quantization.

Second quantization

The Klein-Gordon equation, which has been solved and already studied, was introduced

by Schrodinger himself. His motivation for introducing the Klein-Gordon equation was

rather simple. Basically it is known that there is the standard relativistic dispersion

relation for relativistic particle:

𝐸2

𝑐2
− 𝑝 2 −𝑚2𝑐2 = 0 . (7.15)

The relation (7.15) is called as Mass-Shell condition, but in fact this is a dispersion

relation for relativistic particle, which relates energy of this particle with its momentum

and Schrodinger’s idea was simply to pass to quantum mechanics by replacing a three-

momentum 𝑝 with an operator of momentum, which equals to

𝑝 = −𝑖~ 𝜕

𝜕𝑥⃗
(7.16)

and replacing energy with

𝐸 → 𝑖~
𝜕

𝜕𝑡
. (7.17)

Energy is, in fact, an eigenstate of the hamiltonian and the hamiltonian generates

time evolution. So, shifts in time, while momentum is responsible for the space shifts and

it’s realized as a derivative from (7.16). After this replacements on the left hand side of

the dispersion relation the Klein-Gordon operator is discovered. If this little calculation

is done, it will be seen that the operator will have the next form:

1

𝑐2
𝜕2

𝜕𝑡2
− 𝜕

𝜕𝑥2𝑖
+
𝑚2𝑐2

~2
. (7.18)

Instead of the usual mass-shell condition, which is formulated in terms of 𝐸 and 𝑝

now there is a second order differential operator and in a way the natural substitution
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of the dispersion relation would be to take this differential operator and apply it to the

wave function 𝜑: (︂
1

𝑐2
𝜕2

𝜕𝑡2
− 𝜕

𝜕𝑥2𝑖
+
𝑚2𝑐2

~2

)︂
𝜑 = 0 . (7.19)

In fact, then it is possible to say that the expression, which is in the (7.18), on the

one hand mathematically is the kernel of the wave operator. On the other hand, from

a physical point of view, written in the (7.19), is a Schrodinger equation for the wave

function 𝜑. And the fact that this equation contains second order derivative in time rather

than first derivative in time is due to the fact that relativism is considered, which puts

time and space variables. Since this variables are on equal footing and they are rotated

into each other by means of Lorentz transformations, the second derivatives in the space

directions are accompanied by second time derivatives in the time direction. In a way this

is a relativistic version of the usual non-relativistic Schrodinger equation and this is an

equation which defines the wave function 𝜑. When the wave function is defined by means

of equation (7.19) it is necessaryt to continue with the usual quantum mechanical analogy

for the wave function 𝜑. Then a number of problems arise immediately. Especially, in the

case, when non-trivial interactions or self-interactions are considered for this theory. To

clarify this let’s introduce instead of a real field actually complex field, because complex

field is more suitable to regard it as a wave function, because wave function in the standard

quantum mechanics is a complex function. So, if a real scalar field is passed to complex

scalar field, then the action for this field is written in the following way:

𝑆 [𝜑] =
1

𝑐

∫︁
d4𝑥

[︂
𝜕𝜇𝜑𝜕

𝜇𝜑* −
(︁𝑚𝑐

~

)︁2
𝜑*𝜑

]︂
. (7.20)

Similar to what happens in the non-relativistic case, it is possible to introduce two

important quantities. One of them is a probability density 𝜌 and another is the probability

current denoted as 𝑗⃗ . These quantities are defined explicitly as

𝜌 =
𝑖~

2𝑚𝑐2
(𝜑*𝜕𝑡𝜑− 𝜑𝜕𝑡𝜑

*) (7.21)

and

𝑗⃗ = − 𝑖~
2𝑚

(︁
𝜑*∇⃗𝜑− 𝜑∇⃗𝜑*

)︁
. (7.22)

These quantities are introduced, because in the non-relativistic quantum mechanics it

can be seen that these quantities satisfy the standard continuity equation

𝜕𝜌

𝜕𝑡
+ ∇⃗ 𝑗⃗ = 0 . (7.23)
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The continuity equation is satisfied due to the Klein-Gordon equation, especially, it

reduces to the Klein-Gordon equation for a field 𝜑, when 𝜌 and 𝑗⃗ are plugged into formula

(7.23) will be seen that there will be zero, because the Klein-Gordon equation is satisfied.

Now it looks like the standard paradigm of usual quantum mechanics is followed. 𝜌

and 𝑗⃗ were introduced, which satisfy the continuity equation as our goal is to have this

quantity in the non-relativistic case. In fact, it is also possible to understand that what

is written down in the (7.23) is nothing else as they’re written down the covariant form

of the current conservation

𝜕𝜇𝐽
𝜇 = 0 , (7.24)

where 𝐽𝜇 is a 4 current with components

𝐽𝜇 =
(︁
𝑐𝑝, 𝑗⃗

)︁
. (7.25)

The current 𝐽𝜇 is conserved in equations of motions and is simply a direct consequence

of Noether’s theorem, because the existence of this conserved quantity is due to the fact

that the action for relativistic complex scalar field has the following symmetry

𝜑→ 𝑒𝑖𝛼𝜑 , (7.26)

where 𝛼 is a constant parameter. From expression (7.26) it can be seen that if the field 𝜑 is

changed by multiplying it with the phase and 𝜑* is simultaneously changed by multiplying

it with a conjugate phase, then this phase disappears and the action is simply invariant

with respect to these transformations. By Noether’s theorem it is known that symmetry

must correspond to a conserved current and this current exactly or the probability for

current was written in expression (7.25). On equations of motion, which are a Klein-

Gordon equations for 𝜑 and 𝜑* the current 𝐽𝜇 must be conserved and this is exactly what

can be verified by direct means.

The problem is however that probability density is not positive. So, 𝜌 is not positive

in contrast to the expression for 𝜌 which is in non-relativistic quantum mechanics. In

non-relativistic quantum mechanics 𝜌 is defined as

𝜌 = 𝜑*𝜑 = |𝜑|2 . (7.27)

This is an explicitly positive density. It can be given an interpretation of probability

density: probability is is always non-negative.

For our case it can be seen that 𝜌 is not positive from an explicit expression for 𝜌

(7.21). That is because in the relativistic case the second order differential equation is
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considered. Since we deal with the second order differential equation supplying it and

solving it it is necessary to supply it with initial conditions and since it is of the second

order, it is needed to supply as initial conditions not only the value of 𝜑, but also the

value of its time derivative at an initial moment of time. This values of 𝜑 and 𝜑̇ can be

chosen in an arbitrary way and if they can be chosen in an arbitrary way, so, 𝜑 and 𝜑̇

might also be taken negative values and therefore 𝜌 is not any more positive defined. In

general actually 𝜌 goes in the non-relativistic limit: when a speed of light tends to infinity,

it goes to the density of non-relativistic quantum mechanics. This can be explicitly traced

by using the expression for 𝜑 in the so-called WKB approximation and this expression for

𝜑 then starts from

𝜑 ∼ 𝑒𝑖𝑚𝑐
2𝑡𝜓 + . . . , (7.28)

where . . . are corrections to the expression and 𝜓 is taken as a wave function from non-

relativistic theory. Then it can be seen that, when expression (7.28) will be differentiated

with respect to time, the first time derivative will be not acting on 𝜓. It will just

𝜑𝑡 ∼ 𝑖𝑚𝑐2𝑒𝑖𝑚𝑐
2𝑡𝜓 . (7.29)

Then from expressions (7.28) and (7.29) it can be seen that at leading order in the

limit 𝑐→ ∞, it will actually be obtained that:

𝜑*𝜕𝑡𝜑 ∼ 𝜓*𝜓 (7.30)

and time derivative will disappear. So, 𝜌 is nice in all respects that it’s a part of the

conserved for current. It is a quantity, which has a correct non-relativistic limit, but it loses

one important property, which allows to interpret it really as a probability density. Namely

it’s not positive anymore and, therefore, the whole quantum mechanical interpretation

of the quantity 𝜑 as, in particular, a quantum mechanical wave function breaks. If the

interaction is considered, thenit is possible to show that 𝜌 cannot be served as a quantum

mechanical probability density.

The correct interpretation of field 𝜑 has been found later by Pauli and Weiskopf.

According to Pauli and Weiskopf, the field 𝜑 must be treated as an operator rather than

the wave function. So, for us 𝜑 is not a wave function, but rather 𝜑 is an operator, which

then should be used to define with its help the amplitudes and a consequence creation

and annihilation operators, which are used to build the Fock space of the scalar field. We

naturally come to the Fock space representation treating 𝜑 as an operator, because this

operator should act in some space and the natural space, where it acts is a Fock space.
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Such a treatment of 𝜑 as an operator acting in the Fock space is exactly what is called

second quantization. This term is historical, because when second quantization is said,

in a way it is suggested that under the first quantization act the classical scalar field is

replaced by a wave function 𝜑 just like Schrodinger did, but in fact it’s not a wave function

and it is needed to quantize it again to promote it to an operator acting in some Hilbert

space, which in this case is a Fock space.

Today, perhaps, it is not a good thing to to talk about first or second quantization, it is

just known that it is necessary to treat 𝜑 from the very beginning as an operator acting in

the Fock space and in this respect it is possible to refer to this as quantization of the scalar

field, as a process by means of which we an operator is directly put in correspondence to a

classical field and then for this operator a representation is constructed. It is represented

in terms of creation and annihilation operators.

The next topic that is necessary to introduce is commutation and greens functions.

Commutation and Greens functions

In the theory of interacting fields even in the classical theory, it is known that solutions

of inhomogeneous field equations with point-like sources play a special role. These solutions

of such inhomogeneous equations with point-like sources have a special name, they are

called Greens functions.

As it is known from the classical electrodynamics, greens functions can be of different

nature. For instance, there could be retarded Greens functions, advanced Greens functions

and, in particular, in quantum field theory the interest is in the so-called causal Greens

functions, which are also known under the name of Feynman propagator.

Now let’s to discuss how these functions are defined and explicitly constructed for

the case of the Klein-Gordon field. Therefore, what is needed to consider here is the

Klein-Gordon field.

Let’s start from solutions of the Klein-Gordon equation without sources. This is related

to such objects as commutators of quantum fields at different space-time points. Since

our talk is about commutators, these functions sometimes are referred to as commutation

functions.

It is necessary to answer a question: what is the commutator of quantum fields at

different space-time points is? Not at the same time, where the commutation relations are

canonical, because we have already discussed it, but at different space and time points.
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The first very important commutation function, which will be discussed is the so-called

Pauli-Jordan function. This function is defined in the following way

[𝜑 (𝑥⃗ , 𝑡) , 𝜑 (𝑥⃗ ′, 𝑡′)] = 𝑖~𝑐D (𝑥− 𝑥′) , (7.31)

where D is a Pauli-Jordan function and 𝑥 and 𝑥′ are points in the four-dimensional space-

time. By definition a Pauli-Jordan function is a commutator of two quantum fields at

different space-time points. As it will be seen D is a function and it is not an operator.

Although the operator is being calculated, the result is a number 𝑐, which is a number or

a function multiplied by the identification operator.

Before the derivation is sketched, an explicit form of what is going to found will be

written. Since D (𝑥− 𝑥′) depends on one argument, it can be written as follows

D (𝑥) = −𝜖 (𝑡)

2𝜋

⎡⎣𝛿 (︀𝑥2)︀− 1

2

(︁𝑚𝑐
~

)︁2
𝜃
(︀
𝑥2
)︀ 𝐽1 (︁𝑚𝑐~ √

𝑥2
)︁

𝑚𝑐
~

√
𝑥2

⎤⎦ , (7.32)

where 𝜃 (𝑥2) is Heaviside function, 𝐽1 is a Bessel function. It should be also noticed that

in our case instead of 𝑥2 the following is used

(𝑥− 𝑥′)
2

= 𝑐2 (𝑡− 𝑡′)
2 − (𝑥⃗ − 𝑥⃗ ′)

2
. (7.33)

One more variable that it is needed to introduce is 𝜖:

𝜖 (𝑡) = 𝜃 (𝑡) − 𝜃 (−𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+1 , 𝑡 > 0

0 , 𝑡 = 0

−1 , 𝑡 < 0

. (7.34)

Let’s also remind what is 𝜃 (𝑡):

𝜃 (𝑡) =

⎧⎨⎩+1 , 𝑡 > 0

0 , 𝑡 ≤ 0
(7.35)

It can be seen from formula (7.32) that, because of the presence of the prefactor 𝜖 (𝑡),

D (𝑥) turns out to be zero if 𝑡 = 𝑡′. This means that the equal time commutator vanishes,

which is good, because it shows that it’s compatible with the fact that for the same time

argument fields commute. So,

[𝜑 (𝑥⃗ , 𝑡) , 𝜑 (𝑥⃗ ′, 𝑡)] = 0 (7.36)
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and this is the result of canonical quantization and this is how canonical Poisson bracket

requires to have when to the quantum theory is passed under the procedure of canonical

quantization.

The second feature is that it also can be seen that commutator of two local fields

vanishes if their space time points are separated by the space-like interval. So, 𝑥2 is

space-like, if 𝑥2 < 0. In our case our talk is about condition that if (𝑥− 𝑥′)2 < 0, then

Pauli-Jordan function vanishes. Therefore, fields, which are separated by such an interval

are commute and this is in a way if our goal is implementation of causality principle

in quantum field theory. This is an important fact, which is manifestation of causality

principle in quantum field theory. Why it is so? That’s because there is no signal known

that can propagate faster than the speed of light and this means that if there are two

events or fields which will be measured at points, which are separated by the space-like

interval, then measurement of field in one point and the measurement of the field in the

other point do not correlate, because these measurements are completely independent.

Signal is not enough to propagate from the point 𝑥, where a measurement of the field 𝜑 is

made to the point 𝑥′, where it is implied that a measurement of the field at the point 𝑥′

is made. In other words, field values separated by the space-like interval are independent

observables and it is known that if there are two independent observables in order to be

able to measure them according to the basic principles of quantum mechanics, they must

commute. The last comment about the explicit expression, which is going to be found by

means of computation is that expanding the Pauli-Jordan function around the light cone

the following expression will be found:

D (𝑥) = −𝜖 (𝑡)

2𝜋

[︂
𝛿
(︀
𝑥2
)︀
− 1

2

(︁𝑚𝑐
~

)︁2
𝜃
(︀
𝑥2
)︀

+ . . .

]︂
. (7.37)

Essentially what we are expanding in the (7.37) is the piece of the (7.32) with 𝐽1, where

around light cone means that this function is expanded around
√
𝑥2 ≈ 0. So, when

√
𝑥2

tends to 0 the ratio 𝐽1 to the
√
𝑥2 goes to 1. Therefore, it can be seen that on the light cone

there are severe singularities for the Pauli-Jordan function. Passing through the light cone

D (𝑥) experience singularities of two types. One of them is just delta-function singularity

and the second type of singularity is finite discontinuity is given by the function 𝜃 (𝑥2). So,

finite discontinuity is something which is usually understood as function jump, because

of the 𝜃-function.

Now the question may be asked: how to derive the gotten result? In particular, how

to construct the function D?
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Let’s explain how it can be done and let’s construct a scheme.

1) It is possible to use an expression for fields in terms of oscillators. Let’s start from

the expression for the commutator

[𝜑 (𝑥⃗ , 𝑡) , 𝜑 (𝑥⃗ ′, 𝑡′)] (7.38)

given in terms of creation and annihilation operators. Up to a prefactor, which

contains 𝑐, 2𝜋 and ~, the following will be obtained:

7.38 ∼
∫︀

d𝑘⃗ d𝑘⃗ ′
√
4𝜔𝜔′

(︁ [︁
𝑎+
(︁
𝑘⃗
)︁
, 𝑎
(︁
𝑘⃗ ′
)︁]︁
𝑒𝑖(𝜔𝑡−𝜔

′𝑡′)−𝑖(𝑘⃗ 𝑥⃗−𝑘⃗ ′𝑥⃗ ′)+

+
[︁
𝑎
(︁
𝑘⃗
)︁
, 𝑎+

(︁
𝑘⃗ ′
)︁]︁
𝑒−𝑖(𝜔𝑡−𝜔

′𝑡′)+𝑖(𝑘⃗ 𝑥⃗−𝑘⃗ ′𝑥⃗ ′)
)︁
.

(7.39)

So, the Fourier decomposition of 𝜑 was used and then formula (7.39) was recieved.

2) Commutation relations between quantum oscillators are used and it is replaced by

delta-functions. Then it is possible to integrate the corresponding delta-function.

So, the first and the second commutators in the (7.39) will be replaced by

𝛿
(︁
𝑘⃗ − 𝑘⃗ ′

)︁
and − 𝛿

(︁
𝑘⃗ − 𝑘⃗ ′

)︁
(7.40)

respectively. Then it is possible to integrate over 𝑘⃗ ′ by using these delta functions,

simplify a bit and as a result the following expression will be obtained:

7.38 = 𝑖~𝑐
−2𝑐

(2𝜋)3

∫︁
d𝑘⃗

2𝜔
𝑒𝑖𝑘⃗ (𝑥⃗−𝑥⃗

′) sin𝜔 (𝑡− 𝑡′) . (7.41)

where the coefficient was added before expression (7.38). If the gotten expression is

compared with the definition of the Pauli-Jordan function, it will be seen that this

prefactor 𝑖~𝑐 is also in the (7.31). So, it is recieved that

D (𝑥) = − 2𝑐

(2𝜋)3

∫︁
d𝑘⃗

2𝜔
𝑒𝑖𝑘⃗ 𝑥⃗ sin𝜔𝑡 . (7.42)

So, a subject of our further computation is obtained.

3) Then it is necessary to continue the computation and it is needed to evaluate

the three-dimensional integral or evaluate it in terms of known functions like, for

instance, a Bessel function. It is convenient here to come to spherical coordinates.

So, it is necessary to introduce a quantity 𝑟 which is

𝑟 =
√
𝑥⃗ 2 (7.43)
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Fig. 7.1. Change of coordinates to 𝑟 and 𝑘 variables

and 𝑘, which is

𝑘 =
√︀
𝑘⃗ 2 . (7.44)

Our coordinate system is oriented along direction of 𝑟⃗ (fig. 7.1).

Therefore, the D (𝑥) will be obtained in spherical coordinates in the following form:

D (𝑥) = − 2𝑐

(2𝜋)3

∫︁ ∞

0

𝑘2d𝑘

2𝜔
sin𝜔𝑡

∫︁ 2𝜋

0

d𝜙

∫︁ 𝜋

0

sin 𝜃d𝜃𝑒𝑖𝑘𝑟 cos 𝜃 , (7.45)

where it was used that

𝑒𝑖𝑘⃗ 𝑥⃗ = 𝑒𝑖𝑟𝑘 cos 𝜃 . (7.46)

The integral in the (7.45) can be elementary computed. It can be seen that the

measure sin 𝜃d𝜃 can be replaced by

sin 𝜃d𝜃 = −d (cos 𝜃) . (7.47)

Such a way, integral with exponent can be elementary integrated and then integral

over d𝜑 is also elementary taken and, therefore, D (𝑥) upon this integration becomes

D (𝑥) = − 𝑐

2𝜋2𝑟

∫︁ ∞

0

𝑘d𝑘

𝜔
sin𝜔𝑡 sin 𝑘𝑟 . (7.48)

In the (7.48) evaluation was reduced to the one-dimensional integral and this can

be further written conveniently in the following way:

𝑐

2𝜋2

1

𝑟

𝜕

𝜕𝑟

∫︁ ∞

0

d𝑘

𝜔 (𝑘)
sin𝜔𝑡 cos 𝑘𝑟 . (7.49)
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where 𝜔 is the function of 𝑘. When we will be integrating back over 𝑟, the cosine

will turn into a sine, but it also produce 𝑘 that was in the numerator of the (7.48).

Let’s remember what 𝜔 is. Now it can be seen that the integral (7.49) is a bit non-

trivial, it’s not easy to take, because 𝜔 (𝑘) is an explicit function of 𝑘, which is not

pleasant function, it’s equals to

𝜔 (𝑘) = 𝑐

√︁
𝑘⃗ 2 + 𝜇⃗ 2 = 𝑐

√︀
𝑘2 + 𝜇2 , (7.50)

where 𝜇 is

𝜇 =
𝑚𝑐

~
. (7.51)

So, explicitly D (𝑥) then if we substitute the expression for 𝜔 take the following

form:

D (𝑥) =
1

4𝜋

1

𝑟

𝜕

𝜕𝑟

∫︁ ∞

−∞

d𝑘√︀
𝑘2 + 𝜇2

cos 𝑘𝑟 sin𝑥0
√︀
𝑘2 + 𝜇2 , (7.52)

where integral limits were changed to from −∞ to +∞. The integration was extended

for negative values of 𝑘, because the function, that is integrated is even. Then the

integral is divided by two and that’s why 2𝜋2 turns into 4𝜋2 in denominator. An

argument of sine was also changed according to the formula

𝑡 =
𝑥0
𝑐
. (7.53)

Such a way an one dimensional integral (7.52) is obtained, which will be taken. It

can be seen that it is quite non-trivial, because it involves the parameter 𝑘 under

the square roots.

It is convenient to introduce the function 𝐹 (𝑟, 𝑡) and simply define it as

𝐹 (𝑟, 𝑡) =
1

𝜋

∫︁ +∞

−∞

d𝑘√︀
𝑘2 + 𝜇2

cos 𝑘𝑟 sin𝑥0
√︀
𝑘2 + 𝜇2 . (7.54)

To proceed, of course, it is needed to find a clever choice of variables, which somehow

should efficiently deal with the
√︀
𝑘2 + 𝜇2. The way to do it is to introduce the

following change of variables:

𝑘 = 𝜇 sinh𝜙 , −∞ ≤ 𝜙 ≤ +∞ , (7.55)

where 𝜙 is not an angle, but just a variable. That’s efficient change, because if√︀
𝑘2 + 𝜇2 is now computed, it will be seen that this is√︀

𝑘2 + 𝜇2 =

√︁
𝜇2 sinh2 𝜙+ 𝜇2 = 𝜇 cosh𝜙 > 0 . (7.56)
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The gotten in the (7.56) expression is always positive. Moreover, it can be seen that

if measure decay is taken it will give us

d𝑘 = 𝜇 cosh𝜙d𝜙 (7.57)

and cancels exactly with 𝜇 cosh𝜑, which is in the denominator .

Under such change of variables function 𝐹 will take the following form

𝐹 (𝑟, 𝑡) =
1

𝜋

∫︁ +∞

−∞
d𝜙 cos (𝜇𝑟 sinh𝜙) × sin

(︀
𝜇𝑥0 cosh𝜙

)︀
. (7.58)

The integral (7.58) is obtained, but the formula can be used further for the product

of two trigonometric functions cosine multiplied by sine. So let’s proceed and write

(7.58) as
𝐹 (𝑟, 𝑡) = 1

2𝜋

∫︀ +∞
−∞ d𝜙

[︁
sin (𝜇𝑟 sinh𝜙+ 𝜇𝑥0 cosh𝜙)−

− sin (𝜇𝑟 sinh𝜙− 𝜇𝑥0 cosh𝜙)
]︁
.

(7.59)

The first step in our next considerations is to start distinguishing three different cases

depending on inequalities between 𝑥0 and 𝑟. For definiteness in further computation

the case where 𝑥0, which is the same as 𝑐𝑡 is bigger than 𝑟 and 𝑟 is bigger than 0, will

be considered. That is needed, because every time a certain inequality is picked up

between the 𝑐𝑡 and 𝑟, it is necessary to make its own change of variables in order to

proceed. Thus, for the case that is being considered here, it is necessary to perform

appropriate further variable modification, namely

𝑥0√︁
(𝑥0)2 − 𝑟2

= cosh𝜙0
𝑟√︁

(𝑥0)2 − 𝑟2
= sinh𝜙 . (7.60)

Once again, a new change of variables is needed and this is needed in order to turn

the sum of sinh and cosh into something simple. Indeed, if a change of variables is

done, then the expression for 𝐹 (𝑟, 𝑡) takes the following form

𝐹 (𝑟, 𝑡) = 1
2𝜋

∫︀ +∞
−∞ d𝜙 sin

[︂
𝜇
√︁

(𝑥0)2 − 𝑟2 cosh (𝜙+ 𝜙0)

]︂
+

+ sin

[︂
𝜇
√︁

(𝑥0)2 − 𝑟2 cosh (𝜙− 𝜙0)

]︂
.

(7.61)

An interesting point is that since the integration is over all 𝜑 in the first integral it

is possible to make a shift of variables 𝜑−𝜑0 to remove the 𝜑0 from integration and
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in the second integral it is possible to make a change 𝜑 + 𝜑0 to remove this shift.

Then integrals are equal to each other and the answer doubles and gives us

𝐹 (𝑟, 𝑡) =
1

𝜋

∫︁ +∞

−∞
d𝜙 sin

[︂
𝜇

√︁
(𝑥0)2 − 𝑟2 cosh (𝜙)

]︂
. (7.62)

Now finally if we look at the books looking for an explicit integral representation

for the Bessel function, then it will be seen that what is written down in the (7.62)

is exactly the integral representation for the Bessel function:

𝐹 (𝑟, 𝑡) = 𝐽0

(︂
𝜇

√︁
(𝑥0)2 − 𝑟2

)︂
. (7.63)

So our goal was achieved and the function 𝐹 (𝑟, 𝑡) was reduced to just a Bessel

function of index zero. If this calculation is niw done for other inequalities between

𝑐𝑡 and 𝑟, the following will be found:

𝐹 (𝑟, 𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
+𝐽0

(︂
𝜇
√︁

(𝑥0)2 − 𝑟2
)︂
, 𝑐𝑡 > 𝑟

0 − 𝑟 < 𝑐𝑡 < 𝑟

−𝐽0
(︂
𝜇
√︁

(𝑥0)2 − 𝑟2
)︂
, 𝑐𝑡 < −𝑟

(7.64)

The three gotten results for 𝐹 (𝑟, 𝑡) can be combined in one expression by saying

that 𝐹 (𝑟, 𝑡) is given by

𝐹 (𝑟, 𝑡) = 𝜖 (𝑡) 𝜃
(︀
(𝑐𝑡)2 − 𝑟2

)︀
𝐽0

(︂
𝑚𝑐

~

√︁
(𝑐𝑡)2 − 𝑟2

)︂
. (7.65)

4) The final step consists in evaluating D (𝑥), which is derivative of the expression for

𝐹 (𝑟, 𝑡) with respect to one over 𝑟. So, the following is recieved

D (𝑥) =
𝜖 (𝑡)

4𝜋𝑟

𝜕

𝜕𝑟

[︂
𝜃
(︀
(𝑐𝑡)2 − 𝑟2

)︀
𝐽0

(︂
𝑚𝑐

~

√︁
(𝑐𝑡)2 − 𝑟2

)︂]︂
. (7.66)

When the (7.66) is differentiated over 𝜕𝑟, differentiating of terms in the brakets

will give us delta-function, which has been seen in the expression for 𝛿 (𝑥) and then

differentiating the Bessel function with zero index will produce the Bessel function

with index one. So, finally the expression for the Pauli-Jordan function will be found:

D (𝑥) = −𝜖 (𝑡)

2𝜋

⎡⎣𝛿 (︀𝑥2)︀− 1

2

(︁𝑚𝑐
~

)︁2
𝜃
(︀
𝑥2
)︀ 𝐽1 (︁𝑚𝑐~ √

𝑥2
)︁

𝑚𝑐
~

√
𝑥2

⎤⎦ . (7.67)

That’s what concerns important commutation function, which is called Pauli-Jordan

function and which is a commutator between quantum fields at different space-time

points.
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In fact, what can be shown further is that it is clear that the commutator has been

calculated

[𝜑 (𝑥, 𝑡) , 𝜑 (𝑥′, 𝑡′)] = 𝑖~𝑐D (𝑥− 𝑥′) . (7.68)

It is possible then to show that since 𝑥′ and 𝑡′ are different from 𝑥 and 𝑡, it is possible to

act on both sides of the relation with the Klein-Gordon’s wave operator, which is

�𝑥,𝑡 =
1

𝑐2
𝜕2

𝜕𝑡2
− 𝜕2

𝜕𝑥2𝑖
+
(︁𝑚𝑐

~

)︁2
. (7.69)

It is possible to act with (7.69) on both sides of the (7.68). So, then the next expression

will be obtained:

[�𝑥,𝑡𝜑 (𝑥, 𝑡) , 𝜑 (𝑥′, 𝑡)] = 𝑖~𝑐�𝑥,𝑡D (𝑥− 𝑥′) . (7.70)

Since 𝜑 is a solution of the Klein-Gordon equation, the first term in the commutator of the

(7.70) is zero and, therefore, on the right hand side it is necessary to find that the result

of applying box with respect to coordinates 𝑥 and 𝑡 to Pauli-Jordan function also gives

us 0. Thus, in fact, what was obtained also means that D (𝑥− 𝑥′) is an explicit solution

of the Klein-Gordon equation:

�𝑥,𝑡D (𝑥− 𝑥′) . (7.71)
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Lecture 8. Retarded and Advanced Green’s Functions.

Feynman Propagator. Yukawa Force

In the last lecture we have introduced the Pauli-Jordan function. The Pauli-Jordan

function is a commutator of two field operators taken at different space-time points.

Now we will define two more interesting and important functions, namely the retarded

Green’s function and the advanced Green’s function. We will look how they are explicitly

constructed and then we will come to the very important notion in quantum field theory,

the notion of Feynman propagator.

Let’s start with the definition of the retarded Green’s function.

Retarded Green’s function

So, the retarded Green’s function is a ∆𝑟𝑒𝑡, which is defined in the following way

∆𝑟𝑒𝑡 (𝑥− 𝑥′) = 𝜃 (𝑡− 𝑡′) [𝜑 (𝑥⃗ , 𝑡) , 𝜑 (𝑥⃗ ′, 𝑡′)] . (8.1)

We see that if we compare this to the definition of the Pauli-Jordan function, then

what is written down in the (8.1) is simply

∆𝑟𝑒𝑡 (𝑥− 𝑥′) = 𝑖~𝑐𝜃 (𝑡− 𝑡′)D (𝑥− 𝑥′) . (8.2)

Advanced Green’s function

Analogously, the advanced Green’s function is defined as

∆𝑎𝑑𝑣 (𝑥− 𝑥′) = −𝜃 (𝑡′ − 𝑡) [𝜑 (𝑥⃗ , 𝑡) , 𝜑 (𝑥⃗ ′, 𝑡′)] . (8.3)

Again, we need to compare the (8.3) with the definition of the Pauli-Jordan function:

∆𝑎𝑑𝑣 (𝑥− 𝑥′) = −𝑖~𝑐𝜃 (𝑡′ − 𝑡)D (𝑥− 𝑥′) . (8.4)

We have to show that the functions introduced in such a way as in (8.2) and (8.4)

are really Green’s functions. In other words, they solve the Klein-Gordon equation with

a delta-function source on the right hand side. This showing can be done in different

ways. The simplest way, probably, to take a ∆𝑟𝑒𝑡 and act on it with the Klein-Gordon

propagator.
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Of course, we need also to use then the fact that the field 𝜑 (𝑥⃗ , 𝑡) solves the Klein-

Gordon equation. Let’s see how it works.

So, we take the Klein-Gordon operator, which is essentially(︀
𝑐−2𝜕2𝑡 − 𝜕2𝑖 + 𝜇2

)︀
, (8.5)

where we denoted 𝜇 as

𝜇 =
𝑚𝑐

~
. (8.6)

And then we apply (8.5) to retarded Green function:(︀
−𝑐2𝜕2𝑡 − 𝜕2𝑖 + 𝜇2

)︀
(𝜃 (𝑡− 𝑡′) [𝜑 (𝑥⃗ , 𝑡) , 𝜑 (𝑥⃗ ′, 𝑡′)]) . (8.7)

We need first to apply derivative with respect to time and applying it, we will get the

following:

− 𝑐2𝜕2𝑡 : 𝜕𝑡
(︀
−𝑐2𝛿 (𝑡− 𝑡′) [𝜑 (𝑥⃗ , 𝑡) , 𝜑 (𝑥⃗ ′, 𝑡′)] + 𝜃 (𝑡− 𝑡′) [𝜋 (𝑥, 𝑡) , 𝜑 (𝑥⃗ ′, 𝑡′)]

)︀
. (8.8)

Then we have the part of the Klein-Gordon operator, which straightforwardly gets

inside the bracket and acts on the field 𝜑. So, these are derivatives with respect to spatial

directions. What we get here is

− 𝜕2𝑖 + 𝜇2 : 𝜃 (𝑡− 𝑡′)
[︀(︀
−𝜕2𝑖 + 𝜇2

)︀
𝜑 (𝑥⃗ , 𝑡) , 𝜑 (𝑥′, 𝑡′)

]︀
. (8.9)

Now we have to continue and act with the remaining time derivative on the result

inside the brackets of the (8.8), but before doing that, we know that, because of the delta-

function we would have a non-trivial result only when 𝑡 = 𝑡′. So, we go to the support of

the delta-function, but in this case, when 𝑡 = 𝑡′, we have an equal time commutator of

two quantum fields 𝜑 and we know that from their canonical commutation relations for

𝑡 = 𝑡′, this commutator vanishes. So, in fact, the whole term with delta-function produce

a vanishing contribution and we can just drop it.

Then we need to apply the time derivative for the second term in the brackets of the

(8.7) and the resulting expression for the (8.7) will have the next form:

8.7 = 𝛿 (𝑡− 𝑡′) [𝜋 (𝑥⃗ , 𝑡) , 𝜑 (𝑥⃗ ′, 𝑡′)]+𝜃 (𝑡− 𝑡′)
[︀(︀
𝑐2𝜕2𝑡 − 𝜕2𝑖 + 𝜇2

)︀
𝜑 (𝑥⃗ , 𝑡) , 𝜑 (𝑥⃗ ′, 𝑡′)

]︀
. (8.10)

What do we see from formula (8.10)? The first thing that we see is that since 𝜑 (𝑥⃗ , 𝑡) is a

solution of the Klein-Gordon equation, then the first term of the commutator (𝑐2𝜕2𝑡 − 𝜕2𝑖 + 𝜇2)𝜑 (𝑥⃗ , 𝑡)

in the (8.10) vanishes, because 𝜑 is a solution.
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Such a way the whole result turns to

8.7 = 𝛿 (𝑡− 𝑡′) [𝜋 (𝑥⃗ , 𝑡) , 𝜑 (𝑥⃗ ′, 𝑡′)] . (8.11)

We got something, which we can easily compute, because due to the delta-function

in the (8.11), the time argument 𝑡′ can be replaced for 𝑡. As a result we got an equal

time commutator between the momentum of the field and the field itself. Because of the

canonical commutation relation, we know that what is written down in the commutator

brackets is in fact

[𝜋 (𝑥⃗ , 𝑡) , 𝜑 (𝑥⃗ ′, 𝑡′)] = −𝑖~𝛿 (𝑡− 𝑡′) 𝛿 (𝑥⃗ − 𝑥⃗ ′) . (8.12)

In other words, we restore on the right hand side of the (8.12) the four dimensional

delta-function and the final expression can be written as:

8.7 = −𝑖~𝛿(4) (𝑥− 𝑥′) , (8.13)

where

𝑥0 = 𝑐𝑡 . (8.14)

Let’s act the bracket (� + 𝜇2) on the retarded Green’s function ∆𝑟𝑒𝑡 (𝑥− 𝑥′). Then

the result of this will be(︀
� + 𝜇2

)︀
∆𝑟𝑒𝑡 (𝑥− 𝑥′) = −𝑖~𝑐𝛿(4) (𝑥− 𝑥′) , (8.15)

where ∆𝑟𝑒𝑡 (𝑥− 𝑥′) is a Green’s function for the Klein-Gordon operator.

Why the ∆𝑟𝑒𝑡 (𝑥− 𝑥′) is called as retarded? It’s called retarded, because due to the

presence of 𝜃 function in the definition, it can be seen that the Green’s function has a

distinguished property that ∆𝑟𝑒𝑡 (𝑥− 𝑥′) vanishes for 𝑡 < 𝑡′. The Green’s function with

such a property is called retarded.

For ∆𝑎𝑑𝑣 (𝑥− 𝑥′) computation is absolutely the same. It can be found that ∆𝑎𝑑𝑣 (𝑥− 𝑥′)

is also a fundamental solution of the Klein-Gordon equation. The fundamental means that

it’s a solution with a right hand side represented in the form of a point-like source.

There is another way to show how the ∆𝑟𝑒𝑡 (𝑥− 𝑥′) allows to obtain a useful representation

for the Green’s function.

Let’s look at the following representation, which in fact uses the integral representation

for the Pauli-Jordan function

∆𝑟𝑒𝑡 (𝑥) = −~𝑐
𝜃 (𝑡)

(2𝜋)3

∫︁
d𝑘⃗

2𝑘0
[︀
𝑒𝑖𝜔𝑡 − 𝑒−𝑖𝜔𝑡

]︀
𝑒+𝑖𝑘⃗ 𝑥⃗ . (8.16)
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Expression (8.16) is integral representation for the function ∆𝑟𝑒𝑡 (𝑥), where 𝑘0 is a

component of the wave vector

𝑘0 =

√︁
𝑘⃗ 2 + 𝜇2 =

𝜔

𝑐
. (8.17)

According to the (8.17), the integral representation can be modified. Let’s start from

some auxiliary or additional integral, which apparently at first sight has nothing to do with

the ∆𝑟𝑒𝑡. Then the complex analysis should be used, in particular, as a residue theorem

to compute the following integral:∫︁ +∞

−∞

𝑒−𝑖𝑐𝑘
0𝑡d𝑘0

(𝑘0 + 𝑖𝜖)2 − 𝑘⃗ 2 − 𝜇2
. (8.18)

The integral (8.18) is taken along the real line, but it is more convenient to use a complex

analysis. In the (8.18) the complex plane of the variable 𝑘0 was considered for computation

of the integral over variable 𝑡0.

Let’s look at the denominator of the (8.18) and forget about the little piece 𝑖𝜖, which

was added to 𝑘0. An 𝜖 is a positive and small and, therefore, it is a little shift in the

imaginary direction. This little term should be used, because without it the denominator

in formula (8.18) looks like (︀
𝑘0
)︀2 − 𝑘⃗ 2 − 𝜇2 (8.19)

and then, when 𝑘0 will be running through the whole real line, eventually it will meet the

problem, because at certain values of 𝑘0 the expression in the denominator may become

equal to zero. This happens, when

𝑘0 = ±
√︁
𝑘⃗ 2 + 𝜇2 . (8.20)

Therefore, without 𝑖𝜖 term singularities along the real line will exist and then the

integral will not be well defined and will diverge.

Exactly, to overcome this problem and make sense of the integral one adds up a little

term 𝑖𝜖 for shift the pole in the lower half plane. It can be seen that now poles are shifted

from the real line a little bit down (fig. 8.1).

That’s because a different from the (8.19) equation should be solved:(︀
𝑘0 + 𝑖𝜖

)︀2 − 𝑘⃗ 2 − 𝜇2 = 0 . (8.21)

The square root of the (8.21) will give:

𝑘0 + 𝑖𝜖 = ±
√︁
𝑘⃗ 2 + 𝜇2 . (8.22)
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Fig. 8.1. The poles of the integral (8.18) at 𝑘0 plane

Therefore,

𝑘0 = −𝑖𝜖±
√︁
𝑘⃗ 2 + 𝜇2 . (8.23)

Because of the −𝑖𝜖 poles are shifted in the lower half plane. This means there are no

problems, if integral over the real line will be taken. It also should be noticed that the

Cauchy’s theorem can be applied to compute the integral by closing the correspondent

contour in the lower half plane. Integral goes through infinity and close the contour in the

lower half plane like presented at the (fig. 8.1).

Then the integral can be computed by Cauchy’s residue theorem in the following way:

the two poles are exist and residues at these poles should be taken. So, the integral will

be transformed to

8.18 =

∫︁ +∞

−∞

d𝑘0

2

√︁
𝑘⃗ 2 + 𝜇2

⎡⎣ 𝑒−𝑖𝑐𝑘
0𝑡

𝑘0 −
√︁
𝑘⃗ 2 + 𝜇2 + 𝑖𝜖

− 𝑒−𝑖𝑐𝑘
0𝑡

𝑘0 +

√︁
𝑘⃗ 2 + 𝜇2 + 𝑖𝜖

⎤⎦ , (8.24)

where the expression was transformed into 2 decomposed terms, which are residues at the

first and the second pole. According to the Cauchy’s residue theorem, the direction of the

integration should be taken into account and the integration contour should be enclosed

in such a way, that the region enclosed by this contour must remain on the left. The way,

which was presented in the (fig. 8.1) stays the integration contour on the right and that

is why the sign should be changed.
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One more point to discuss is why the contour was enclosed below the real line. That

is because for 𝑡 > 0 in the exponential

𝑒−𝑖𝑐𝑘
0𝑡 (8.25)

𝑘0 should have a negative imaginary part. It should behave like −𝑖 |𝑘0|, in order to produce

minus in front of the argument of the exponential. It should be so to provide the dumping

in the spatial infinity, which can be achieved by increasing of the radius of a circle. For 𝑡

bigger than zero the integral was closed below the real line.

Then, of course, two poles should be encountered. One pole is at

𝑘0 =

√︁
𝑘⃗ 2 + 𝜇2 − 𝑖𝜖 (8.26)

and the other pole is at

𝑘0 = −
√︁
𝑘⃗ 2 + 𝜇2 − 𝑖𝜖 . (8.27)

By Cauchy’s theorem, the result will equal to

8.18 =
2𝜋𝑖

2

√︁
𝑘⃗ 2 + 𝜇2

[︂
𝑒𝑖𝑐

√
𝑘⃗ 2+𝜇2𝑡 − 𝑒−𝑖𝑐

√
𝑘⃗ 2+𝜇2𝑡

]︂
. (8.28)

Expression (8.28) is the answer for this auxiliary integral. In the original integral 𝑡

can be anything. It can be bigger than zero and it can be less than zero. For 𝑡 > 0 the

contour should be closed in the lower half plane. For 𝑡 < 0 the situation is actually the

opposite in order to guarantee the exponential damping of the function at large values of

𝑘0. Therefore, for 𝑡 < 0 the contour should be closed in the upper half plane, but in the

upper half plane there are no poles and the function has its poles only in the lower half

plane. That is why the integral will be equal to zero.

It can be obtained that that the integral has interesting property: for positive 𝑡, it

gives a non-trivial answer given by expression (8.28), for negative 𝑡 it actually vanishes.

On the other hand, it can be obtained that the integral, in fact, is the next quantity from

(8.16):
1

2𝑘0
[︀
𝑒𝑖𝜔𝑡 − 𝑒−𝑖𝜔𝑡

]︀
, (8.29)

where 𝜔 and 𝑘0 should be replaced by 𝑐𝑘0 and
√︁
𝑘⃗ 2 + 𝜇2 respectively.

Instead of expression (8.28), which was gotten before, the original integral representation

can be substituted for the retarded Green’s function:

∆𝑟𝑒𝑡 (𝑘) = ~𝑐
∫︁

d4𝑘

(2𝜋)4
𝑖

(𝑘0 + 𝑖𝜖)2 − 𝑘⃗ 2 − 𝜇2
𝑒−𝑖𝑘𝑥 , (8.30)
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where integration was performed not only for spacial directions of 𝑘, but also for the 𝑘0

variable. The scalar product 𝑘𝑥 in the (8.30) is a relativistic scalar product:

𝑘𝑥 = 𝑘𝜇𝑥
𝜇 . (8.31)

Let’s write one important property of the ∆𝑟𝑒𝑡. From the courses on mathematical

physics, it can be known that the Green’s function is not unique, because of the fact that

the following equation should be solved:(︀
� + 𝜇2

)︀
𝐺 = 𝛿(4) (𝑥− 𝑥′) . (8.32)

It can be clearly seen that if one particular solution of the equation was found, then a

solution of the homogeneous equation can always be added to this solution and the gotten

expression will be again a Green’s function:

𝐺 = 𝐺0 +𝐺ℎ𝑜𝑚 (8.33)

Solution of the homogeneous equation means that(︀
� + 𝜇2

)︀
𝐺ℎ𝑜𝑚 = 0 . (8.34)

Playing with the solution of the homogeneous equation, the properties of the Green’s

function can be adjusted. For instance, we can have retarded solution or advanced solution.

Another type of solution is also exist, which is more interesting to observe and called

Feynman propagator. But before that let’s denote what is retarded means. Retarded

means just a specific property that Green’s function appears to be developed after the

acting of the impulse. For instance, if a delta-function source is exist, which switches at

𝑡 = 𝑡′, then the signal propagates at later times and that is what retarded Green’s function

is taken care of. In a more convenient way, a retarded Green’s function has a retarded

property, which means that at the later values of time, we expect to get consequences of

the signal. This consequences is observed, because

∆𝑟𝑒𝑡 (𝑡− 𝑡′ > 0) ̸= 0 . (8.35)

On the other hand, before the source switched on

∆𝑟𝑒𝑡 (𝑡− 𝑡′ < 0) = 0 . (8.36)

An advanced Green’s function has an opposite property.
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With the integral representation (8.30) it can be also elementary checked that Klein-

Gordon operator acting on ∆ doesn’t produce a delta-function. And if the integral representation

is used, then it will be seen that:

(︀
� + 𝜇2

)︀
∆𝑟𝑒𝑡 = 𝑖~𝑐

∫︁
d4𝑘

(2𝜋)4
(𝑘0)

2 − 𝑘⃗ 2 − 𝜇2

(𝑘0 + 𝑖𝜖)2 − 𝑘⃗ 2 − 𝜇2
𝑒−𝑖𝑘𝑥 . (8.37)

As can be seen from the (8.37), the numerator and the denominator have the same

expression and there is only different that a little 𝑖𝜖 in the denominator exist. Then the

limit 𝜖→ 0 can be taken and the resulting expression will be:

lim
𝜖→0

(︀
� + 𝜇2

)︀
∆𝑟𝑒𝑡 = −𝑖~𝑐

∫︁
d4𝑘

(2𝜋)4
𝑒−𝑖𝑘𝑥 . (8.38)

The integral in the (8.38) is a Fourier image of the four dimensional delta-function:

lim
𝜖→0

(︀
� + 𝜇2

)︀
∆𝑟𝑒𝑡 = −𝑖~𝑐𝛿(4) (𝑥) . (8.39)

Finally, according to (8.39), Klein-Gordon operator acting on delta retarded produce the

delta-function source.

The most interesting function to consider, which is essentially used as an element of

quantum field theory, is a so-called causal Green’s function. This is the same as Feynman

propagator.

Feynman propagator

Feynman propagator can be denoted simply by symbol ∆. It also depends on 𝑥 − 𝑥′

and the motivation for its introduction can be given in the following way. Let’s look at

vacuum expectation value of two quantum fields:

⟨0|𝜑 (𝑥)𝜑 (𝑥′)|0⟩ , (8.40)

where 𝜑 (𝑥)𝜑 (𝑥′) is a two point function. Two point means that it depends on 𝑥 and on

𝑥′. It is also important to notice that 𝜑 is a quantum field.

Expression (8.40) can be written in terms of creation and annihilation operators. After

that the product of operators should be put between two vacuum states. Often this is

called as vacuum expectation value for the product of two operators. The result of this

evaluation will have the following form:

⟨0|𝜑 (𝑥)𝜑 (𝑥′)|0⟩ =
⟨︀
0
⃒⃒
𝜑− (𝑥)𝜑+ (𝑥′)

⃒⃒
0
⟩︀

=
⟨︀
0
⃒⃒[︀
𝜑− (𝑥)𝜑+ (𝑥′)

]︀⃒⃒
0
⟩︀
. (8.41)
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where the fact that field 𝜑 (𝑥) can be split into positive and negative frequency parts was

used. It should be noticed that the contribution of the 𝜑− (𝑥′) will produce zero, because

this part depends on the annihilation operator and the annihilation operator annihilates

vacuum. Analogously, if 𝜑+ (𝑥) is used, than due to the fact that 𝜑+ (𝑥) depends on the

creation operator, zero will be produced after acting on the left vacuum.

The last expression in the (8.41) with commutator was written, because⟨︀
0
⃒⃒
𝜑+ (𝑥′)𝜑− (𝑥)

⃒⃒
0
⟩︀

= 0 . (8.42)

Then the commutator from the (8.41) can be evaluated and, therefore, the result will

have the following form:

⟨0|𝜑 (𝑥)𝜑 (𝑥′)|0⟩ = 𝑖~𝑐D− (𝑥− 𝑥′) . (8.43)

where D− is the negative frequency part of the Pauli-Jordan function.

On the other hand, the expression on the left hand side of the (8.43) can be physically

interpreted as an amplitude for the process, when at the moment 𝑡 > 𝑡′ a particle at a

point 𝑥′ is created and a particle at a point 𝑥 is destroyed (fig. 8.2).

Fig. 8.2. Creation of a particle at a point 𝑥′ and destroying a particle at a point 𝑥

The process presented at (fig. 8.2) can be described in a bit different way. A similar

amplitude may be considered, when a particle is created at 𝑥, but then it destroyed at 𝑥′.

To combine this processes in one go, one introduces the notion of the Feynman

propagator ∆ (𝑥− 𝑥′), which is constructed in the following way:

∆ (𝑥− 𝑥′) = 𝜃 (𝑡− 𝑡′) ⟨0|𝜑 (𝑥)𝜑 (𝑥′)|0⟩ + 𝜃 (𝑡′ − 𝑡) ⟨0|𝜑 (𝑥′)𝜑 (𝑥)|0⟩ , (8.44)

where 𝜃 function prescribes the way how creation and annihilation happens in time. For

instance, 𝜃 (𝑡− 𝑡′) means that particle is created at a point 𝑥′ and a time 𝑡′ and then

annihilated at a point 𝑥 and a time 𝑡.

The Feynman propagator can be written in a different way. The two terms presented

in the (8.44) can be encoded into one formula:

∆ (𝑥− 𝑥′) = ⟨0|𝑇 (𝜑 (𝑥)𝜑 (𝑥′))|0⟩ , (8.45)
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where the operation of T ordering explicitly means that the 𝑇 checks the time arguments

of fields 𝜑 (𝑥) and 𝜑 (𝑥′) and then it orders them according to the time dependence of fields.

The field with a less value of 𝑇 always go to the right and this rule can be remembered

by slogan that
”
Youth is always right“.

The Feynman propagator also can be expressed in terms of a Pauli-Jordan function

and, in fact, half the work to obtain this representation has already been done. Additionally,

a Pauli-Jordan function should be supplied with 𝜃-function:

∆ (𝑥− 𝑥′) = 𝑖~𝑐
[︀
𝜃 (𝑡− 𝑡′)D− (𝑥− 𝑥′) + 𝜃 (𝑡′ − 𝑡)D− (𝑥′ − 𝑥)

]︀
. (8.46)

The Pauli-Jordan function have a positive and negative frequency parts, which are

connected with each other according to the formula:

D+ (𝑥) = −D− (−𝑥) . (8.47)

Let’s consider the Feynman propagator in more detail. It is useful to repeat the same

exercise as was done for the retarded Green’s function. First of all, the integral expression

for D− should be written:

D− = − 𝑖

(2𝜋)3

∫︁
d𝑘⃗

2𝑘0
𝑒−𝑖𝑐𝑘0𝑡+𝑖𝑘⃗ 𝑥⃗ . (8.48)

Then, expression (8.48) need to be put in the Feynman propagator. The result will

have the following form:

∆ (𝑥− 𝑥′) = ~𝑐
∫︁

d𝑘⃗

(2𝜋)3
𝑒𝑖𝑘⃗ 𝑥⃗ ×

[︂
𝜃 (𝑡)

2𝑘0
𝑒−𝑖𝑐𝑘0𝑡 +

𝜃 (−𝑡)
2𝑘0

𝑒𝑖𝑐𝑘0𝑡
]︂
, (8.49)

where 𝑘0 as it was before equal to

𝑘0 =

√︁
𝑘⃗ 2 + 𝜇2 . (8.50)

The integral can be evaluated by the same trick as before. So, the integral taken along

the real line in the complex 𝑘0 plane should be found or, in other words, an auxiliary

integral should be found: ∫︁
d𝑘0𝑒

−𝑖𝑐𝑘0𝑡

𝑘2 − 𝜇2 + 𝑖𝜖
, (8.51)

where the term 𝑖𝜖 was used in a different way in comparison to what was done before,

when 𝑖𝜖 was put close to 𝑘0:

(𝑘0 + 𝑖𝜖) . (8.52)
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It also should be noticed that

𝑘2 = 𝑘20 − 𝑘⃗ 2 (8.53)

and, therefore (8.51) can be written as∫︁
d𝑘0𝑒

−𝑖𝑐𝑘0𝑡

𝑘20 − 𝑘⃗ 2 − 𝜇2 + 𝑖𝜖
. (8.54)

Poles of the integral are now located as shown at the (fig. 8.3). Due to the (8.54), the

left pole will be shifted up and the right pole a little bit down.

Fig. 8.3. The poles of the integral (8.54) at 𝑘0 plane

What is the purpose of such a different shift? The purpose of the shift is to actually

realize the properties of the 𝜃-function. One function should be equal to 1, when 𝑡 is

positive and another should be equal to one when 𝑡 is negative, where 𝑡 is a difference

between 𝑡 and 𝑡′.

Similarly to the previous contour integral, a contour should be closed in the lower half

plane. The difference is that now only one pole in this integration contour exists. And so

the non-trivial contribution in this case will be found.

The denominator of the integral should be split into simple poles and the expression

with simple poles will be equal to:

8.54 =

∫︁
d𝑘0

2

√︁
𝑘⃗ 2 + 𝜇2

×

⎡⎣ 𝑒−𝑖𝑐𝑘0𝑡

𝑘0 −
√︁
𝑘⃗ 2 + 𝜇2 + 𝑖𝜖

− 𝑒−𝑖𝑐𝑘0𝑡

𝑘0 +

√︁
𝑘⃗ 2 + 𝜇2 − 𝑖𝜖

⎤⎦ . (8.55)
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Condition for 𝑘0, which defines the poles, should be written in the following way:

𝑘0 = ±
√︁
𝑘⃗ 2 + 𝜇2 − 𝑖𝜖 , (8.56)

where the term 𝑖𝜖 is under the square root. But 𝜖 is small and for small 𝜖 the following

replacement is right:

±
√︁
𝑘⃗ 2 + 𝜇2 − 𝑖𝜖→ ±

√︁
𝑘⃗ 2 + 𝜇2 ∓ 𝑖𝜖 . (8.57)

According to the (8.55) the next statement can be formed: for 𝑡 bigger than 0, the

contour should be closed in the lower half plane and only one pole gives the contribution;

for 𝑡 less than 0 the contour should be closed in the upper half plane. For instance, for

the retarded Green’s function, the integral’s result was 0, because there was no pole in

the upper half plane.

Now the integral can be evaluated by using the Cauchy residue theorem:

8.55 = 2𝜋𝑖
1

2

√︁
𝑘⃗ 2 + 𝜇2

[︂
−𝜃 (𝑡) 𝑒−𝑖𝑐

√
𝑘⃗ 2+𝜇2𝑡 − 𝜃 (−𝑡) 𝑒𝑖𝑐

√
𝑘⃗ 2+𝜇2𝑡

]︂
. (8.58)

The result of evaluation of the integral is that now the integral representation for the

Feynman propagator can be written:

∆ (𝑥) = ~𝑐
∫︁

d4𝑘

(2𝜋)4
𝑖

𝑘2 − 𝜇2 + 𝑖𝜖
𝑒−𝑖𝑘𝑥 . (8.59)

The causal properties are now encoded exactly in the little shift 𝑖𝜖 in the denominator.

From expression (8.59) it also can be seen that the propagator in the Fourier space will

be simply:

∆ (𝑘) =
𝑖

𝑘2 − 𝜇2 + 𝑖𝜖
. (8.60)

It also can be explained where the term 𝑖𝜖 comes from. It comes from encoding

the causality acts of creation and annihilation particles with the help of the T-ordering

product. So, T-ordering seats in the 𝑖𝜖 shift in the denominator of the Feynman propagator.

The integral can be actually computed explicitly and as the result ∆ in the 𝑥-space

will be gotten in terms of known special functions:

∆ (𝑥) =
~𝑐
4𝜋2

(︁𝑚𝑐
~

)︁2 𝐾1

(︀
𝑚𝑐
~

√
−𝑥2 + 𝑖𝜖

)︀
𝑚𝑐
~

√
−𝑥2 + 𝑖𝜖

, (8.61)

where 𝐾1 is the Macdonald function, 𝑥2 is a relativistic interval, which looks like:

𝑥2 = 𝑥20 − 𝑥⃗ 2 . (8.62)

The last thing that needed to be discussed concerning the scalar field is what is called

Yukawa force.
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Yukawa force

The Yukawa force topic is linked with the action of a scalar field. The expression for

the action was already introduced and can be simply written as:

𝑆 [𝜑] =
1

𝑐

∫︁
d4𝑥

[︂
1

2
𝜕𝜇𝜕

𝜇𝜑− 𝜇2

2
𝜑2 + 𝐽 (𝑥)𝜑 (𝑥)

]︂
, (8.63)

where 𝐽 (𝑥) is called as source term. This term can be considered as a source for a

field 𝜑 and the simultaneously what it does, it changes the Hamiltonian of the field 𝜑

itself. In other words, the Hamiltonian and the energy receives an extra contribution from

interaction of the field 𝜑 with the source. The source here is supposed to be in a way

external.

It is interesting here to study the response of the field 𝜑 on the presence of the source

𝐽 (𝑥). In fact, the term with 𝐽 is a part of the theory, which is called linear response

theory.

It is important that in the presence of the source the Hamiltonian 𝐻 receives an extra

contribution, which can be denoted as 𝐻𝐽 . This is given simply by

𝐻𝐽 = −
∫︁

d𝑥⃗ 𝐽 (𝑥)𝜑 (𝑥) . (8.64)

𝐻𝐽 comes with a minus sign, because if the Hamiltonian will be derived from the

action 𝑆, the canonical procedure should be applied, where the Hamiltonian is given by:

𝐻 = 𝜋𝜑− 𝐿 . (8.65)

When taking the minus Lagrangian, then the term comes with a minus sign and this

will produce an extra contribution to the Hamiltonian of the field.

On the other hand, equations of motion for the field will be changed. It will not just

the Klein-Gordon equation, but it will be inhomogeneous Klein-Gordon equation, where

on the right hand side a source term will exist:(︀
𝜕𝜇𝜕

𝜇 + 𝜇2
)︀
𝜑 (𝑥) = 𝐽 (𝑥) . (8.66)

When the action will be varied to find equations of motion, the field 𝜑 will be also

varied and a contribution from the source term will be gotten.

Then all the knowledge about the Green’s function can be used. So, Green’s function

becomes important because it is known that if an homogeneous equation exists, it can

always been solved by using the method of Green’s functions. The right solution is:

𝜑 (𝑥) =
𝑖

~𝑐

∫︁
d4𝑦𝐺 (𝑥− 𝑦) 𝐽 (𝑦) . (8.67)
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If a Klein-Gordon operator is applied to the field 𝜑 (𝑥), then the Klein-Gordon operator

will hit the Green’s function under the integral:(︀
𝜕𝜇𝜕

𝜇 + 𝜇2
)︀
𝜑 (𝑥) =

𝑖

~𝑐

∫︁
d4𝑦

(︀
𝜕𝜇𝜕

𝜇 + 𝜇2
)︀
𝐺 (𝑥− 𝑦) 𝐽 (𝑦) . (8.68)

When Klein-Gordon operator hits Green’s function, it will produce by definition of Green’s

function a term: (︀
𝜕𝜇𝜕

𝜇 + 𝜇2
)︀
𝐺 (𝑥− 𝑦) = −𝑖~𝑐𝛿(4) (𝑥− 𝑦) . (8.69)

Then the integral should be taken and due to the delta-function presence, the result

will be: (︀
𝜕𝜇𝜕

𝜇 + 𝜇2
)︀
𝜑 (𝑥) = 𝐽 (𝑥) . (8.70)
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Lecture 9. Yukawa Force. Dirac Equation

Yukawa force

At the previous lecture the action for a scalar field was introduced in the presence of

the linear source and this action is given by the following expression:

𝑆 [𝜑] =
1

𝑐

∫︁
d4𝑥

[︂
1

2
𝜕𝜇𝜑𝜕

𝜇𝜑− 1

2
𝜇2𝜑2 + 𝐽𝜑

]︂
, (9.1)

where 𝐽 is a linear source.

If the dimension of the field 𝜑 is recalled, the dimension of the source will be easily

deduced. Recalling that the dimension of the action is the same as the dimension of ~ (the

Plank constant) and dimension of ~ is the same as a dimension of angular momentum, it

can be found out that the linear source has the following physical dimension:

[𝐽 ] =

√
~𝑐
𝑙3

. (9.2)

An interesting thing is that the quantity
√
~𝑐 has the same dimension as an electric

charge. Therefore, the source 𝐽 has a dimension of the density of electric charge.

As soon as the source is added up, the energy is changed and the Hamiltonian receives

an extra contribution from the source term. This extra contribution to the Hamiltonian

can be denoted as 𝐻𝐽 and it can be given by

𝐻𝐽 = −
∫︁

d𝑥⃗ 𝐽 (𝑥)𝜑 (𝑥) , (9.3)

where 𝜑 (𝑥) is a real scalar field.

It is also can be seen that equations of motion for 𝜑 in the presence of the source gets

change and new equations of motion will have the following form:(︀
𝜕𝜇𝜕

𝜇 + 𝜇2
)︀
𝜑 (𝑥) = 𝐽 (𝑥) . (9.4)

The solution of equation (9.4) can be written as

𝜑 (𝑥) =
𝑖

~𝑐

∫︁
d4𝑦𝐺 (𝑥− 𝑦) 𝐽 (𝑦) , (9.5)

where 𝐺 (𝑥− 𝑦) is the Green’s function, which is a solution of the fundamental Klein-

Gordon equation, where on the right hand side of this equation a delta-source or point

like source: (︀
𝜕𝜇𝜕

𝜇 + 𝜇2
)︀
𝐺 (𝑥− 𝑥′) = −𝑖~𝑐𝛿(4) (𝑥− 𝑥′) . (9.6)
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It is well known that there are many solutions of equation (9.6), because to any

solution of the inhomogeneous equation the homogeneous part can be added up. That

is why, there are such Green’s functions as retarded Green’s function, advanced Green’s

function and Feynman propagator exist. But for the present discussion it does not matter

which Green’s function will be picked up. The (9.4) can be easily gotten if 𝜑 (𝑥) in the

(9.4) will be replaced by the (9.5) and if Klein-Gordon operator will be moved into the

integral for acting on the Green’s function:(︀
𝜕𝜇𝜕

𝜇 + 𝜇2
)︀
𝜑 (𝑥) =

𝑖

~𝑐

∫︁
d4𝑦

(︀
𝜕𝜇𝜕

𝜇 + 𝜇2
)︀
𝐺 (𝑥− 𝑦) 𝐽 (𝑦) . (9.7)

According to the (9.6), expression (9.7) can be modified:

9.7 =

∫︁
d4𝑦𝛿(4) (𝑥− 𝑦) 𝐽 (𝑦) = 𝐽 (𝑦) . (9.8)

The goal now is to calculate the interaction energy. This is quantity, which is mediated

by a scalar field between two equal charge static sources, represented by point-like particles,

sitting at positions 𝑥1 and 𝑥2 (fig. 9.1). So, these particles are static and this means

that their positions are fixed and they are not changing with the time. But due to the

interaction mediated by field 𝜑 around, these particles will interact with each other and

there will be a force, which this particles will exert on each other, in particular, because

a particle at 𝑥2 will be interpreted as a source of the field. Another particle will find itself

under the influence of the scalar field and will be considered as a test particle.

Fig. 9.1. Interaction of the point-like particles, sitting at positions 𝑥1 and 𝑥2

In terms of mathematical formulas this means that:

𝐽2 (𝑥) =
√
~𝑐𝛿 (𝑥⃗ − 𝑥⃗ 2) , (9.9)

where 𝐽2 is a source of a scalar field 𝜑 (𝑥).
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It can be seen that, when 𝑥 is equal to 𝑥2, then the delta function will be different from

zero and the magnitude of the source is proportional to the quantity with a dimension of

electric charge.

The source function 𝐽2 can be used in the right hand side of equation (9.4) and then the

response to the presence of the source will be a scalar field 𝜑 (𝑥) arising in the surrounding

space due to the fact that the source was put at a position 𝑥2.

The first particle, on the other hand, will be represented in a similar manner. A

function 𝐽1 (𝑥) will be associated for this source with the same properties:

𝐽1 (𝑥) =
√
~𝑐𝛿 (𝑥⃗ − 𝑥⃗ 1) , (9.10)

where 𝐽1 is a function of the test particle.

The energy 𝐻𝐽 can be interpreted as an additional contribution 𝑉 :

𝑉 := 𝐻𝐽 . (9.11)

The energy of field 𝜑 due to the interaction of the test particle with a field 𝜑 will be

given by:

𝑉 = −
∫︁

d𝑥⃗ 𝐽1 (𝑥)𝜑 (𝑥) . (9.12)

Formula (9.12) is similar to formula (9.3), except the fact that now a particle concentrated

at the position 𝑥1.

On the other hand, since 𝜑 (𝑥) is a scalar field produced by the source 𝐽2, an explicit

solution for 𝜑 can be written in terms of the Green’s function:

𝑉 = − 𝑖

~𝑐

∫︁
d𝑥⃗ d4𝑦𝐽1 (𝑥)𝐺 (𝑥− 𝑦) 𝐽2 (𝑦) , (9.13)

where in the (9.13) 𝜑 (𝑥) was replaced by the integral with the Green’s function according

to the (9.5). 𝐽2 (𝑦) is the source, which generates a field and this a field interacts with a

test particle, which can be also considered as another source. Therefore, the source of the

field is interchangeable. It is also can be seen actually that formula (9.13) is completely

symmetric with respect to 𝑥 and 𝑦. There is only little difference for the moment that d𝑥⃗

is a three dimensional integration and d𝑦 is the four dimensional integration, but it can

be reduced also to three dimensional integration.

Integrals in the (9.13) can be computed by using the knowledge of the Green’s function.

First thing to do is substitute the expression for the source. For simplicity a source with

a unit value of charge will be introduced, but if an arbitrary value is needed, then the
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expression may be multiplied with a number. So, let’s multiply each of these sources with

a number 𝑞, which is just number, and then

𝑞
√
~𝑐 (9.14)

will have the dimension of electric charge.

And the 𝑞 value will be chosen in the same way and, therefore, particles will have the

same charge. Upon substituting the point like sources 𝐽1 and 𝐽2, the following expression

will be gotten:

𝑉 = −𝑖𝑞2
∫︁

d𝑥⃗ d4𝑦𝐺 (𝑥− 𝑦) 𝛿 (𝑥⃗ − 𝑥⃗ 1) 𝛿 (𝑦⃗ − 𝑥⃗ 2) . (9.15)

Then, the transformation to the Fourier’s representation of the Green’s function can be

done. As a Green’s function the Feynman propagator will be used, but it does not really

matter which one to take. The result of the transformation will have the following form:

𝑉 =
𝑞2~𝑐
(2𝜋)4

∫︁
d𝑥⃗ d4𝑦d𝑘⃗ d𝑘0

𝑒−𝑖𝑘
0(𝑥0−𝑦0)𝑒𝑖𝑘⃗ (𝑥⃗−𝑦⃗ )

(𝑘0)2 − 𝑘⃗ 2 − 𝜇2 + 𝑖𝜖
𝛿 (𝑥⃗ − 𝑥⃗ 1) 𝛿 (𝑦⃗ − 𝑥⃗ 2) . (9.16)

First of all, expression (9.16) can be integrated over 𝑥⃗ and 𝑦⃗ . This is trivial, because

𝑥⃗ and 𝑦⃗ in arguments of delta-functions will be replaced: 𝑥⃗ by 𝑥⃗ 1 and 𝑦⃗ by 𝑥⃗ 2. Another

thing, which can be done immediately is the integration over 𝑦0, because

d4𝑦 = d𝑦⃗ d𝑦0 (9.17)

and then the integration over 𝑦0 can be performed, because 𝑦0 comes only with the

exponential

𝑒−𝑖𝑘
0(𝑥0−𝑡0) = 𝑒−𝑖𝑘

0𝑥0𝑒𝑖𝑘
0𝑦0 . (9.18)

When the integration over 𝑦0 will be completed, the proportionality coefficient will be a

delta-function on the variable 𝑘0, because an integral with exponential is just proportional

to the delta-function:
1

2𝜋

∫︁
d𝑦0𝑒𝑖𝑘

0𝑦0 = 𝛿
(︀
𝑘0
)︀
. (9.19)

According to the facts, which was discussed above, the simplified expression will have

the following form:

𝑉 = − 𝑞2~𝑐
(2𝜋)3

∫︁
d𝑘⃗

𝑒𝑖𝑘⃗ (𝑥⃗ 1−𝑥⃗ 2)

𝑘⃗ 2 + 𝜇2 − 𝑖𝜖
, (9.20)

where in the denominator since the integration over 𝑘0 was completed, 𝑘0 can be replaced

by 0.
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The term 𝑖𝜖 in the denominator of the (9.20) can be removed by taking a limit 𝜖→ 0,

because the integral over 𝑘⃗ has no problems with the denominator, because 𝑘⃗ 2 + 𝜇2 is

non negative. That’s actually shows that any Green’s function can be chosen, because all

Green’s functions differ by the 𝜖 prescription.

The simplified integral for the 𝑉 value will have the next form:

𝑉 = − 𝑞2~𝑐
(2𝜋)3

∫︁
d𝑘⃗

𝑒𝑖𝑘⃗ (𝑥⃗ 1−𝑥⃗ 2)

𝑘⃗ 2 + 𝜇2
. (9.21)

The integral (9.21) can be computed explicitly. This can be done by passing to spherical

coordinates. Let’s introduce the modulus of vector 𝑘⃗ , which can be denoted by 𝑘 without

vector symbol on it

𝑘 =
⃒⃒⃒⃗
𝑘
⃒⃒⃒

(9.22)

and the distance between points 𝑥1 and 𝑥2 should be also introduced, which is:

𝑟 = |𝑥⃗ 1 − 𝑥⃗ 2| . (9.23)

Then the spherical coordinate system can be chosen by directing the axis 𝑧 along

𝑥⃗ 1 − 𝑥⃗ 2 and then the integral will be written in the following way:

𝑉 = − 𝑞2~𝑐
(2𝜋)3

∫︁ ∞

0

𝑘2d𝑘

∫︁ 𝜋

0

sin 𝜃d𝜃

∫︁ 2𝜋

0

d𝜙
𝑒𝑖𝑘𝑟 cos 𝜃

𝑘2 + 𝜇2
. (9.24)

The spherical coordinate system can be described in the following way: the direction

of the 𝑧 axis is the same as the direction of the vector 𝑥⃗ 1 − 𝑥⃗ 2 and 𝑥 and 𝑦 axes are also

existed. Then the vector 𝑘⃗ is also defined, which is a running vector in the integral, and

then angles 𝜃 and 𝜙 should be introduced as it shown on the (fig. 9.2).

The standard measure of the d𝑘⃗ is:

d𝑘⃗ = 𝑘2 sin 𝜃d𝑘 . (9.25)

Nothing depends on angle 𝜙 in the integral (9.24) and it can be immediately integrated.

The result will give just 2𝜋.

Then the integral over angle 𝜃 can also be taken, because:

sin 𝜃d𝜃 = −d (cos 𝜃) , (9.26)

which is very convenient, because cos 𝜃 is standing in the exponential 𝑒𝑖𝑘𝑟 cos 𝜃. Then, the

integral will have the following form:

𝑉 = − 𝑞2~𝑐
(2𝜋)3

∫︁ ∞

0

𝑘2d𝑘
4𝜋

𝑘𝑟
· sin (𝑘𝑟)

𝑘2 + 𝜇2
, (9.27)
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Fig. 9.2. The spherical coordinate system

where the expression
sin (𝑘𝑟)

𝑘𝑟
(9.28)

come from integrating of the exponential in the (9.24).

Expression (9.27) can be simplified to the next form:

𝑉 = − 𝑞2~𝑐
2𝜋2𝑟

∫︁ ∞

0

d𝑘
𝑘 sin (𝑘𝑟)

𝑘2 + 𝜇2
. (9.29)

The integral from the (9.29) will be denoted as 𝐼 (𝑟), where:

𝐼 (𝑟) =

∫︁ ∞

0

d𝑘
𝑘 sin (𝑘𝑟)

𝑘2 + 𝜇2
. (9.30)

This integral can be computed by using the Cauchy residue theorem in the theory of

complex variables.

The 𝐼 (𝑟) can be also rewritten as:

𝐼 (𝑟) = − 𝜕

𝜕𝑟

∫︁ ∞

0

d𝑘
cos (𝑘𝑟)

𝑘2 + 𝜇2
. (9.31)

Then the cosine can be represented as a difference of two exponentials and, in fact, the

denominator should be also expanded into simple fractions. One more step to complete

is to make integration also from −∞ to +∞ using the fact that the function under the

integral is even. Therefore,

𝐼 (𝑟) = −1

4

𝜕

𝜕𝑟

∫︁ +∞

−∞

(︂
𝑒𝑖𝑘𝑟

(𝑘 + 𝑖𝑎) (𝑘 − 𝑖𝑎)
+

𝑒−𝑖𝑘𝑟

(𝑘 + 𝑖𝑎) (𝑘 − 𝑖𝑎)

)︂
, (9.32)

142



THE PRINCIPLES OF QUANTUM FIELD THEORY

GLEB ARUTYUNOV

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

where, the variable 𝑎 is equal to:

𝑎 = 𝜇 =
𝑚𝑐

~
=

1

𝜆
. (9.33)

In fact, in physical dimensions the quantity 𝑚𝑐
~ is known as an inverse lens 1

𝜆
and this is

something which is called as Compton wavelengths of a particle with mass 𝑚.

As can be seen the integral (9.32) is always real line, but the contour can be closed

in the complex plane and, in particular, for the first integral exponential 𝑒𝑖𝑘𝑟 it should

be closed in the upper half plane. For the second integral the situation is opposite and

it should be closed in the lower half plane. Then it can be seen, which poles ends up in

the lower half plane and the residue theorem should be used to compute the integral. The

corresponding pole in the up half plane will be equal to 𝑘 = −𝑖𝑎. In the lower half plane

it will be equal to 𝑘 = −𝑖𝑎.
So, the integral reduces to:

𝐼 (𝑟) = −1

4

𝜕

𝜕𝑟

(︂
2𝜋𝑖

𝑒−𝑎𝑟

2𝑖𝑎
− 2𝜋𝑖

𝑒−𝑎𝑟

−2𝑖𝑎

)︂
. (9.34)

Then it can be simplified to the following expression:

𝐼 (𝑟) = − 𝜋

2𝑎

𝜕

𝜕𝑟
𝑒−𝑎𝑟 , (9.35)

where after differentiating the final result will be equal to:

𝐼 (𝑟) =
𝜋

2
𝑒−𝑎𝑟 . (9.36)

In terms of Compton wavelengths expression (9.36) can be written as:

𝜋

2
𝑒−𝑟/𝜆 . (9.37)

Now expression (9.29) can be simplified and the result will be equal to:

𝑉 = − 1

4𝜋

𝑞2~𝑐
𝑟
𝑒−𝑟/𝜆 . (9.38)

Thanks to the (9.38) the potential between two equally charged static sources was gotten

and this potential is called as Yukawa potential.

In particular, from expression (9.38), several facts can be highlighted. First of all, a

very interesting thing is that this potential appears to be negative and changing 𝑞 → −𝑞
will produce the same expression, because of the existence of 𝑞2. And this potential with
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a minus sign actually means that the force is an attractive, because having a smaller

distance between the particles will decrease the potential and it will take more and more

negative values.

It should be also noticed that it’s preferable to approach each other to diminish

the energy. Diminishing the energy corresponds, therefore, in this case, to the desire

of particles to be closer to each other.

The second thing which can be seen is that there is the exponential, which dumps the

potential, when 𝑟 becomes sufficiently large, in particular, when 𝑟 becomes bigger than

the wavelengths of the particles potential shows exponential decay. So, potential goes to

0 very fast, actually exponentially with a distance increasing.

It is also should be noticed that the interaction range set up by the exponential does

depend on the Compton wavelengths. It’s governed by the effective length, which is turns

out to be Compton wavelengths.

This additionally shows, why people call the Greens function as a propagator. The

propagator propagates interaction from the one source to the other source or from a

source to a test particle. And it propagates interaction, represented by the field 𝜑.

Generally, a very physical calculation was performed, which showed explicitly what

happens if two particles are existed inside the space field with a scalar field 𝜑. And because

of interacting with this field they start to attract.

One more important fact is that when 𝜆 → ∞, which essentially means that 𝑚 → 0

according to
1

𝜆
=
𝑚𝑐

~
, (9.39)

the field will be massless scalar field, instead of massive scalar field and then the potential

between two static sources actually becomes a Coulomb potential:

𝑉 (𝑟) → − 1

4𝜋

𝑞2~𝑐
𝑟

. (9.40)

When mass is non trivial, the Coulomb potential gets screened and becomes short range

because of presence of the exponential.

In the mid of 1930s Yukawa tried to understand the origin of the strong force, which

holds together protons and neutrons in the nucleus. So, the nucleus consists of protons

and neutrons. It was also known that the force acting between these protons and neutrons

inside nuclear is a very short range.

Yukawa made a conjecture that the strong force was mediated by particle similar to

photon, which like photon in electrodynamics mediates interactions between electrons and
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positrons. He assumed that something similar creates place inside nucleus and there is a

hypothetical particle, which mediates interactions between this protons and neutrons.

Assuming that this mediating particle is massive and following absolutely the same

analogy with electromagnetism, one sees that one needs to add mass to the wave equation

and this produces as a result, the short range mediating force between two static sources.

Yukawa actually predicted the existence of a novel type of particle and from the known

data on the range of nuclear forces he was actually able to predict with quite a good

accuracy, the mass of this particle. So, if the range of the strong force is known, which

can be actually done experimentally, then 𝜆 can be deduced or equivalently the mass of

the particle can be found. And indeed later, this particle called 𝜋 meson or sometimes

people call it simply pion, pion was discovered in cosmic rays. It also appeared later in

this cyclotron experiments, where it was predicted by Yukawa.

Although, today, there are several types of mesons are known and it is also known that

mesons are not elementary themselves, but rather they are composite particles made of

the quark and it’s anti quark. Nevertheless, Yukawa theory made a very right qualitative

picture and it also, in a way, paved the development of what is called QCD or quantum

chroma dynamics. Nevertheless, that was very important step towards development of

QCD by assuming the nature of strong force as a rising from a massive particle with zero

spin.

As a general computation the field of any spin can be applied to a mediator and

similar computation takes place also for electromagnetism, where instead of minus sign

plus sign can be seen in the potential, and, therefore, there will be repulsive force instead

of attraction. Then for particles, it is more preferable to take a large distance between

them, in order to decrease the energy, because then energy is positive and it will be

decreasing when the distance will tend to infinity. So, sign is very important and sign

eventually comes from the equations of motion that induced by the type of action. For

instance, if a particle of a given speed was chosen to describe, as a result it leads to the

physical consequences of attraction or repulsion.

Then, a new chapter in the quantum field theory, namely the Dirac equation should

be introduced.
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Dirac equation

It’s a new and very interesting story called the Dirac equation. In 1928, the Dirac

discovered his relativistic equation trying to overcome difficulties with negative probability

densities of the Klein-Gordon equation.

As it was already shown Schrodinger made this attempt before to write down relativistic

quantum mechanics by taking dispersion relation between energy and momentum of

relativistic particle and transformed this condition in the language of operators by replacing

momentum and energy with the corresponding operators, shifts in a space and shifts in

time. And also he wrote down the Klein-Gordon equation, which was later rediscovered

many times by Klein, Gordon, Fock and many others.

But it was the problem to treat this equation as a relativistic equation for a wave

function 𝜑, because it has difficulties with probabilistic interpretation, because equation

have the second order. That’s allows to fix initial conditions and the initial velocities and

leads to the appearance of negative probability densities.

The reason, which led Dirac create his equation was essentially the following. First of

all, the target is to prevent the occurrence of negative probability densities. This means

that time derivatives in the formula for the probability density should be avoided. So,

the equation must, therefore, not contain time derivatives higher than the first order. For

instance, the Schrodinger equation in the usual quantum mechanics has the first order of

time:

𝑖~
𝜕

𝜕𝑡
𝜓 = 𝐻𝜓 . (9.41)

To achieve a good probabilistic interpretation, a wave function must satisfy the equation,

which contains only first derivative.

On the other hand, if relativistic covariance is wanted, then it requires that the

spacial and time components, in particular, spacial derivatives and the time derivative

must be treated on equal footing. For example, in the standard Schrodinger equation of

quantum mechanics, this is not the case, because, typically, the Hamiltonian contains

second spacial derivative. That’s immediately shows that the equation is non-relativistic,

because relativism requires that 𝑡 can be converted to 𝑥 and 𝑥 can be converted to 𝑡 by

means of linear Lawrence transformations. It is impossible to have this, if derivatives in

the equation have a different order.

Now also, one needs linearity to have a superposition principle like in quantum mechanics.

So, equation must be linear.
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Like in the usual quantum mechanics a superposition principle exists, because linearity

means that if there are two solutions of the equation, then they sum will be also a solution.

The last important point is, that since the relativistic particle is described, it must

still satisfy the standard on-shell condition for relativistic particles. So,

𝐸2 = 𝑝2𝑐2 +𝑚2𝑐4 . (9.42)

For 𝜓 this would mean that 𝜓 must satisfy the second order Klein-Gordon equation:(︂
1

𝑐2
𝜕2

𝜕2𝑡
− 𝜕2

𝜕𝑥2𝑖
+
(︁𝑚𝑐

~

)︁2)︂
𝜓 = 0 , (9.43)

because this equation will produce the relativistic dispersion relation.

Dirac said the following: let’s try to write down something, which would be linear for

𝜓 and contains derivative of the first order:

𝑖~
𝜕𝜓

𝜕𝑡
=

~𝑐
𝑖

(︂
𝛼1
𝜕𝜓

𝜕𝑥1
+ 𝛼2

𝜕𝜓

𝜕𝑥2
+ 𝛼3

𝜕𝜓

𝜕𝑥3

)︂
+ 𝛽𝑚𝑐2𝜓 , (9.44)

where the left hand side looks like non-stationary Schrodinger equation, but on the right

hand side, there are terms, which are the linear combination of first order derivatives

function 𝜓.

Coefficients 𝛼𝑖 cannot be just usual numbers, because if they’re usual numbers, which

have a certain values, then the equation is not even invariant with respect to usual three

dimensional rotations, because three dimensional rotations will act on coordinates 𝑥1, 𝑥2
and 𝑥3 and they will be just then produce changes of coefficients 𝛼1, 𝛼2, 𝛼3 and will

immediately destroy the equation.

So, Dirac said that it’s not possible for these 𝛼1, 𝛼2, 𝛼3 to be numbers and supposed

them to be matrices. If they are matrices, then 𝜓 cannot be just scalar and it should

be some multi component object. 𝜓 should be something, which would contain many

components: 𝜓1 and so on:

𝜓 =

⎛⎜⎜⎝
𝜓1

...

𝜓𝑛

⎞⎟⎟⎠ . (9.45)

𝜓 also cannot be a scalar also for another reason. From relativistic covariance it is

known that probability density, which would be

𝜌 = 𝜓*𝜓 , (9.46)
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it must be relativistic invariant or to be a zero component of a vector, because for 𝜌 the

continuity equation exists, which is written as

𝜕𝜌

𝜕𝑡
+ ÷𝑗⃗ = 0 . (9.47)

Expression (9.47) describing a vector probability, where a vector, probability density

and probability current are defined. And 𝜌 with 𝑗⃗ forms a four vector
(︁
𝜌, 𝑗⃗
)︁
. That is

why, 𝜌 must be a component of a 4-vector. It means that 𝜓 cannot be just scalar in this

case.

Indeed, the suggestion is to treat 𝛼𝑖 as matrices and 𝜓 as a column with a number of

components 𝜓1, . . . , 𝜓𝑛. Dirac called the object 𝜓, presented in the (9.45) as spinor.

By the way, if 𝛼 are some matrices, then 𝛽 is also a matrix and 𝜓 is a column.

Then, equation (9.44) can be written in the following form:(︂
𝑖~
𝜕

𝜕𝑡
+ 𝑖~𝑐𝛼𝑖

𝜕

𝜕𝑥𝑖
− 𝛽𝑚𝑐2

)︂
𝜓 = 0 . (9.48)

Let’s get the relativistic dispersion relation for 𝜓. This can be seen as follows. If such

an equation for a 𝑛-component object exists, it can be hit by the following operator:

𝑖~
𝜕

𝜕𝑡
− 𝑖~𝑐𝛼𝑖

𝜕

𝜕𝑥𝑖
+ 𝛽𝑚𝑐2 , (9.49)

which is a matrix differential operator. Firstly, it’s differential operator, because it contains

derivatives. Secondly, it’s a matrix.

When the (9.48) will be hit by the operator (9.49) from the left, the expression will

have the following form:

− ~2
𝜕2

𝜕𝑡2
+ ~2𝑐2

𝛼𝑖𝛼𝑗 + 𝛼𝑗𝛼𝑖

2

𝜕2𝜓

𝜕𝑥𝑖𝜕𝑥𝑗
+ 𝑖~𝑚𝑐3

(︀
𝛼𝑖𝛽 + 𝛽𝛼𝑖

)︀ 𝜕𝜓
𝜕𝑥𝑖

−
(︀
𝑚𝑐2

)︀2
𝛽2𝜓 = 0 , (9.50)

where initially there are nine terms to proceed, but four terms will cancel out. The second

derivative of 𝜓 with respect to 𝑥𝑖 and 𝑥𝑗 . This two derivatives acting on 𝜓 commute and

the derivative can be written in different ways, because it’s symmetric.

Obtained expression (9.50) is a consequence of equation (9.48). It was assumed that 𝜓

satisfy the linear equation and as a consequence it might satisfy the second order equation

(9.50), because it contains second order derivatives. It also contains a first derivative and

the term without derivative.

If the equation is multiplied by − 1
~2𝑐2 , then the equation will take the following form:

1

𝑐2
𝜕2𝜓

𝜕𝑡2
− 𝛼𝑖𝛼𝑗 + 𝛼𝑗𝛼𝑖

2

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
− 𝑖

𝑚𝑐

~
(︀
𝛼𝑖𝛽 + 𝛽𝛼𝑖

)︀ 𝜕𝜓
𝜕𝑥𝑖

+
(︁𝑚𝑐
ℎ

)︁2
𝛽2𝜓 = 0 . (9.51)

148



THE PRINCIPLES OF QUANTUM FIELD THEORY

GLEB ARUTYUNOV

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

Now it’s pretty clear what conditions on matrices 𝛼𝑖 and 𝛽 should be imposed to turn

equation (9.51) into the Klein-Gordon equation.

It is wanted to make exactly the Klein-Gordon equation for each component of 𝜓 and

each component of 𝜓 must satisfy the Klein-Gordon equation, because 𝜓 is supposed to

describe relativistic particle with a standard dispersion relation. It can be seen that:

𝛼𝑖𝛼𝑗 + 𝛼𝑗𝛼𝑖 = 2𝛿𝑖𝑗 , (9.52)

where 𝑖 and 𝑗 run from 1 to 3. Then the second term of (9.51) will be turned simply into

second derivative 𝜕2𝜓
𝜕𝑥𝑖2

.

Then the following should be required:

𝛼𝑖𝛽 + 𝛽𝛼𝑖 = 0 . (9.53)

Such a way the term with the first derivative will be removed.

Finally, to get the standard Klein-Gordon equation for a particle of mass 𝑚 the next

condition should be completed:

𝛽2 = 1 . (9.54)

So, the equation, which will be gotten for 𝜓 is the following:

1

𝑐2
𝜕2𝜓

𝜕𝑡2
− 𝜕2𝜓

𝜕𝑥𝑖2
+
(︁𝑚𝑐

~

)︁2
𝜓 = 0 . (9.55)

This equation is valid for each component of 𝜓, because there are no matrices. They all

now proportional to identity matrix. It also can be written in the next form:

(︀
𝜕𝜇𝜕

𝜇 + 𝜇2
)︀
𝜓 =

⎛⎜⎜⎝
(𝜕𝜇𝜕

𝜇 + 𝜇2)𝜓1

...

(𝜕𝜇𝜕
𝜇 + 𝜇2)𝜓𝑛

⎞⎟⎟⎠ = 0 . (9.56)

From relations (9.52) - (9.54) it is immediately can be seen that if indexes 𝑖 and 𝑗 will

be equal to each other, than expression (9.52) will have the following form:

𝛼𝑖𝛼𝑖 + 𝛼𝑖𝛼𝑖 = 2 (9.57)

and then (︀
𝛼𝑖
)︀2

= 1 . (9.58)

Including the condition (9.54), it was gotten that all squares of matrices equal to 1, where

1 here is the identity matrix, because 𝛼 and 𝛽 are matrices.
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Conditions (9.54) and (9.58) means all values of this matrices can be only equal to +1

or -1.

Second important observation is that all these matrices have zero trace and it can be

seen from the condition (9.53). 𝛽 is invertible, because of the (9.54) and, therefore, it can

be written that:

𝛼𝑖 = −𝛽𝛼𝑖𝛽 . (9.59)

Now a trace of 𝛼𝑖 can be taken and due to cyclic property of a trace it will be equal

to:

Tr𝛼𝑖 = −Tr
(︀
𝛽𝛼𝑖𝛽

)︀
= −Tr

(︀
𝛼𝑖𝛽2

)︀
= −Tr𝛼𝑖 = 0 . (9.60)

Analogously trace for matrix 𝛽 will be equal to:

Tr𝛽 = Tr
(︁(︀
𝛼𝑖
)︀2
𝛽
)︁

= Tr
(︀
𝛼𝑖𝛽𝛼𝑖

)︀
= −Tr𝛽 , (9.61)

where the following property was used:

𝛼𝑖𝛽 + 𝛽𝛼𝑖 = 0 → 𝛼𝑖𝛽𝛼𝑖 = −𝛽 . (9.62)

Therefore, ⎧⎨⎩Tr𝛼𝑖 = 0

Tr𝛽 = 0
(9.63)

It means that the number of positive eigenvalues must be the same as the number of

negative eigenvalues. And as it was gotten eigenvalues can be equal only to +1 or -1.

One more important conclusion is that the dimension of matrices 𝛼𝑖 and 𝛽 should be

even or, in other words, 𝑛 must be even.
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Lecture 10. The Dirac Equation and Lorentz

Transformations

In the last lecture the Dirac’s equation was introduced. The physical principles, which

are standing behind the derivation of this equation was basically discussed and an object

which is called spinor was introduced.

The main consequence of Dirac equation as it was computed is that this equation also

satisfies the Klein-Gordon equation. In other words, every component of our spinor satisfies

the Klein-Gordon equation, which means that every component describes a relativistic

particle, that means a dispersion relation for this particle is relativistic.

The equation also involves a set of matrices which satisfy the following properties:

there are three matrices 𝛼𝑖, which satisfy the following algebraic relation:

𝛼𝑖𝛼𝑗 + 𝛼𝑗𝛼𝑖 = 2𝛿𝑖𝑗 . (10.1)

And there is one matrix 𝛽, for which the following conditions are right:⎧⎨⎩𝛼𝑖𝛽 + 𝛽𝛼𝑖 = 0

𝛽2 = 1
(10.2)

It also was shown that traces of all these matrices are equal to 0. So,⎧⎨⎩Tr𝛼𝑖 = 0

Tr𝛽 = 0
(10.3)

According to (10.1) and (10.2) eigenvalues of matrices 𝛼𝑖 and 𝛽 are equal to +1 and

-1. Due to the condition (10.3) matrices can be realized only in even dimension.

Then the concrete realization of these matrices should be gotten. The first idea is that

since matrices must exist only in even dimensions, let’s try the minimal even dimension,

where such matrices have a chance to exist. The dimension, which satisfies this condition

is a dimension with 𝑛 = 2. Therefore, matrices 𝛼𝑖 and 𝛽 will be 2x2 matrices.
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In two dimensions there are three distinguished matrices, which are Pauli matrices⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜎1 =

⎛⎝0 1

1 0

⎞⎠
𝜎2 =

⎛⎝0 −𝑖

𝑖 0

⎞⎠
𝜎3 =

⎛⎝1 0

0 −1

⎞⎠
(10.4)

They actually obey the desired relation, namely the anti-commutator of these matrices

{𝜎𝑖, 𝜎𝑗} = 2𝛿𝑖𝑗 , (10.5)

which is similar to the anti-commutator of matrices 𝛼𝑖 and 𝑎𝑙𝑝ℎ𝑎𝑗. However in two

dimensions the fourth independent matrix would be just the identity matrix, but, unfortunately,

this cannot be identified with 𝛽, because identity matrix would commute with Pauli

matrices, while we should have a non-trivial relation between 𝜎-s and matrix 𝛽, which is

not just a simple commutation relation.

This means that in dimension with 𝑛 = 2 such realization of Dirac matrices cannot be

found. The next trial would be to ask for such matrices in dimension with 𝑛 = 4. Indeed,

it appears that the minimal dimension, where one can construct the four matrices 𝛼𝑖 and

𝛽 with all properties above is 4. Concretely, the following construction for 𝛼𝑖 can be taken:

𝛼𝑖 =

(︃
0 𝜎𝑖

−𝜎𝑖 0

)︃
. (10.6)

At the same time, for 𝛽 the next matrix can be taken

𝛽 =

(︃
1 0

0 −1

)︃
, (10.7)

It can be checked that matrices, indeed, satisfy all the relations above and they are

traceless. So, that’s concrete and explicit realization of the matrices, which should feature

in the Dirac equation.

In the last lecture it was found that the Dirac Hamiltonian and the Dirac equation in

the Hamiltonian form can be written in the following way:

𝑖~
𝜕𝜓

𝜕𝑡
= H𝜓 , (10.8)
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where H is the Dirac Hamiltonian, which can be called as first quantized Hamiltonian

meaning, that here the pedestrian approach to the theory was used. 𝜓 can be treated as a

multi component wave function for the Dirac equation, which has a form of the standard

Schrodinger equation.

The Dirac Hamiltonian is a matrix, which can be written in the following form:

H = 𝑐𝑎 𝑝 + 𝛽𝑚𝑐2 . (10.9)

In a more explicit form, expression (10.9) can be presented as:

H = 𝑐𝑎𝑖
(︂
−𝑖~ 𝜕

𝜕𝑥𝑖

)︂
+ 𝛽𝑚𝑐2 , (10.10)

where 𝑝 was replaced according to the definition of the momentum operator. H is a

differential matrix acting on four component wave function 𝜓 or simply on column

𝜓 =

⎛⎜⎜⎜⎜⎜⎝
𝜓1

𝜓2

𝜓3

𝜓4

⎞⎟⎟⎟⎟⎟⎠ . (10.11)

Now, the algebra of the matrices, which enter the Dirac’s equation, should be investigated

and this is needed in order to discuss covariant properties of the Dirac’s equation, in

particular, to understand how this equation transforms under Lawrence group, because

the Lawrence group is very important and it’s a symmetry group of relativistic quantum

field theory.

In order to to do this the structure of the matrices should be better understood. And

to complete it the Dirac’s equation should be multiplied by the ratio 𝛽
𝑐
. Also, the new

notation can be introduced:

𝛾0 = 𝛽 , 𝛾𝑖 = 𝛽𝛼𝑖 , (10.12)

where 𝑖 is running from 1 to 3.

Let’s also identify 𝑥0 with:

𝑥0 = 𝑐𝑡 (10.13)

and, therefore,
𝜕

𝜕𝑥0
=

𝜕

𝑐𝜕𝑡
. (10.14)

Then the Dirac’s equation can be written in a more symmetric form:[︂
𝑖~
(︂
𝛾0

𝜕

𝜕𝑥0
+ 𝛾𝑖

𝜕

𝜕𝑥𝑖

)︂
−𝑚𝑐

]︂
𝜓 = 0 , (10.15)
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where in the last term the variable 𝛽 is disappeared due to the property (10.2).

Now, the relativistic definition of a relativistic scalar product can be used(︁
𝑖𝛾𝜇𝜕𝜇 −

𝑚𝑐

~

)︁
𝜓 = 0 . (10.16)

With a natural choice of units

~ = 𝑐 = 1 (10.17)

equation (10.17) takes the form:

(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓 = 0 . (10.18)

And the (10.18) is the final form of the Dirac’s equation.

Is also can be seen that with the new matrices 𝛾𝜇 the algebraic relations, which was

introduced for 𝛼 and 𝛽 can be also uniformized in one relation for matrices 𝛾𝜇, namely

𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 2𝜂𝜇𝜈 · 1 . (10.19)

The free algebra generated by symbols 𝛾𝜇 modulo the relation (10.19) or subject to this

relation is called Clifford algebra.

The name goes back to the Clifford and this algebra has been known to mathematicians

before the discovery of the Dirac’s equation, but miraculously turns out that this mathematical

background, on which the Dirac’s equation is based on actually already existed in mathematics

in the form of the Clifford algebra.

From the definition of matrices 𝛾𝜇 it is clear that matrix 𝛾0 is Hermitian. So, it satisfies

the following relation: (︀
𝛾0
)︀+

= 𝛾0 , (10.20)

while the matrices 𝛾𝑖 are anti-Hermitian:(︀
𝛾𝑖
)︀+

= −𝛾𝑖 . (10.21)

(10.21) are right, because 𝛾𝑖 are given by the product of 𝛽 with 𝛼𝑖. 𝛽 and 𝛼𝑖 are

Hermitian, but under Hermitian conjugation the order of matrices should be changed.

Therefore, (︀
𝛾𝑖
)︀+

=
(︀
𝛼𝑖
)︀+
𝛽+ = −𝛽𝛼𝑖 = −𝛾𝑖 . (10.22)

The presented in (10.20) and (10.21) properties can be combined in one relation, which

can be written as

(𝛾𝜇)+ = 𝛾0𝛾𝜇𝛾0 . (10.23)
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For instance, when 𝜇 is specified to zero,(︀
𝛾0
)︀+

= 𝛾0𝛾0𝛾0 = 𝛾0 (10.24)

according to the fact that (𝛾0)
2

= 1.

One more important fact is that 𝜂𝜇𝜈 in the (10.19) is Minkowski metric. Another

important observation is that actually one concrete realization of 𝛾 matrices, which

satisfies the Clifford algebra relations, is found. In fact, there exist an infinite number

of possible realizations and this can be recognized by noting that actually if the following

similarity transformation is performed, 𝛾𝜇 can be taken and transformed as:

𝛾𝜇 → 𝑈𝛾𝜇𝑈−1 , (10.25)

where 𝑈 is an arbitrary unitary matrix. Then 𝛾 matrices obtained after this transformation

will satisfy the same Clifford algebra relations and also the same Hermiticity properties.

The fact that Clifford algebra relations are satisfied is trivial, because

𝑈 (𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇)𝑈−1 = 𝑈𝛾𝜇𝛾𝜈𝑈−1 + 𝑈𝛾𝜈𝛾𝜇𝑈−1 . (10.26)

Then the following property can be used

𝑈−1𝑈 = 𝑈𝑈−1 = 1 . (10.27)

to simplify the (10.26):

10.26 = 𝑈𝛾𝜇𝑈−1𝑈𝛾𝜈𝑈−1 + 𝑈𝛾𝜈𝑈−1𝑈𝛾𝜇𝑈−1 . (10.28)

The (10.28) can be written as:

10.28 = 𝛾′𝜇𝛾′𝜈 + 𝛾′𝜈𝛾′𝜇 . (10.29)

As a result

10.29 = 2𝜂𝜇𝜈1 . (10.30)

So the new 𝛾 matrices obtained by the unitary transformation satisfy the same Clifford

algebra relations and it can be also checked in an analogous way that due to unitarity of

𝑈 , hermeticity property of newly introduced 𝛾 matrices are the same as for the old ones.

The concrete representation, which was introduced for 𝛼𝑖 and 𝛽 in terms of 𝛾 matrices,

can be read in the following way:

𝛾0 =

(︃
1 0

0 −1

)︃
, 𝛾𝑖 =

(︃
0 𝜎𝑖

−𝜎𝑖 0

)︃
. (10.31)

155



THE PRINCIPLES OF QUANTUM FIELD THEORY

GLEB ARUTYUNOV

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

The concrete representation of 𝛾 matrices introduced above is called Dirac representation.

In this representation 𝛾0 is diagonal and has the form presented in the (10.31).

It also should be noticed, that other representations can be obtained by applying, for

instance, to the Dirac representation the unitary transformation with arbitrary 𝑈 .

Let’s investigate properties of 𝛾 matrices in more detail. From matrices 𝛾𝜇 16 linearly

independent Hermitian matrices was constructed in the following way: first of all, an

identity matrix can be built if

1 = 𝜂𝜇𝜇𝛾𝜇𝛾𝜇 (10.32)

will be constructed, where there is no summation over index 𝜇 and it should be either 0

or 1, 2 and 3. It can be seen that from Clifford algebra the product of 𝛾 matrices with

the same index and multiplied with Minkowski component of the Minkowski metric will

obtain identity.

Then four Hermitian matrices 𝛾0 exist and then 𝛾𝑖, which will be also Hermitian

matrices if they will be multiplied by 𝑖.

Six matrices, which can be denoted as 𝜎𝜇𝜈 , also can be formed and they will be given

by the following formulas:

𝜎𝜇𝜈 =

⎧⎨⎩𝜎𝑖𝑗 = 𝑖𝛾
𝑖𝛾𝑗−𝛾𝑗𝛾𝑖

2
= 𝑖𝛾𝑖𝛾𝑗 𝑖 < 𝑗 𝑖, 𝑗 = 1, 2, 3

𝜎0𝑗 = 𝛾0𝛾𝑗−𝛾𝑗𝛾0
2

= 𝛾0𝛾𝑗 , 𝑗 = 1, 2, 3
(10.33)

The number of matrices in the (10.33) is equal to 6. It also should be noticed that

these matrices are skew symmetric.

Then, there is one important matrix, which has a special name of 𝛾5, where 5 stands

for historical reasons. These matrix can be introduced as:

𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3 , (10.34)

where 𝑖 is added to provide uh the hermiticity property for 𝛾5.

Finally, there are also 4 matrices 𝜏𝜇 introduced in the following way:

𝜏𝜇 =

⎧⎨⎩𝜏 𝑖 = 𝛾𝑖𝛾5 , 𝑖 = 1, 2, 3

𝜏 0 = 𝑖𝛾0𝛾5
(10.35)

So, in total 16 hermitian 𝛾 matrices was constructed with the help of 𝛾-s.

It is also should be noticed that 𝛾5 matrix introduced in the (10.34) satisfies the

following properties: (︀
𝛾5
)︀2

= 1 ,
(︀
𝛾5
)︀+

= 𝛾5 . (10.36)
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In the Dirac representation due to the definition of 𝛾5 (10.34) the explicit form of this

matrix is:

𝛾5 =

(︃
0 1

1 0

)︃
. (10.37)

Then 𝛾5 is off diagonal in Dirac representation as soon as 𝛾0 is diagonal.

It can be checked that all other possible products of 𝛾 matrices and their linear

combinations can be expressed by 16 hermitian matrices that was introduced. This means

that these 16 matrices provide the basis in the space of 4x4 hermitian matrices.

Indeed, they form a basis it is needed to be shown that they are actually linearly

independent. This can be done in the following way. To show linear independence it

may be noticed that all these matrices except identity matrix have vanishing trace. For

instance, let’s do it for 𝛾𝜇 and use the fact that

𝛾𝜈𝛾
𝜈 = 1 , (10.38)

where one matrix 𝛾 have low index 𝜈 and another is upper index 𝜈 and there is no

summation over index 𝜈. The result is gotten due to the Clifford algebra.

Indeed, if the upper index 𝜇 in the (10.19) is replaced by the lower index 𝜇, then the

expression will have the following form:

𝛾𝜇𝛾
𝜈 + 𝛾𝜈𝛾𝑚𝑢 = 2𝛿𝜈𝜇 · 1 , (10.39)

where Minkowski metric was replaced by the Kronecker’s delta 𝛿𝑛𝜇𝑢. Now, if index 𝜇 is

equal to index 𝜈, then formula (10.39) will be transformed into:

2𝛾𝜈𝛾
𝜈 = 2𝛿𝜈𝜈 · 1 = 2 · 1 . (10.40)

That is why, (10.38) is right.

Coming back to the trace of 𝛾𝜇, the following standard trick to prove that trace

vanishes can be used:

Tr𝛾𝜇 = Tr1𝛾𝜇 = Tr (𝛾𝜈𝛾
𝜈𝛾𝜇)

⃒⃒⃒⃒
⃒
𝜈 ̸=𝜇

=
1

2
Tr (𝛾𝜈 (𝛾𝜈𝛾𝜇 + 𝛾𝜇𝛾𝜈)) , (10.41)

where the property (10.38) and cyclic property was used. This is the way how to manipulate

the product 𝛾𝜈𝛾𝜈 under the trace and then due to the Clifford algebra relation since index

𝜈 was chosen not to coincide with index 𝜇, the sum in the brackets of the (10.41) is
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actually 0. So, the result of the (10.41) is 0, which shows that all traces of 𝛾𝜇 is equal to

0:

Tr𝛾𝜇 = 0 . (10.42)

Analogously it can be shown that traces of all other matrices are 0. In particular, trace

of 𝛾5 is 0 and in the Dirac representation it can be explicitly seen from the form of the

matrix (10.37):

Tr𝛾5 = 0 . (10.43)

The fact that traces of all matrices excepting the identity matrix vanish can be used

to show that these 16 matrices are linearly independent. This can be shown by assuming

the opposite: it should be supposed that this matrices are linearly dependent and then if

a linear combination of all of them is created, it will be equal to

𝐹 = 𝑎 · 1 + 𝑏𝜇𝛾𝜇 + 𝑐𝜇𝜈𝜎𝜇𝜈 + 𝑑𝜇𝜏𝜇 + 𝑒𝛾5 , (10.44)

where 𝑎, 𝑏𝜇, 𝑐𝜇𝜈 , 𝑑𝜇 and 𝑒 are arbitrary coefficients. The statement that this matrices are

linearly dependent means that 𝐹 can be equal to zero with some non-zero coefficients. In

other words, the goal is to show that the situation when 𝐹 = 0 and some coefficients of

the linear combination are not equal to zero is not possible.

The proof can be done in the following way. First of all, a trace of the left and the

right hand side should be taken and since on the left hand side 𝐹 is zero, trace of 𝐹 is

also zero. So, the expression will have the following form:

0 = 𝑎Tr1 = 4 · 𝑎→ 𝑎 = 0 , (10.45)

where the fact that traces of all matrices excepting the identity matrix are vanished was

used.

Since on the left hand side of the (10.45) stands zero, 𝑎 must be equal to zero. So, the

term with 𝑎 is absent. Then the expression for 𝐹 should be taken again without identity

matrix and it should be multiplied with some 𝛾 matrix 𝛾𝜆. So,

Tr
(︀
𝛾𝜆𝐹

)︀
= 𝑏𝜇Tr

(︀
𝛾𝜆𝛾𝜇

)︀
+ 𝑐𝜇𝜈Tr

(︀
𝜎𝜇𝜈𝛾𝜆

)︀
+ 𝑑𝜇Tr

(︀
𝛾𝜆𝜏𝜇

)︀
+ 𝑒Tr

(︀
𝛾𝜆𝛾5

)︀
. (10.46)

Now, it can be shown by analyzing all traces, that all of them are equal to zero except

the trace with the argument 𝛾𝜆𝛾𝜇. For 𝜇 equal to 𝜆 due to the Clifford algebra the identity

matrix will be gained and, therefore,

Tr
(︀
𝛾𝜆𝐹

)︀
= 4𝑏𝜇 → 𝑏𝜇 = 0 . (10.47)
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In this case, only coefficients 𝑐𝜇𝜈 , 𝑑𝜇 and 𝑒 remain. Then multiplying the rest by 𝛾𝜆𝛾𝛽 it

can be shown that coefficients 𝑐𝜇𝜈 are equal to zero, then the same is for 𝑑𝜇 and, finally,

for 𝑒. In this way proceeding similarly to what was explained before, it can be shown that

all coefficients in the linear combination must be equal to zero. Therefore, these matrices

are linearly independent. This means that all found matrices form a basis in the space of

all complex 4x4 matrices.

Linear combinations of 16 matrices with complex coefficients allow to reconstruct any

complex 4x4 complex matrix. This statement is very similar to two dimensional case with

the Pauli matrices. If there are three Pauli matrices and an identity matrix, then it can

be seen that linear combinations of these matrices with complex coefficients can form any

2x2 complex matrix.

It also should be noticed that transforming 𝛾 matrices to another set of 𝛾 matrices

would be equivalent to transforming the wave function 𝜓 by unitary transformation

and unitary transformations are always allowed in quantum field theory and quantum

mechanics. This is the same statement as that changing the basis of 𝛾 matrices can be

compensated by the change of the wave function. And it can be seen from the Dirac

equation

(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓 = 0 . (10.48)

Now, this equation should be passed to another basis. So, 𝛾 matrices will be changed

to the new basis according to:

𝛾𝜇 → 𝑈𝛾𝜇𝑈−1 = 𝑈𝛾𝜇𝑈+ , (10.49)

where

𝑈−1 = 𝑈+ . (10.50)

Then in the new basis of 𝛾-s expression (10.48) will be changed in the following way:(︀
𝑖𝑈𝛾𝜇𝑈+𝜕𝜇 −𝑚

)︀
𝜓 = 0 . (10.51)

Since the fact that 𝑈𝑈+ = 1, (10.51) can be transformed to the following expression:(︀
𝑖𝑈𝛾𝜇𝑈+𝜕𝜇 −𝑚𝑈𝑈+

)︀
𝜓 = 0 . (10.52)

Equation (10.52) then should be multiplied from the left by 𝑈−1 and after this manipulation

the expression will look like

(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝑈+𝜓 = 0 , (10.53)
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(10.53) returned to the original form of the Dirac equation, where wave function 𝜓

was modified by a unitary transformation to wave function 𝜓′:

𝜓′ = 𝑈+𝜓 . (10.54)

The change of the wave function by unitary transformation should not result in the

change of the probability.

Now, the discussion of transformation properties of the Dirac equation under Lorentz

transformations can be performed.

Let’s remember what is spinor 𝜓. 𝜓 is a function on space-time, which represents a

4-component object of the following form:

𝜓 (𝑥) =

⎛⎜⎜⎜⎜⎜⎝
𝜓1 (𝑥)

𝜓2 (𝑥)

𝜓3 (𝑥)

𝜓4 (𝑥)

⎞⎟⎟⎟⎟⎟⎠ . (10.55)

So, it consists of 4 functions on space-time. The question, which should be understood is

what happens to 𝜓 under performing the Lorentz transformation.

Lorentz transformations of spinors

It is already known that all Lorentz transformations form a Lorentz group and the

Lorentz group has four different components and one component, which contains identity

is a subgroup of the Lorentz group. It’s a subgroup, which contains proper orthochronous

transformations. Other components of the Lorentz group are obtained from this one by

means of parity or time reversal operations or combined parity with time reversal.

Under proper Lorentz transformations, it is known how the variable 𝑥 transforms. So,

𝑥 is a space-time coordinate and under Lorentz transformations it undergoes the following

change:

𝑥′𝜇 = Λ𝜇
𝜈𝑥

𝜈 , (10.56)

where Λ𝜇
𝜈 is a matrix of Lorentz transformations with the defining property that

𝜂𝜇𝜈Λ
𝜇
𝛼Λ𝜈

𝛽 = 𝜂𝛼𝛽 . (10.57)

The (10.57) is the defining property of the Lorentz transformation, which actually tells

what Lorentz transformation is. Lorentz transformation is a linear transformation of space-

time coordinates, which preserves the Minkowski metric.
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Fig. 10.1. Four components of a Lorentz group

It is very natural to assume that what happens under Lorentz transformation is that

wave function 𝜓 (𝑥) goes to 𝜓′ (𝑥′), which is related to the old function 𝜓 (𝑥) by means of

application of some matrix, which is unknown, but which is needed to be found, and act

on 𝜓 (𝑥):

𝜓 (𝑥) → 𝜓′ (𝑥′) = 𝑆𝜓 (𝑥) , (10.58)

where 𝑆 is some matrix and this matrix must be a function of the transformation Λ, which

is applied to transform space-time points:

𝑆 = 𝑆 (Λ) . (10.59)

This matrix 𝑆 should be found. This can be done by applying the Einstein relativity

principle. This is a general principle, which can be applied to all equations of physics

saying that in the new Lorentz frame the Dirac equation must look the same as in the

original frame.

Namely, after the Lorentz transformation new function 𝜓′ (𝑥′) must still satisfy the

same Dirac equation: (︂
𝑖𝛾𝜇

𝜕

𝜕𝑥′𝜇
− 𝑚𝑐

~

)︂
𝜓′ (𝑥′) = 0 . (10.60)

Then, the reverse procedure should be completed. It should be turned back to the

original form of the Dirac equation, which would allow to relate 𝜓′ (𝑥′) with 𝜓 (𝑥). To do

this, first of all, the derivative 𝜕
𝜕𝑥𝜇

should be investigated:

𝜕

𝜕𝑥𝜇
=
𝜕𝑥′𝜈

𝜕𝑥𝜇
𝜕

𝜕𝑥′𝜈
, (10.61)

where the transformation of derivative under the change of coordinates was written and

then using the (10.56) the expression can be simplified:
𝜕

𝜕𝑥𝜇
= Λ𝜈

𝜇

𝜕

𝜕𝑥′𝜈
. (10.62)
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The relation (10.62) can be inverted and written in the following form:(︀
Λ−1

)︀𝜈
𝜇

𝜕

𝜕𝑥𝜈
=

𝜕

𝜕𝑥′𝜈
. (10.63)

Expression (10.63) can be gotten by the (10.62) by multiplying both sides of the

equation with an inverse matrix Λ−1.

Then, the Dirac equation in the new frame (10.60) should be multiplied from the left

with the matrix 𝑆−1: (︂
𝑖𝑆−1𝛾𝜇𝑆

𝜕

𝜕𝑥′𝜇
− 𝑚𝑐

~

)︂
𝜓 (𝑥) = 0 , (10.64)

where 𝜓′ (𝑥′) was replaced according to the (10.58) and in the second term the expression

𝑆−1𝑆 was gotten, which is actually equal to 1.

Let’s also substitute the change of the derivative. So,(︂
𝑖𝑆−1𝛾𝜈𝑆

(︀
Λ−1

)︀𝜇
𝜈

𝜕

𝜕𝑥𝜇
− 𝑚𝑐

~

)︂
𝜓 (𝑥) = 0 , (10.65)

The old form of the Dirac equation in the original frame will be reproduced if the

condition

𝑆−1𝛾𝜈𝑆
(︀
Λ−1

)︀𝜇
𝜈

= 𝛾𝜇 (10.66)

is right.

Expression (10.66) means that matrix 𝑆 is a solution of this expression. So, it is needed

to understand how to solve this equation and find how 𝑆 is related to Λ.

The (10.66) can be multiplied by matrix Λ from the right:

𝑆−1𝛾𝜇𝑆 = Λ𝜇
𝜈 · 𝛾𝜈 . (10.67)

Another way to write it is to multiply the original equation by 𝑆 from the left and by

𝑆−1 from the right and also then it will lead to another form:

𝑆𝛾𝜇𝑆−1 =
(︀
Λ−1

)︀𝜇
𝜈
𝛾𝜈 . (10.68)

It can be seen that the index 𝜈 as the index of a vector is transforming with matrix

Λ the same as index of a vector should transform under Lorentz transformation, but this

should be compensated by acting of on 𝛾𝜇 with the matrix 𝑆 by similarity transformation.

And one needs to find the matrix 𝑆, which does the Lorentz rotation on the indices of 𝛾

matrices by means of similarity transformation. So, it’s very convenient to come to the

infinitesimal form of the equation by assuming that a Lorentz transformation is close to
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identity. In other words, there exists a small parameter, which can be called as 𝜖 and Λ𝜇
𝜈

can be considered as a function of this small parameter 𝜖 and then we expand it in powers

of 𝜖. Terms of this operation can be written in the form:

Λ𝜇
𝜈 (𝜖) = 𝛿𝜇𝜈 + 𝜖𝜂𝜇𝜌𝜔𝜌𝜈 + . . . , (10.69)

where 𝜔𝜌𝜈 is a infinitesimal generator of Lorentz transformations. 𝜂𝜇𝜌 is a Minkowski

metric, which raises the index of 𝜌. It was introduced just for convenience, because indices

of Λ are located on a different level: 𝜇 is up, 𝜈 is down. Then, for Lorentz generator one

of lower indices up with the help of the Minkowski metric.

Then, it can be actually found what are 𝜔-s in the equation by taking the defining

relation for Lorentz transformation:

𝜂𝜇𝜈Λ
𝜇
𝛼 (𝜖) Λ𝜈

𝛽 (𝜖) = 𝜂𝛼𝛽 . (10.70)

Λ-s in the (10.70) can be expanded and then according to the (10.69) only terms of

linear order in 𝜖 will be kept:

𝜂𝜇𝜈 (𝛿𝜇𝛼 + 𝜖𝜂𝜇𝜌𝜔𝜌𝛼 + . . .)
(︀
𝛿𝜈𝛽 + 𝜖𝜂𝜈𝜏𝜔𝜏𝛽 + . . .

)︀
= 𝜂𝛼𝛽 . (10.71)

Then brackets in the (10.71) should be opened and only the leading term in 𝜖 should

be kept. It will be seen that in the equation on 𝜔 the leading term on the left hand side

will be equal to the leading term on the right hand side and this is 𝜂𝛼𝛽. So, there will be

cancelation of terms and at linear order in 𝜖 it will be found that

𝜔𝜇𝜈 = −𝜔𝜈𝜇 , (10.72)

which is simply means that the generator of Lorentz transformation with lower indices is

simply a skew symmetric, where 𝜇 and 𝜈 run values from 0 to 3. Matrix has six components

from the expression
4 × 3

2
= 6 . (10.73)

And these are exactly 6 Lorentz transformations making all 6 parameters of Lorentz

transformations: 3 rotations and 3 Lorentz boosts. So, 𝜔𝜇𝜈 are infinitesimal parameters of

arbitrary Lorentz transformation.

Then, a relationship between the Lie algebra and its Lie group should be used. The

representation of the one parametric subgroup of the Lorentz group can be written down

by simply exponentiating their Lie algebra element representing the Lorentz transformation:

Λ (𝜖) = exp (𝜖𝜂𝜔) . (10.74)
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The exponential (10.74) will give a one parametric subgroup of the Lorentz group,

where the parameter of one parametric subgroup is exactly the 𝜖. 𝜂𝜔 is a matrix, which

by definition equal to

(𝜂𝜔)𝜇𝜈 = 𝜂𝜇𝜌𝜔𝜌𝜈 . (10.75)

Two matrices 𝜂 and 𝜔 was already introduced and 𝜂𝜔 is one parametric subgroup of

a Lorentz group. This means that the original equation, which is wanted to be solved can

be now written in the following way:

𝑆−1 (𝜖) 𝛾𝜇𝑆 (𝜖) = Λ𝜇
𝜈 (𝜖) 𝛾𝜈 , (10.76)

where the equation is written by picking up as a Lorentz transformation elements Λ𝜇
𝜈 (𝜖)

of the one parametric subgroup of the Lorentz group.

When 𝜖 is equal to zero, the identity matrix will be gotten and, therefore, on the right

hand side 𝛾𝜇 will be gotten and on the left hand side a matrix 𝑆 must satisfy the property

that when 𝜖 = 0, it’s just an identity matrix:

𝑆 (0) = 1 . (10.77)

The first strategy will be to find a differential equation for 𝑆 with respect to the

parameter 𝜖 and then solve this differential equation. In this way, to find what exactly the

matrix 𝑆 is. Therefore, the (10.76) should be differentiated with respect to 𝜖:

− 𝑆−1d𝑆

d𝜖
𝑆−1⏟  ⏞  

d(𝑆−1(𝜖))
d𝜖

𝛾𝜇𝑆 + 𝑆−1𝛾𝜇
d𝑆

d𝜖
=

dΛ𝜇
𝜈 (𝜖)

d𝜖
𝛾𝜈 . (10.78)

This relation further can be written in the following way. If the auxiliary variable 𝑋 is

introduced, which is by definition

𝑋 :=
d𝑆

d𝜖
𝑆−1 , (10.79)

then equation (10.78) can take the following form

[𝛾𝜇, 𝑋] =
dΛ𝜇

𝜈

d𝜖
𝑆𝛾𝜈𝑆−1 . (10.80)

In other words, in the (10.80) equation (10.78) was multiplied by 𝑆 from the right and by

𝑠−1 from the left. Then, the left hand side reduces to a commutator of 𝛾𝜇 with 𝑋. The

expression 𝑆𝛾𝜈𝑆−1 comes from multiplications and then this is actually nothing as:

𝑆𝛾𝜈𝑆−1 =
(︀
Λ−1

)︀𝜈
𝛽
𝛾𝛽 . (10.81)
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Therefore,

[𝛾𝜇, 𝑋] =

(︂
dΛ

d𝜖
Λ−1

)︂𝜇
𝜈

𝛾𝜈 . (10.82)

If the solution for the one parametric subgroup is substituted into the (10.82), than

the result will be equal to:

[𝛾𝜇, 𝑋] = 𝜂𝜇𝜌𝜔𝜌𝜈𝛾
𝜈 . (10.83)

Equation (10.83) for 𝑋, which is needed to be solved, is purely matrix equation. So,

all elements here are matrices. This equation tells that the commutator of two matrices

𝛾𝜇 and 𝑋 is another matrix, where 𝜔𝜌𝜈 are parameters of Lorentz transformations.
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Lecture 11. Lorentz Boosts. Parity

Last time, the matrix 𝑆 was introduced, which performs the transformation of wave

function 𝜓 in such a way that the transformed Dirac equation has the same form as an

original one. And it was found out that if for a Lorentz transformation a one parametric

subgroup given by

Λ (𝜖) = exp (𝜖𝜂𝜔) , (11.1)

where 𝜂𝜔 has components (𝜂𝜔)𝜇𝜈 given by the formula:

(𝜂𝜔)𝜇𝜈 = 𝜂𝜇𝜌𝜔𝜌𝜈 . (11.2)

Then for matrix 𝑆 the corresponding formula for Lorentz transformation turns into

the following equation:

𝑆−1 (𝜖) 𝛾𝜇𝑆 (𝜖) = Λ𝜇
𝜈 (𝜖) 𝛾𝜈 . (11.3)

As the next step equation (11.3) should be differentiated with respect to 𝜖 and the

quantity 𝑋 given by

𝑋 =
d𝑆

d𝜖
𝑆−1 (11.4)

should be introduced.

Then the equation for 𝑋 takes the form:

[𝛾𝜇, 𝑋] = 𝜂𝜇𝜌𝜔𝜌𝜈𝛾
𝜈 . (11.5)

And this is an equation, which should be solved for the matrix 𝑋.

The convenient way to solve it is to look for a solution in the following form:

𝑋 = 𝜆𝜌𝜆𝜔𝜌𝜆 . (11.6)

So, a solution, which is linear in generators 𝜔 and 𝜔 are generators of Lorentz transformations,

carries indices 𝜌 and 𝜆 and this is the way how the form, in which the expression for matrix

𝑋 contains, looks.

Substituting the (11.6) into formula (11.5) will lead to an equation of the following

form:

𝑔𝜇𝜆𝜌𝜆 − 𝜆𝜌𝜆𝛾𝜇 =
1

2

(︀
𝜂𝜇𝜌𝛾𝜆 − 𝜂𝜇𝜆𝛾𝜌

)︀
, (11.7)

where on both sides 𝜔 is canceled. Also the fact that 𝜔 is skew symmetric was used:

𝜔𝜌𝜆 = −𝜔𝜆𝜌 . (11.8)
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𝜆 is also can be taken to be skew symmetric

𝜆𝜌𝜆 = −𝜆𝜆𝜌 . (11.9)

to satisfy the condition of this type.

With this assumption equation for 𝜆𝜌𝜆 can be solved and, directly, the solution will

have the following form:

𝜆𝜇𝜈 =
1

8
[𝛾𝜇, 𝛾𝜈 ] =

1

8
(𝛾𝜇𝛾𝜈 − 𝛾𝜈𝛾𝜇) . (11.10)

Due to the Clifford algebra expression (11.10) can also be written as

𝜆𝜇𝜈 =
1

4
𝛾𝜇𝛾𝜈 , (11.11)

where index 𝜇 is not equal to 𝜈. This is explicitly taken into account by the anti-

symmetrization procedure and, therefore, it can be checked that this is solution by

substituting matrix 𝜆 into equation (11.7) and using the Clifford algebra relation for

𝛾 matrices.

Then, on the other hand, since 𝜆 was found, the equation for 𝑆 can be now specified

as follows:
d𝑆

d𝜖
= 𝑋𝑆 =

1

4
𝛾𝜇𝛾𝜈𝜔𝜇𝜈 · 𝑆 . (11.12)

The (11.12) is an explicit differential equation, on the right hand side of which is the

product of a four by four matrix, because 𝛾𝜇 and 𝛾𝜈 are 4x4 matrices multiplied with

matrix 𝑆. This equation must be supplemented with the initial condition. If 𝜖 is equal to

zero, the corresponding matrix 𝑆 must be simply equal to the identity matrix:

𝑆 (𝜖 = 0) = 1 . (11.13)

The differential equation together with the initial condition has a unique solution and

this unique solution is simply given by:

𝑆 (𝜖) = exp

(︂
1

4
𝜖𝛾𝜇𝛾𝜈𝜔𝜇𝜈

)︂
. (11.14)

If expression (11.14) is differentiated with respect to epsilon, then the matrix

1

4
𝛾𝜇𝛾𝜈𝜔𝜇𝜈 (11.15)

comes down and exponential remains and, therefore, expression (11.12) will be right.
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So, what is written down in the (11.14) is a solution, where 𝜖 is a one parametric

subgroup and it is equal to any real number. In the described case, the variable 𝜖 is small

in order to consider expansion around 𝜖 is equal to zero. It can be fixed, for instance, to

be equal to one and, in this way, 𝑆 is taken as:

𝑆 = exp

(︂
1

4
𝛾𝜇𝛾𝜈𝜔𝜇𝜈

)︂
, (11.16)

which can be also written due to the skew symmetry of the matrix 𝜔 in the following

form:

𝑆 = exp

(︃
1

2

∑︁
𝜇<𝜈

𝛾𝜇𝛾𝜈𝜔𝜇𝜈

)︃
. (11.17)

The (11.17) is the final formula for the Lorentz transformation of a spinor. This means

that under the Lorenz transformation 𝜆 from the proper Lorenz group the Dirac spinner

transforms in the following way:

𝜓′ (𝑥′) = exp

(︃
1

4

3∑︁
𝜇,𝜈=0

𝛾𝜇𝛾𝜈𝜔𝜇𝜈

)︃
𝜓 (𝑥) , (11.18)

where 𝑥′ is obtained from 𝑥 by means of Lorenz transformation with the element Λ:

𝑥′ = Λ𝑥 . (11.19)

The answer that has been found is rather interesting. The first thing that can be

noticed is that the matrices Λ𝜇
𝜈 , which feature in Lorenz transformations, satisfy the

following algebraic relation, which is the commutator of two matrices:

[𝜆𝜇𝜈 , 𝜆𝜌𝜎] = 𝜂𝜈𝜌𝜆𝜇𝜎 − 𝜂𝜇𝜌𝜆𝜈𝜎 − 𝜂𝜈𝜎𝜆𝜇𝜌 + 𝜂𝜇𝜎𝜆𝜈𝜌 . (11.20)

In fact, it can be recognized that the (11.20) is nothing else as the commutation

relation between generators of the Lie algebra of the Lorenz group. This means that the

Lorenz transformations, which were constructed, are transformations realizing the spinor

representation of the Lorenz group.

It’s important to realize that this representation is different from the vector representation

acting on coordinates 𝑥𝜇 with the help of Λ𝜇
𝜈 .

Let’s investigate this Lorenz transformation that was found before in more details.

First of all, the transformation can be specified for the case of spatial rotations.
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Spatial rotations

This means that just rotations are considered. As it well known the usual three-

dimensional rotations can be specified by given a rotation axis and this can be done by

specifying the unit vector 𝑛⃗ with components 𝑛𝑖:

𝑛⃗ = {𝑛𝑖}

⃒⃒⃒⃒
⃒
𝑖=1,2,3

, (11.21)

where unit means that if the length of this vector is computed, then the length is equal

to one:

|𝑛⃗ | = 1 . (11.22)

So, 𝑛⃗ is a rotation axis e.g. the axis around which rotations will be performed. A

rotation angle should also be specified and it can be denoted by 𝜃. In other words, there is

axis, which is specified by the unit vector and an angle theta by means of each rotations

will be completed (fig. 11.1).

Fig. 11.1. Rotational axis formed by the unit vector 𝑛⃗

Then there are also elements 𝜔𝑖𝑗, which should be expressed and which are equal to

𝜔𝑖𝑗 = −𝜃 · 𝜖𝑖𝑗𝑘𝑛𝑘 , (11.23)

where 𝑛𝑘 is the infinitesimal matrix of a transformation.

Then, the following expression can be computed

𝛾𝑖𝛾𝑗𝜔𝑖𝑗 = −𝜃𝛾𝑖𝛾𝑗𝜖𝑖𝑗𝑘𝑛𝑘 . (11.24)

Expression (11.24) sometimes can be written in the following way:

𝛾𝑖𝛾𝑗𝜔𝑖𝑗 = 2𝑖𝜃Σ𝑘𝑛
𝑘 , (11.25)

where the following property was used:

𝛾𝑖𝛾𝑗𝜖𝑖𝑗𝑘 = −2𝑖Σ𝑘 . (11.26)
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where Σ with an upper index due to the Clifford algebra relations of 𝛾-s can be written

in the next form:

Σ𝑖 = 𝛾5𝛾0𝛾𝑖 . (11.27)

It can be shown that due to the Clifford algebra relations (11.26) is the same as an

expression (11.27). It can be also seen that the object, which was introduced is the matrix

and this matrix has 3 components. Σ is the collection of 3 matrices labeled by the index

𝑖:

Σ𝑖 = {Σ1,Σ2,Σ3} . (11.28)

In this way, Σ can be identified with 3 vector:

Σ𝑖 = Σ⃗ . (11.29)

In fact, if a variable 𝐽𝑖 is equal to

𝐽𝑖 =
1

2
Σ𝑖 = −1

2
Σ𝑖 , (11.30)

then it satisfies the following algebraic relation:

[𝐽𝑖, 𝐽𝑗] = −𝑖𝜖𝑖𝑗𝑘𝐽𝑘 . (11.31)

From expression (11.31) it can be recognized that this algebraic relation is nothing

else as the algebraic relations of the generators of the Lie algebra of the rotation group.

On the other hand, it is known that the (11.31) is a commutation relation for angular

momentum. In this way, operators 𝐽𝑖 can naturally interpret as spin operators. So Σ and

𝐽 can be called as spin operators. These objects are related to the notion of spin and the

notion of spin comes from characterizing the transformation properties of an object with

respect to three-dimensional rotations. Spin is a property of a wave function to transform

under three-dimensional rotations of space.

If not rotation by infinitesimal, but by finite angle 𝜃 is performed, then the general

formula should be used and for such a transformation 𝑆 will be equal to

𝑆 (𝑛⃗ , 𝜃) = exp

(︂
𝑖

2
Σ⃗ 𝑛⃗ 𝜃

)︂
. (11.32)

where indices 𝜈 and 𝜇 are taken only values 1, 2 and 3.

Expression (11.32) can be gotten explicitly starting from the formula

𝑆 (𝑛⃗ , 𝜃) = exp

(︂
1

2
𝛾𝑖𝛾𝑗𝜔𝑖𝑗𝜃

)︂
, (11.33)
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where the realization of 𝜔𝑖𝑗 (11.23) can be used, which involves the Levi-Civita tensor.

Then the definition of Σ should be used, which are 4x4 matrices. Such a way, the

exponential can be computed explicitly in the usual way by expanding in the Taylor

series:

𝑆 (𝑛⃗ , 𝜃) = 1 · cos
𝜃

2
+ 𝑖Σ⃗ 𝑛⃗ sin

𝜃

2
. (11.34)

Formula (11.34) realizes a transformation by finite angle 𝜃. What is interesting about this

formula is that if a rotation by angle 2𝜋 is performed, then because in the expression the

arguments of half of the angles are involved, this will be nothing else as:

𝑆 (𝑛⃗ , 𝜃 + 2𝜋) = −𝑆 (𝑛⃗ , 𝜃) . (11.35)

In other words, when a full rotation is performed, the spinor does not come to itself, but

it changes the sign. If the transformation of a spin is considered, then

𝜓′ (𝑥′) → −𝜓 (𝑥) , (11.36)

but it does not return to itself. The point 𝑥′ in the opposite actually returns to itself,

because 𝑥′ transforms with a matrix Λ and matrix Λ is a matrix, which depend on angle 𝜃

in such a way that it is periodic, up to upon rotation by 2𝜋 and, therefore, after rotation

by 2𝜋

𝜓′ (𝑥) = −𝜓 (𝑥) . (11.37)

Such a representation, which has the property described above is called double valued

representation of the rotation group. This is a specific of the spinor representation, because

the property occurs at the one and the same space-time point. Under performing a loop

in space and returning back to the original position a spinor can change the sign. From

this transformation it can be seen that such representations have a specific name in the

representation theory, they are called double valued representations of the rotation group.

So, the rotation group is 𝑆𝑂(3) has a topological property of being not simply connected.

If one try to draw it from a topological point of view, it is looks like a circle and it is

connected, but it’s not simply connected, which means that there are loops in 𝑆𝑂(3) that

are not contractable to an identity. Such loops, which are not contractable to the to the

identity, mean that the corresponding space is not simply connected.

At each point of 𝑆𝑂(3) two values of another group exists, which is called a double

cover of 𝑆𝑂(3) and it turns out that this double cover of 𝑆𝑂(3) is is know as 𝑆𝑈(2) group.

And 𝑆𝑈(2) group is a double cover of 𝑆𝑂(3), which is simply connected (fig. 11.2).
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Fig. 11.2. 𝑆𝑂(3) and 𝑆𝑈(2) groups

This leads to the existence of a special class of representations, which are called as

spinor representations or double valued representations of the rotational group. In fact,

this also means something else. This means that the spinor cannot be observed itself,

because if one is an observer and a transformation of the Lorentz frame by 2𝜋 is performed,

in fact, one returns back to the original point by making a loop in space. This means that

𝜓 (𝑥) cannot be observed, but what can be observed is the quadratic combinations, for

instance, quadratic combinations of spinor components or some quantities like 𝜓𝜓.

So, these quantities are quadratic in 𝜓 and these quantities remain invariant upon

making the rotation in space. Such quantities would be invariant and such quantities then

provide observables, but not the components of the spinor itself.

It is also should be noticed that every representation is characterized by a spin. Spin

can take half integer values, which are 0, 1
2
, 1, 3

2
, . . . and any representation of a given spin

has 2𝑗 + 1 components. For instance, for the case of spin zero, only one component exists

and this is a scalar. For the case of one half there are two components and although the

representation is realized on 4-dimensional spinors, the following is can be seen: if one

compute explicitly what Σ is in the Dirac representation, then it will be found out that

this is given by:

Σ𝑖 =

(︃
𝜎𝑖 0

0 𝜎𝑖

)︃
. (11.38)

Expression (11.38) is a diagonal in terms of Pauli matrices. Then with this explicit

form of Σ𝑖 the formula for 𝑆 can be written in the following way:

𝑆 (𝑛⃗ , 𝜃) =

(︃
1 · cos 𝜃

2
+ 𝑖𝜎⃗ 𝑛⃗ sin 𝜃

2
0

0 1 · cos 𝜃
2

+ 𝑖𝜎⃗ 𝑛⃗ sin 𝜃
2

)︃
(11.39)

If a four component spinor is represented in terms of two component spinors, the
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expression for 𝜓 can be written as follows:

𝜓 =

(︃
𝜑

𝜒

)︃
, (11.40)

where two components 𝜑 and 𝜒 transform independently with respect to three-dimensional

rotations and, moreover, they transform in the same way. That is exactly the representation

of spin 1
2
, which realized by means of the following 2x2 matrices

𝑅 (𝑛⃗ , 𝜃) = 1 · cos
𝜃

2
+ 𝑖𝜎⃗ 𝑛⃗ sin

𝜃

2
. (11.41)

In fact, one can build up representation corresponding to any half integer spin. In

particular, vector representation is a three-dimensional representation.

It should be noticed that for the representation of spin 1
2

the matrix 𝑆 factorizes

into diagonal blocks and a spinor can be reduced on two component spinor, which do

not mix with each other. So, they transform completely independent for the reason that

𝜑 and 𝜒 do not mix at all. That means that the four-dimensional representation just

breaks into two representations for two component spinors and each of them is just a

representation of spin 1
2

realized by 2x2 matrices. This classification of representations

characterized by spin is connected with the term of irreducible representations. In other

words, representations, which cannot be decomposed further and do not have inside

themselves invariant subspaces, are so-called irreducible representations. The classification

of irreducible representations of the rotation group tells that any such representation is

uniquely characterized up to unitary equivalence by a half integer number, which is called

spin. And if this number is fixed, then the dimension in which the representation is realized

is related to spin by the formula 2𝑗 + 1.

Once again, every reducible representation in representation theory sometimes are

called as D𝑗 and parameterized by half integer number, where 𝑗 is half integer number

called spin. The dimension of this representation D𝑗 for a given spin 𝑗 is equal to

dimD𝑗 = 2𝑗 + 1 . (11.42)

Lorentz boosts

For Lorentz boosts there is 𝜔0𝑖 exists, which is given by by the formula:

𝜔0𝑖 = 𝑛𝑖𝜗 , (11.43)
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where 𝜗 ia an hyperbolic angle. Then the matrix of Lawrence boosts 𝑆 (𝑛⃗ , 𝜗) is given by:

𝑆 (𝑛⃗ , 𝜗) = exp

(︂
1

2
𝛾0𝛾𝑖𝑛𝑖𝜗

)︂
, (11.44)

which is the same as

𝑆 (𝑛⃗ , 𝜗) = exp

(︂
1

2
𝛼⃗ 𝑛⃗ 𝜗

)︂
, (11.45)

where the following replacement was applied:

𝛾0𝛾𝑖 = 𝛼𝑖 . (11.46)

The (11.45) again can be explicitly computed and the following expression can be

found:

𝑆 (𝑛⃗ , 𝜗) = 1 cosh
𝜗

2
+ 𝛼⃗ 𝑛⃗ sinh

𝜗

2
. (11.47)

The fact that we are dealing with Lorentz boosts now shows itself in the appearance of

the hyperbolic functions. Hyperbolic functions signaling that now transformations occurs

due to Lawrence boosts.

Since in the Dirac representation matrices 𝛼𝑖 are block off-diagonal, the spinors 𝜑 and

𝜒, which was introduced above mix under Lawrence boosts, because explicitly matrices

𝛼𝑖 are given by:

𝛼⃗ =

(︃
0 𝜎𝑖

𝜎𝑖 0

)︃
. (11.48)

As a result, when the matrix 𝛼⃗ will be computed explicitly, it will be seen that this

matrix will mix the 𝜑 and 𝜒. Therefore, this matrices are not relativistic covariant.

Let’s also mention the Hermeticity properties of Lorentz transformations that were

found. For space rotations it can be seen that if one take 𝑆+ e.g. compute the Hermitian

conjugate of matrix 𝑆, then this will be equal to:

𝑆+ = exp

(︃
1

2

∑︁
𝑖<𝑗

𝛾𝑗+𝛾𝑖+𝜔𝑖𝑗

)︃
, (11.49)

where 𝜔𝑖𝑗 are real numbers. Using the fact that matrices 𝛾𝑖 are anti-Hermitian, then the

(11.49) can be written in the following form:

𝑆+ = exp

(︃
1

2

∑︁
𝑖<𝑗

𝛾𝑗𝛾𝑖𝜔𝑖𝑗

)︃
. (11.50)
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Then if the matrices 𝛾 is put in the old order by anti-commuting them, it will be gotten

that:

𝑆+ = exp

(︃
−1

2

∑︁
𝑖<𝑗

𝛾𝑖𝛾𝑗𝜔𝑖𝑗

)︃
. (11.51)

This, finally, it was gotten that

𝑆+ = 𝑆−1 . (11.52)

In other words, what was found is that

𝑆+𝑆 = 1 . (11.53)

Obviously, such matrices was called as unitary. It is seen that rotations are realized

by unitary matrices or, in other words, a unitary representation of the rotation group was

realized.

For Lorenz boosts the following is right:

𝑆+ = exp

(︂
1

2
𝛾𝑖+𝛾0+𝜔0𝑖

)︂
. (11.54)

It is known that 𝛾𝑖 is anti-hermitian and 𝛾0 is hermitian and, therefore

𝑆+ = exp

(︂
−1

2
𝛾𝑖𝛾0𝜔0𝑖

)︂
. (11.55)

Then the anti-commutation relation can be used for matrices 𝛾𝑖 and 𝛾0 by using the

Clifford algebra and the following expression will be gotten:

𝑆+ = exp

(︂
1

2
𝛾0𝛾𝑖𝜔0𝑖

)︂
= 𝑆 . (11.56)

This is different from the unitarity condition, rather the condition (11.56) shows that

matrix 𝑆 realizing Lorenz boosts is Hermitian. In fact, both properties under Hermitian

conjugation e.g. behavior of rotation matrices and behavior of Lorenz boosts can be

combined in one formula, which looks as follows:

𝑆+ = 𝛾0𝑆−1𝛾0 , (11.57)

when it can be seen that actually 𝛾0 commutes through matrix 𝑆−1 and (𝛾0)
2 is equal to

1. On the other hand, if 𝑆 is a Lorenz boosts, then 𝛾0 anti-commutes with 𝛾𝑖 standing in

the exponential and for this reason the equality of 𝑆−1 and 𝑆 will be gotten.
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Both together Hermiticity properties are encoded in one formula, which looks like

(11.57). In fact, this formula motivates to introduce the notion of a Dirac conjugate

spinor, which is defined as follows:

𝜓 = 𝜓*𝑡𝛾0 . (11.58)

So the 𝜓 is not a column, but this is a row consisting of 4 numbers, which can be also

written as

𝜓 = 𝜓+𝛾0 , (11.59)

which means conjugation and transposition multiplied with 𝛾0. This is because it’s spinor

𝜓 has a simple transformation property under Lorenz transformation:

𝜓′ (𝑥′) = (𝑆𝜓)* 𝑡𝛾0 , (11.60)

which is according to the discussion the same as

𝜓′ (𝑥′) = 𝜓+𝑆+𝛾0 . (11.61)

In all cases, 𝑆+ is given by formula (11.57) and then

𝜓′ (𝑥′) = 𝜓+𝛾0𝑆−1𝛾0𝛾0 . (11.62)

The (11.62) can be simplified and then the final expression for the 𝜓′ (𝑥′) will look as

follows:

𝜓′ (𝑥′) = 𝜓 (𝑥)𝑆−1 . (11.63)

In other words, under Lorenz transformations the Dirac conjugate spinor transforms

simply by multiplying it from the right by 𝑆−1. The Dirac equation now can be written

in the following form:

𝜓
(︁
𝑖𝛾𝜇𝜕𝜇 +

𝑚𝑐

~

)︁
= 0 , (11.64)

where now the derivative acting on the 𝜓, which is on the left hand side. The (11.64)

represents the Dirac equation for a Dirac conjugate spinner. It is of course follows from

the original Dirac equation by taking conjugation of the original Dirac equation and

multiplying it with 𝛾0. Then it can be independently checked that this equation for the

Dirac conjugate spinor remains to be Lorentz covariant exactly due to the properties that

under Lorentz transformations a Dirac conjugate spinor transforms by multiplying with

matrix 𝑆−1 from the right.
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In general, the transformation properties of spinors with respect to the rotation group

and with respect to Lorentz boosts, which all together provide the realization of the

proper orthochronous Lorentz transformations were introduced and it was done in the

Dirac representation of 𝛾 matrices. And in this Dirac representation for 𝛾 matrices it

was shown that a rotation group is realized in the form of a reducible representation,

which splits into two irreducible two-dimensional representations, while Lorentz boosts

mix these two-dimensional representations between themselves.

Now discrete transformations should be introduced, which are left over. They have to

be taken into account if we want to talk about the full Lorentz group. Therefore, it should

be realized how spinors transform under parity and under time reversal. Let’s start from

parity.

Parity

Parity is an operation, which takes three-dimensional 𝑥⃗ and sends it to minus −𝑥⃗ :

P : 𝑥⃗ → −𝑥⃗ , (11.65)

where time remains unchanged.

While coordinates 𝑥𝑖 are reflected this means that⎧⎨⎩𝑥⃗ ′ = −𝑥⃗

𝑡′ = 𝑡
(11.66)

Then, again for 𝜓′ (𝑥′) in the new Lorentz frame obtained from the old one by means

of the parity transformation as follows:

𝜓′ (𝑥′) = P𝜓 (𝑥) , (11.67)

where P is some matrix is needed to be found and which leaves the Dirac equation to be

a covariant. It is very simple to check, because if for the Dirac equation in the old frame

(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓 (𝑥) = 0 , (11.68)

then this must be the same in the new frame(︀
𝑖𝛾𝜇𝜕′𝜇 −𝑚

)︀
𝜓′ (𝑥′) = 0 . (11.69)

Then, from the (11.69) it can be seen that the term

𝑖𝛾0𝜕0 (11.70)
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will not be changed, because time is not changing under the parity transformation, while

all spatial derivative must change a sign, because of the (11.66):(︂
𝑖𝛾0𝜕0 − 𝑖𝛾𝑖

𝜕

𝜕𝑥𝑖
−𝑚

)︂
P𝜓 (𝑥) = 0 . (11.71)

From the (11.71) it is seen that if this equation is multiplied by P−1 from the left,

then to get the original Dirac equation following conditions should be to satisfied:

P−1𝛾0P = 𝛾0 , (11.72)

while

P−1𝛾𝑖P = −𝛾𝑖 . (11.73)

If the matrix P, which satisfies conditions (11.72) and (11.73) is found, then the

transformation of spinors under parity transformation will be gotten.

Equations (11.72) and (11.73) can be elementary solved if matrix P will be proportional

to 𝛾0 with some proportionality coefficient, which can be denoted by 𝜂P:

P = 𝜂P𝛾
0 . (11.74)

From the (11.74), P will commute with 𝛾0 and the (11.72) is trivially satisfied and

then due to the fact that 𝛾0 is anti-commuting with 𝛾𝑖 the second equation (11.73) will

be satisfied.

It is also should be noticed that a number 𝜂P is called as internal parity. P can be

required to be a unitary operator

P+P = 1 , (11.75)

which means that the number 𝜂P must be a phase and it’s modulus should be equal to

|𝜂P| = 1 . (11.76)

Then, if parity is performed twice, the original point must be achieved. Therefore,

P2 = 1 . (11.77)

On the other hand, it is known that we are dealing with a spinor and actually in this

case we can say that after application of parity twice ones returning to itself up to a minus

sign. And, therefore, in the second situation the following can be required:

P2 = −1 . (11.78)
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So, in the first case (11.77) for internal parity

𝜂P = ±1 , (11.79)

while in the second case

𝜂P = ±𝑖 . (11.80)

It can also be found that P anti-commutes with 𝛾5:

P−1𝛾5P = P−1
(︀
𝑖𝛾0𝛾1𝛾2𝛾3

)︀
P . (11.81)

Then P is proportional to 𝛾0 and 𝛾0 should be moved through all 𝛾 matrices. As a result

it will be found that

11.81 = −𝛾5 . (11.82)

If a four component spinor written in terms of two components 𝜑 and 𝜒 is taken, then

the parity operation act on it as follows:

P

(︃
𝜑

𝜒

)︃
= 𝜂P𝛾

0

(︃
𝜑

𝜒

)︃
. (11.83)

In the Dirac representation this is nothing else as

11.83 =

(︃
𝜂P𝜑

−𝜂P𝜒

)︃
, (11.84)

where parity preserves two component spinors and they do not mix, but from this computation

it is seen that components have a different parity.

If the internal parity is chosen, then with respect to the parity it can be seen that the

bilinear combinations of spinors can be classified in the following way:

1) 𝜓𝜓, which is the scalar product of the Dirac conjugate spinor with the spinor itself

and, therefore 𝜓𝜓 is a number. And under Lorentz transformations this object here

transforms as a scalar.

2) 𝜓𝛾5𝜓. Under Lorentz transformations, because Lorentz transformations anti-commute

with matrix 𝛾5, then this object appears to be a pseudo scalar. It also can be seen

that this object goes to minus itself under parity transformation due to the property

that under parity

P𝛾5 = −𝛾5 . (11.85)
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3) 𝜓𝛾𝜇𝜓, which transforms under Lorentz transformation as a vector. It is very important

combination, because it’s a current, which has the dependence on the index 𝜇.

4) 𝜓𝛾𝜇𝛾5𝜓, which is a pseudo vector. It’s transforms as a usual vector with respect to

Lorentz transformations from proper orthochronous Lorentz group, but it does not

change a sign under parity.

5) 𝜓𝜎𝜇𝜈𝜓 is bilinear combination of spinors, where 𝜎𝜇𝜈 is anti-symmetric tensor, which

was introduced earlier.
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Lecture 12. Time Reversal. Weyl Spinors and Weyl

Equations

At the previous lecture the transformations of the Dirac equation with respect to

Lorenz group was discussed and it was finished by understanding how a spinor transforms

under parity transformations.

Now, it is time to discuss the remaining type of transformations, which wasn’t discussed,

namely, time reversal.

Time reversal

At this topic it will be observed how a Dirac spinor transforms under transformations

of the type

𝑡→ −𝑡 . (12.1)

Classically, having such a transformation or having such a symmetry means that all

solutions or all trajectories 𝑞 (𝑡), which are solutions of equations of motion, are time

reversible.

In other words, if a solution is passed to another solution or to another function 𝑞𝑟𝑒𝑣 (𝑡),

which is

𝑞𝑟𝑒𝑣 (𝑡) = 𝑞 (−𝑡) , (12.2)

then this 𝑞𝑟𝑒𝑣 (𝑡) also appears to be a solution of equations of motion.

In this respect, it can be said that this transformation is in fact the symmetry of

equations. In a quantum mechanical situation of the Dirac equation, the procedure is

absolutely the same as was done, for instance, for parity.

First of all, one assume that time reversal symmetry is some operation, which can be

denoted as T. This transformation is assumed to act on a spinor 𝜓 in the following way:

T : 𝜓′ (𝑥′) = T𝜓 (𝑥) , (12.3)

where an operation of time reversal does not do anything to spatial coordinates, but

transforms the time coordinate. So,

𝑥′0 = −𝑥0 , (12.4)

while

𝑥′𝑖 = 𝑥𝑖 . (12.5)
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Let’s look at what actually happens in quantum mechanics under time reversal without

going even to a field theory to the Dirac equation. First it should be understood how

this operator actually acts in usual quantum mechanics. And in quantum mechanics,

transformations of operators under symmetries is done in the following way. If some

operator 𝐴 exists, then under time reversal it transforms as:

T𝐴T−1 = 𝐴′ . (12.6)

In quantum mechanics, it should be assumed that if an operator of coordinate exists,

then this operator does not change under the T transformation:

T𝑥⃗T−1 = 𝑥⃗ . (12.7)

So, coordinates of a particle do not change.

In addition to an operator of coordinate, there is also an operator of momentum and

since momentum through its definition involves the time:

𝑝 =
d𝑥⃗

d𝑡
·𝑚 , (12.8)

where the (12.8) is a classical definition of the momentum. Therefore, in non relativistic

quantum mechanics under such an operation operator of momentum must change the

sign. So,

𝑝 → −𝑝 . (12.9)

On the other hand, if the fundamental commutation relation of quantum mechanics[︀
𝑝𝑖, 𝑥

𝑗
]︀

= 𝑖~𝛿𝑗𝑖 (12.10)

is introduced, which is Heisenberg commutation relation, then this commutation relation

will be invariant under such a transformation with T only if this operation T acts also on

imaginary unit in the following way

T𝑖T−1 = −𝑖 . (12.11)

If the property (12.11) is applied to the (12.10), then

T
[︀
𝑝𝑖, 𝑥

𝑗
]︀
T−1 =

[︀
𝑝′𝑖, 𝑥

′𝑗]︀ = −
[︀
𝑝𝑖, 𝑥

𝑗
]︀
, (12.12)

where the fact that 𝑝 is change the sign and 𝑥⃗ is not is used. On the right hand side of

the (12.10) the following expression will be gotten:

−
[︀
𝑝𝑖, 𝑥

𝑗
]︀

= T𝑖T−1~𝛿𝑗𝑖 = −𝑖~𝛿𝑗𝑖 . (12.13)
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It is clearly seen that the (12.13) is the same as the (12.10). This means that in

the quantum mechanics Hamiltonian is invariant and, therefore, Heisenberg equations

are invariant with respect to time reversal operation. In general, such a transformation

is realized by the so called anti-linear anti-unitary operators. Anti-linear transformation

is clear from the definition of what linear transformation is. If a wave function exists

and it multiplied with a complex number 𝛼 and then for this construction T is applied,

an usual linear transformation would mean that 𝛼 can be taken out, but for anti-linear

transformation the complex number 𝛼 will be conjugated:

T (𝛼𝜓) = 𝛼*T𝜓 . (12.14)

Anti-unitarity means something else. The notion of unitarity is defined with respect

to a chosen scalar product in a Hilbert space and anti-unitarity means that if there is a

scalar product of two elements of an space 𝑥 and 𝑦 is existed and the operator T is applied

to this scalar product, then the result of this transformation will be equal to

⟨T𝑥|T𝑦⟩ = ⟨𝑥|𝑦⟩ = ⟨𝑦|𝑥⟩ , (12.15)

where the conjugated expression was gotten.

Time reversal quantum mechanics is different from what was normal for transformations

and symmetries in a sense that symmetries were realized by unitary operators. And the

time reversal is realized by anti-linear anti-unitary transformations. Of course, this feature

of quantum mechanics goes to the quantum field theory and the operator which will be

found in the Dirac theory, which corresponds to this time reversal, has a property of

similar types.

Therefore, the following should be assumed: transformation from 𝜓 (𝑥) → 𝜓′ (𝑥′),

which is transformation

𝜓′ (𝑥′) = T𝜓 (𝑥) (12.16)

can be explicitly realized in the next way. First of all the complex conjugation should be

involved. From a spinor 𝜓 we come to a complex conjugate spinor and then this is not the

end of the story, because the equation is a matrix equation and, therefore, the possible

multiplication of the conjugate spinor 𝜓* with some matrix 𝑇 should be admitted, where

𝑇 is a normal unitary matrix:

12.16 = 𝑇𝜓* (𝑥) . (12.17)

Now, to find what is actually the matrix 𝑇 should be, the Dirac equation should be

taken and, as before, we assume that in the transformed Lawrence frame by means of
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time reversal, the Dirac equation should look like in the original frame:(︂
𝑖𝛾𝜇

𝜕

𝜕𝑥′𝜇
− 𝑚𝑐

~

)︂
𝜓′ (𝑥′) = 0 . (12.18)

In other words, the (12.18) is the usual Dirac equation, but with 𝑥 replaced by 𝑥′. That’s

the standard way of implementing the Lawrence covariance of the Dirac equation.

First of all, the usual Dirac equation can be taken and then transformed into the

(12.18) by means of complex conjugation and multiplication with the matrix 𝑇 . The

usual Dirac equation has the next form:(︂
𝑖𝛾𝜇

𝜕

𝜕𝑥𝜇
− 𝑚𝑐

~

)︂
𝜓 (𝑥) = 0 , (12.19)

Then the (12.19) should be conjugated:(︂
−𝑖𝛾*0 𝜕

𝜕𝑥0
− 𝑖𝛾*𝑖

𝜕

𝜕𝑥𝑖
− 𝑚𝑐

~

)︂
𝜓* (𝑥) = 0 . (12.20)

The (12.20) can be simplified and the result will be equal to(︂
𝑖𝛾*0

𝜕

𝜕𝑥′0
− 𝑖𝛾*𝑖

𝜕

𝜕𝑥′𝑖
− 𝑚𝑐

~

)︂
𝜓* (𝑥) = 0 . (12.21)

The final thing which can be done is a multiplication of the equation from the left by

𝑇 . Then the equation will have the following form:(︂
𝑖𝑇𝛾*0𝑇−1 𝜕

𝜕𝑥′0
− 𝑖𝑇𝛾*𝑖

𝜕

𝜕𝑥′𝑖
− 𝑚𝑐

~

)︂
𝑇𝜓* (𝑥) = 0 . (12.22)

Now, expression (12.22) should be compared with the (12.18). From this comparison,

it is clearly seen that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜓′ (𝑥′) = 𝑇𝜓* (𝑥)

𝑇𝛾*0𝑇−1 = 𝛾0

𝑇𝛾*𝑖𝑇−1 = 𝛾𝑖

(12.23)

To solve relations for a matrix 𝑇 the representation for 𝛾0 and 𝛾𝑖 should be specified,

because we need to explicitly realize how the conjugation acts on this matrices.

For instance, in the Dirac representation for 𝛾 matrices

𝑔*0 = 𝛾0 (12.24)

and

𝛾*2 = −𝛾2 . (12.25)
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That’s because 𝛾2 is constructed with the help of the Pauli matrix 𝜎2 and this is a diagonal

matrix containing 𝑖 and −𝑖.
And matrices 𝛾1 and 𝛾3 are real, because they are constructed with the help of Pauli

matrices 𝜎1 and 𝜎3, which are real matrices. Therefore, eventually for this matrices the

following is right: ⎧⎨⎩𝛾*1 = 𝛾1

𝛾*3 = 𝛾3
(12.26)

Finally, for expressions in the (12.23) can be rewritten as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑇𝛾0𝑇−1 = 𝛾0

𝑇𝛾2𝑇−1 = 𝛾2

𝑇𝛾1𝑇−1 = −𝛾1

𝑇𝛾3𝑇−1 = −𝛾3

(12.27)

It can be easily seen that the solution for 𝑇 is equal to:

𝑇 = 𝛾1𝛾3 , (12.28)

because 𝛾0 anti-commutes with 𝛾1 and anti-commutes with 𝛾3. Therefore, when 𝛾1𝛾3 will

be passed through 𝛾0 one will get 𝛾0. In other words, matrix 𝑇 must commute with 𝛾0

and 𝛾2, but anti-commute with 𝛾1 and 𝛾3.

In principle 𝑇 is defined up to an arbitrary phase and very often people just fix this

phase, take a convenient choice and usually they pick up 𝑇 to be equal to

𝑇 = 𝑖𝛾1𝛾3 . (12.29)

This means that the action of the time reversal operation on the spinor is built up

and it looks like the 𝑇 operation apply to 𝜓 (𝑥):

𝜓′ (𝑥′) = T𝜓 (𝑥) = 𝑖𝛾1𝛾3𝜓* (𝑥) . (12.30)

So, this operation is known and in the presented case it is called as a Wigner time reversal

operation and it is represented by anti-linear anti-unitary operator, which can explicitly

realized as

T = 𝑇 ·𝐾 , (12.31)

where 𝐾 is an operator of complex conjugation.
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The same result about the form of time reversal operator can be alternatively derived

just by requiring that Dirac Hamiltonian is invariant with respect to this operation of

time reversal.

Now, an another important class of spinors can be introduced and the question about

reducibility of the proper orthochronous Lawrence transformations can be clarified. And

the subject, which will be discussed is the subject about Weyl spinners.

Weyl spinoes

In the last two lectures a representation of the proper orthochronous Lawrence group

was built on 4 component spinors. This representation is realized in terms of 4x4 matrices

and this matrices were denoted by letter 𝑆 (𝑅). They depend on the Lawrence transformation,

which can be performed on the space-time points or vectors. And it was shown that 𝑆 is

a spinor representation of the Lawrence group. Very interestingly that it turns out that

the representation, which was constructed is reducible.

There are two definitions of what can be called a reducible representation and this

definitions are equivalent. The definition number one says that representation of a Lie

group, which is Lawrence group is irreducible if there are no proper invariant subspaces,

where proper means subspaces, which are different from zero and the space representation

space itself. If zero subspace is excluded, then the definition of irreducibility means that

the representation is irreducible if there are no other invariant subspaces exist.

In other words, if start from any vector is performed in a representation space, then by

group transformations any other vector in a space will be reached and it does not happen

such a situation that there will be a subspace in a representation space, whose elements

transform via themselves and never get out of this subspace.

The second definition is telling that representations of a Lie group is irreducible if only

operators, which commute with all group elements are only those, which are proportional

to the identity operator (𝑐 · 1). In other words, these operators, which commute with any

group elements are operators of the form constant multiplied with identity operator and

no any other non-trivial operators except this one exists.

If the action of the group element in the representation space is exist and depend on

the group element 𝑔, it’s like a matrix 𝜋 (𝑔) acting on the concrete representation space.

Then, irreducibility means that there is non-trivial operator, like 𝑂 such that it commutes
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with the 𝜋 (𝑔) for any group element 𝑔:

𝜋 (𝑔)𝑂 = 𝑂𝜋 (𝑔) , (12.32)

for ∀𝑔 ∈ 𝐺 where

𝑂 ̸= 𝑐 · 1 , (12.33)

because 𝑐 · 1 always commute with any 𝜋 (𝑔), but if this case is excluded, then there any

such 𝑂 should not exist.

In fact, in representation theory, a theorem that the first and the second definitions

are equivalent exist.

If there is an invariant subspace, then there is also a projector on this invariant

subspace and an nontrivial projection operator, which projects on this invariant subspace,

can be constructed. But then, because it is invariant, it can be seen that this projection

operator, which does appear, is an operator which breaks the irreducibility from the point

of view of the second definition.

So, it is then clear how the proof should go. One should rely on the fact that actually

the projection of the representation space can be built and it gives a nontrivial operator

which breaks irreducibility.

If we look from the point of view of the second definition on the representation, which

was constructed, and ask ourselves why a representation that was constructed by 𝑆 (𝑅)

acting on spinor representation of the proper orthochronous Lorentz group is reducible.

It will be reducible if the nontrivial operator, which does commute with all group

elements or, in other words, with all 𝑆 (𝑅) representing elements of the proper orthochronous

Lorentz group can be found. The statement is that such an nontrivial operator does exist

and it’s very easy to see that this operator is simply equal to

𝛾5 · 𝑆 (𝑅) , (12.34)

because [︀
𝛾5, 𝑆 (𝑅)

]︀
= 0 . (12.35)

The reason for that is that 𝑆 (𝑅) realized explicitly as

𝑆 (𝑅) = exp

(︂
1

4
𝛾𝜇𝛾𝜈𝜔𝜇𝜈

)︂
, (12.36)

where 𝛾𝜇 is Dirac matrices and an index 𝜇 is from 0 to 3. Then, 𝛾5 is a matrix, which has

a property that the anticommutator of 𝛾5 and 𝛾𝜇 is equal to

{𝛾5, 𝛾𝜇} = 0 . (12.37)
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But if 𝛾5 anticommutes with 𝛾𝜇, then, in fact, it commutes with the product of any two

𝛾 matrices. More explicitly, it can be written that

𝛾5𝑆 (𝑅) = 𝛾5𝑒
𝛾𝜇𝛾𝜈𝜔𝜇𝜈/4𝛾5𝛾5 , (12.38)

where the fact that (𝛾5)
2 = 1 was used. Then the (12.38) can be rewritten as

𝛾5𝑆 (𝑅) = 𝑒𝛾5𝛾
𝜇𝛾𝜈𝛾5𝜔𝜇𝜈/4𝛾5 . (12.39)

𝛾5 can be moved through 𝛾𝜇𝛾𝜈 and 𝛾5 matrices will cancel each other and, as a result, the

following expression will be gotten:

𝛾5𝑆 (𝑅) = 𝑆 (𝑅) 𝛾5 . (12.40)

According to the logic of the definition of irreducibility the representation of the

proper orthochronous Lorentz group is reducible and the matrix 𝛾5 helps use them to

construct invariant subspaces, which remain invariant under proper orthochronous Lorentz

transformations. This is done by means of constructing two projectors 𝑃±, which are given

by

𝑃± =
1

2

(︀
1± 𝛾5

)︀
. (12.41)

𝑃± have properties of being a projector. This means that

𝑃 2
± = 𝑃± (12.42)

and that 𝑃± are orthogonal:

𝑃+𝑃− = 𝑃−𝑃+ = 0 . (12.43)

The third property is that these projectors realize the decomposition of identity:

𝑃+ + 𝑃− = 1 . (12.44)

Other properties follow immediately from the properties of 𝛾5. For instance,

𝑃+𝑃+ =
1

4

(︀
1 + 𝛾5

)︀ (︀
1 + 𝛾5

)︀
=

1

4

(︀
1 + 2𝛾5 + 1

)︀
=

1

2

(︀
1 + 𝛾5

)︀
= 𝑃+ . (12.45)

At the same time, 𝑃+𝑃− is equal to:

𝑃+𝑃− =
1

4

(︀
1 + 𝛾5

)︀ (︀
1− 𝛾5

)︀
=

1

4

⎛⎝1− (︀𝛾5)︀2⏟  ⏞  
=1

⎞⎠ = 0 . (12.46)
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Projectors provide a decomposition of the identity and this means also that 𝑃±

commute with all proper orthochronous Lorentz transformations. This means that objects,

which realize the invariant subspaces, can be defined and these objects are special spinors,

which are called Weyl spinors.

A Weyl spinor is defined is defined as a two component complex spinor, which transforms

irreducibly under proper orthochronous Lorentz transformations, where this transformations

form a group with the name 𝑆𝑂+ (1, 3). Complex means that two components of the Weyl

spinor are complex numbers. In other words, a four component Dirac spinor realizes the

reducible representation of the proper orthochronous Lorentz group, but it can be split into

two component spinors and each of these two component spinors will realize irreducible

representation of a proper orthochronous Lorentz group.

Explicitly, these two component spinors are constructed from a four component Dirac

spinor by applying the projection 𝑃+ 𝜓 and the projection 𝑃− to 𝜓:⎧⎨⎩𝜓+ = 𝑃+𝜓

𝜓− = 𝑃−𝜓
(12.47)

where 𝜓 is a four component Dirac spinor and 𝜓± are two component Weyl spinors.

In fact, Weyl spinors 𝜓± are called chiral and people say that 𝜓± have different chirality.

To understand more how two component Weyl spinors look like and why they are two

component a transformation from the Dirac representation of the Clifford algebra, which

explicitly is given by 𝛾 matrices of the next form

𝛾0 =

(︃
1 0

0 1

)︃
, 𝛾𝑖 =

(︃
0 𝜎𝑖

−𝜎𝑖 0

)︃
, (12.48)

to another representation, which is called as Weyl representation, can be done, where in

the Weyl representation matrices are realized in the following way:

𝛾0𝑐 =

(︃
0 1

1 0

)︃
, 𝛾𝑖𝑐 =

(︃
0 𝜎𝑖

−𝜎𝑖 0

)︃
, (12.49)

where 𝛾0𝑐 is taken to be off-diagonal and 𝛾𝑖𝑐 remains to be the same as 𝛾𝑖. Lower index 𝑐

means chiral.

It can be seen that 𝛾0𝑐 is nothing else as 𝛾5 in the Dirac representation and 𝛾5𝑐 , which

can be construct through chiral matrices in the chiral representation is equal to

𝛾5𝑐 = −𝛾0 . (12.50)
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As it was pointed earlier all representations of the Clifford algebra in 4 dimensions

are related to each other by means of unitary transformation and, therefore, there should

be a unitary transformation, which relates these two explicit realizations of the Clifford

algebra. Indeed, it can be seen that there is a matrix 𝑈 , which does this job. When it is

applied to all matrices 𝛾 of the Dirac representation, matrices of the Weyl representation

will be gotten:

𝑈𝛾𝜇𝑈−1 = 𝛾𝜇𝑐 . (12.51)

Explicitly, this matrix 𝑈 is given by

𝑈 =
1√
2

(︃
1 −1
1 1

)︃
(12.52)

and it has the following property:

𝑈+𝑈 = 1 . (12.53)

What is good about new 𝛾 matrices is that if spinor is written

𝜓 =

(︃
𝜑

𝜒

)︃
, (12.54)

where each of this 𝜑 and 𝜒 is two component, then the following can be seen.

In the Dirac representation the matrix 𝑆 has the form

𝑆 (𝑛⃗ , 𝜃) =

(︃
1 cos 𝜃

2
+ 𝑖𝜎⃗ 𝑛⃗ sin 𝜃

2
0

0 1 cos 𝜃
2

+ 𝑖𝜎⃗ 𝑛⃗ sin 𝜃
2

)︃
(12.55)

and shows that under rotations 𝜑 and 𝜒 transforms independently. This matrix was

constructed from the general formula:

𝑆 (𝑛⃗ , 𝜃) = 𝑒
1
4
𝛾𝑖𝛾𝑗𝜔𝑖𝑗 , (12.56)

where the indices of 𝛾 matrices are 1, 2 and 3. Therefore, the construction (12.55) does

not involve 𝛾0, but since passing from Dirac basis to Weyl basis of 𝛾 matrices there is no

change of 𝛾𝑖 and then this result for 𝑆 (𝑛⃗ , 𝜃) for Lorentz transformations corresponding

to rotations will hold also in the Weyl representation and the result will be the same.

For Lorentz boosts in the case of the Dirac representation 𝜑 and 𝜒 mix, but it is

interesting to see what happens in the new basis, because here the matrix 𝛾0 in the Weyl

basis is off-diagonal and Lorentz transformations corresponding to Lorentz boosts have

the form:

𝑒𝛾
0𝛾𝑖𝜔0𝑖/2 . (12.57)
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Now, the following can be seen: 𝛾0 is off-diagonal and 𝑔𝑎𝑚𝑚𝑎𝑖 are off-diagonal and

if two such off-diagonal matrices is multiplied, a diagonal matrix will be gotten. If it is

diagonal, then it can be seen that the matrix corresponding to Lorentz boosts will be

diagonal and it can be computed explicitly:

𝑆 (𝑛⃗ , 𝜗) =

(︃
1 cosh 𝜗

2
− 𝑠⃗ 𝑛⃗ sinh 𝜗

2
0

0 1 cosh 𝜗
2

+ 𝑠⃗ 𝑛⃗ sinh 𝜗
2

)︃
. (12.58)

The meaning of the (12.58) and (12.55) is that 𝜑 and 𝜒 do not mixed under any proper

Lorentz transformations neither under rotations nor under Lorentz boosts, because the

corresponding matrices in the Weyl representation are block diagonal. That’s, of course,

shows that, indeed, 𝜑 and 𝜒 are Weyl spinors, they transform independently under proper

orthochronous Lorentz transformations.

The other important remark is the following. It can be seen that the difference between

𝜑 and 𝜒 is also visible from formulas (12.58) and (12.55). Under rotations 𝜑 and 𝜒

transform completely in the same manner, but for Lorentz boosts 𝜑 and 𝜒 looks different

and the difference is in the sign of the elements of 𝑆 (𝑛⃗ , 𝜗).

Once again, a Lorentz group topologically looks like some set set of transformations.

Within this set there is a smaller subset, which has a name of proper orthochronous

Lorentz transformations and this subset has a name 𝑆𝑂+ (1, 3). Now we established a

transformations of the spinor 𝜓 with respect to 𝑆𝑂+ (1, 3) and when it was realized that

this representation of 𝑆𝑂+ (1, 3) on 4 dimensional spinors turns out to be reducible and

it splits into two invariant subspaces.

Fig. 12.1. Topological representation of the Lorentz group

The following question can be asked: if components of 𝜓 transform with different

matrices realizing Lorenz boosts, then representations can be still equivalent. Two representations

are called equivalent if there exists a unitary transformation such as 𝑈 and matrices of the

first representation 𝜋 (𝑔) transformed with this unitary transformation have the following
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form:

𝑈𝜋 (𝑔)𝑈−1 = 𝜌 (𝑔) . (12.59)

In this case equivalence is just a statement that one representation is gotten from the

other by changing the basis with the help of the unitary transformation. In fact, in

representation theory people agree to consider unitary representations of Lie groups up

to unitary equivalence.

The question can be formulated as follows: in spite of the fact that in the (12.58) there

are different signs, representations may be still equivalent and changing the basis in the

representation space say of spinor 𝜒 will lead to a representation of spinor 𝜑 and in this

case these two representations will be equivalent. The answer to this question is negative

and it can be proofed in the following way. Let’s suppose that they are equivalent. It

means that there exists a matrix 𝑈 such that it takes a matrix of the first representation

𝑈

(︂
1 cosh

𝜗

2
− 𝜎𝑖𝑛𝑖 sinh

𝜗

2

)︂
𝑈−1 (12.60)

and takes out of it the matrix of the second representation

11.61 = 1 cosh
𝜗

2
+ 𝜎𝑖𝑛𝑖 sinh

𝜗

2
. (12.61)

The (12.61) be valid for any 𝜗 and any 𝑛. If this should be valid for any 𝜗 and any 𝑛,

then 𝑛 can be picked up, for instance, in the form (1, 0, 0) or (0, 1, 0) or (0, 0, 1). Then

three equations will be gotten

𝑈

(︂
1 cosh

𝜗

2
− 𝜎𝑖 sinh

𝜗

2

)︂
𝑈−1 = 1 cosh

𝜗

2
+ 𝜎𝑖 sinh

𝜗

2
, (12.62)

where now instead of summed up 𝜎𝑖, there are individual 𝜎𝑖 standing. In the (12.62) 𝑈

can be passed through the first term and then the gotten expression can be divided by

sinh 𝜗
2
. As a result the following formula will be exist:

𝑈𝜎𝑖𝑈−1 = −𝜎𝑖 , (12.63)

which can be rewritten as follows:

𝑈𝜎𝑖 = −𝜎𝑖𝑈 . (12.64)

The (12.64) is an equation, which should be satisfied. From this expression it can be

seen that if a matrix 𝑈 exists, it must be 2x2 matrix, which anti-commutes with all three

Pauli matrices, but such a matrix does not exist. This means that these two representations
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of the proper orthochronous group acting on spinors 𝜑 and 𝜒 are inequivalent. Therefore,

these two representations of spin one half people agreed to denote differently. So, representation

for 𝜑 is denoted as
(︀
1
2
, 0
)︀

and the representation realized by 𝜒 is called
(︀
0, 1

2

)︀
. The spinors

realizing this representations for 𝜑 and 𝜒 can be denoted as 𝜓𝛼, which is a two component

spinor with index 𝛼, where 𝛼 takes values 1 and 2. But to distinguish them on writing we

will denote spinor of the type
(︀
1
2
, 0
)︀

by putting dot on 𝛼.

The two spinors 𝜓𝛼 and 𝜓𝛼̇ are two Weyl spinors, which realize different representations

of the Lorenz group. Earlier, when the construction of the Lorenz group was discussed, it

was mentioned that, in fact, the proper orthochronous Lorenz group, which is 𝑆𝑂+ (1, 3) is

not simply connected and it looks like a circle topologically, but it has a simply connected

cover. So it can be covered by another group, which is simply connected, and the name

of this group is 𝑆𝐿 (2,C). 𝑆𝑂+ (1, 3) and 𝑆𝐿 (2,C) have the same Lee algebra, where the

same means that Lee algebras are isomorphic, but these are not isomorphic as groups and

one is the universal cover of the other. In fact 𝑆𝐿 (2,C) is a double cover, which covers

twice the group 𝑆𝑂+ (1, 3) and, in fact, 𝑆𝐿 (2,C) are 2x2 complex matrices. And spinors

𝜓𝛼 and 𝜓𝛼̇ realize two inequivalent two-dimensional representations of 𝑆𝐿 (2,C). In fact,

this is a kind of a general statement. So, in general irreducible representations of a proper

orthochronous Lorentz are characterized by two half-integer numbers (𝑗1, 𝑗2). In one case,

representation 𝜓𝛼̇ is a representation, which corresponds to the choice 𝑗1 to be 1/2 and

𝑗2 to be 0, while the undotted spinor is characterized by choice of 0 and 1/2.

From the point of view of rotation group the group 𝑆𝑂+ (1, 3) looks like a multi-valued

representation and it’s related to the fact that when the rotation by 2𝜋 is performed a

spinor is not returning to itself, but it changes the sign. From the point of view of universal

covers 𝑆𝐿 (2,C) there is nothing strange happens and we deal with two-dimensional

spinors, which are usual two-dimensional objects transforming by multiplying with the

2x2 complex matrices.

Another remark is the following. Let’s return to the (fig. 12.1), which was drawn earlier.

It is understood that the representation of 𝑆𝑂+ (1, 3) is reducible and it can be reduced

to Weyl spinors, which form irreducible representation of 𝑆𝑂+ (1, 3). But what about

full Lorentz group, which includes all the other elements, which can be obtained from a

𝑆𝑂+ (1, 3) by applying parity and time reversal operations? For instance, under parity

operation components transforms not independently and if one look at parity operation,

which was discussed at the previous lecture, it will found that the parity operation is
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realized by means of

P𝜓 = 𝜂P𝛾
0𝜓 . (12.65)

In the Dirac representation 𝛾0 was diagonal and thanks to that (12.65) can be written as

P𝜓 = 𝜂P

(︃
1 0

0 −1

)︃
𝜓 . (12.66)

If 𝜓 is written in the matrix form, than the expression for the (12.66) will be simplified

to:

P𝜓 =

(︃
𝜂P𝜑

−𝜂P𝜒

)︃
. (12.67)

Therefore, in the Dirac representation components of 𝜓 do not mix. However, when pass to

the Weyl representation will be completed, parity will be still given by the same formula,

but 𝛾0𝑐 is off-diagonal and

P𝜓 = 𝜂P

(︃
0 1

1 0

)︃(︃
𝜑

𝜒

)︃
. (12.68)

Therefore,

P

(︃
𝜑

𝜒

)︃
=

(︃
𝜂P𝜒

𝜂P𝜑

)︃
. (12.69)

According to the (12.69) to describe the full Lorentz group both spinors are needed,

because with respect to the full Lorentz group the parity operation should be realized.

If the Dirac equation is observed from the point of view of 𝜑 and 𝜒, it will be seen the

following. The Dirac equation in the Weyl representation will take the following form⎧⎨⎩
1
𝑐
𝜕𝜑
𝜕𝑡

− 𝜎𝑖 𝜕𝜑
𝑥𝑖

+ 𝑖𝑚𝑐~ 𝜒 = 0

1
𝑐
𝜕𝜒
𝜕𝑡

+ 𝜎𝑖 𝜕𝜒
𝑥𝑖

+ 𝑖𝑚𝑐~ 𝜑 = 0
(12.70)

In fact equations (12.70) are coupled and equation for 𝜑 contains 𝜒 and equation for 𝜒

contains 𝜑. But there is one case, when they actually decoupled from each other and

become independent and this is the case, when mass of a particle is equal to 0, because

when mass is 0 the last term disappears. The equation becomes independent and this

equation for massless particle are called Weyl equations⎧⎨⎩
1
𝑐
𝜕𝜑
𝜕𝑡

− 𝜎𝑖 𝜕𝜑
𝑥𝑖

= 0

1
𝑐
𝜕𝜒
𝜕𝑡

+ 𝜎𝑖 𝜕𝜒
𝑥𝑖

= 0
(12.71)
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Weyl equation is covariant with respect to the proper orthochronous Lorentz transformation,

but it’s is not invariant under parity.

The time reversal operation can be also included. So, time reversal operation in the

Wiley representation can be written as

T𝜓 (𝑥) = 𝑇𝜓* = 𝑖𝛾1𝑐𝛾
3
𝑐𝜓

* = 𝑖𝛾1𝛾3𝜓* , (12.72)

where 𝛾1 and 𝛾3 are the same in Weyl and in Dirac representations. They are both off-

diagonal and their product is diagonal. So, under time reversal nothing bad happens and

spinors 𝜑 and 𝜒 continue to transform independently.
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Lecture 13. Solution of the Dirac Equation

In the last lecture the concept of Weyl spinors, the concept of irreducibility were

discussed and it was found that representation of the proper orthochronous Lorentz

group on four-dimensional spinors is reducible and it is decomposable into two irreducible

representations, which are realized by means of two-dimensional Weyl spinors, which are

called as dotted and undotted spinors. Also it was found that under parity transformation

one species of Weyl spinors, say, dotted spinors go to undotted ones and vice versa.

From this point of view these four-component spinors realize irreducible representation

of the full Lawrence group, which includes in addition to proper orthochronous Lorentz

transformations also parity and time reversal. Especially, parity acts non-trivial by transforming

into each other Weyl spinors.

Let’s write the Dirac equation again. This can be written as(︁
𝑖𝛾𝜇𝜕𝜇 −

𝑚𝑐

~

)︁
𝜓 = 0 . (13.1)

It is interesting to look for solutions of equation (13.1), which are given by plane waves or

which are described by plane waves. An answer for 𝜓 (𝑥⃗ , 𝑡) given by the following formula

𝜓 (𝑥⃗ , 𝑡) = 𝑢 (𝑝) 𝑒−𝑖(𝐸𝑡−𝑝 ·𝑥⃗ )/~ , (13.2)

where 𝑢 (𝑝 ) is an amplitude, which depends on components of the momentum 𝑝 only.

So, the (13.2) is a usual quantum mechanical plane wave and this wave is called plane,

because the value of the amplitude 𝑢 (𝑝) depends only on momentum, but it does not

depend on 𝑥 and the phase of this wave is one and the same follow points on the same

plane. This is a plane for which the scalar product

𝑝 · 𝑥⃗ = 𝑐𝑜𝑛𝑠𝑡 . (13.3)

In fact, this plane is perpendicular to vector 𝑝 and 𝑝 points to the direction of propagation

of this wave. In other words, if there is momentum 𝑝 pointing in a certain direction, then

a plane, which is orthogonal to 𝑝 to every point on this plane the phase 𝑝 multiplied by

𝑥 is one and the same. That is why the front of this wave is just a plane. It can be seen

geometrically (fig. 13.1), because every plane is described by the following equation

𝑥⃗ = 𝑥⃗ 0 + 𝑠𝑎⃗ + 𝑡𝑏 , (13.4)

where 𝑠 and 𝑡 belongs to R.
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Fig. 13.1. Plane, for which (13.3) is satisfied

𝑎⃗ and 𝑏⃗ will be two independent vectors on the plane. Then (13.4) is how any point

on the plane is described. Then it can be seen that product (13.3) will be equal according

to the (13.4) to

𝑝 · 𝑥⃗ = 𝑝 · 𝑥⃗ 0 = 𝑐𝑜𝑛𝑠𝑡 , (13.5)

where 𝑝 is a vector orthogonal to the plane and, therefore, it’s orthogonal to vectors 𝑎⃗

and 𝑏⃗ .

Now the ansatz (13.2) should be taken and pluged into the Dirac equation and in this

way an equation for the amplitude 𝑢 (𝑝) takes the following form:(︀
𝐸𝛾0 − 𝑐𝛾𝑖𝑝𝑖 −𝑚𝑐2

)︀
𝑢 (𝑝) = 0 . (13.6)

Now, it should be noticed that what is written down in the (13.6) is nothing else as

a eigenvalue problem for the Dirac Hamiltonian 𝐻, for which the following expression is

right:

𝐻𝜓 =
(︀
𝑐𝛼𝑖𝑝𝑖 +𝑚𝑐2𝛽

)︀⏟  ⏞  
Dirac Hamiltonian

𝑢 = 𝐸𝑢 , (13.7)

where 𝐸 is an eigenvalue of the (13.2) which coincides with the energy and to come

from equation (13.7). And to transform the (13.6) into (13.7) the first equation should be

multiplied with 𝛾0 from the left and 𝛾0 is the same as:

𝛾0 = 𝛽 . (13.8)

In this way, 𝛾𝑖 will turn into

𝛾𝑖 = 𝛼𝑖 . (13.9)
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And then we should get the Dirac Hamiltonian and put the energy to the other side.

Then, it will be seen that what is gotten is simply eigenvalue for the energy. This is very

similar to the way of solving Schrodinger equation by means of the plane wave. Plane

wave should be plug into the Schrodinger equation and then a eigenvalue problem for the

Schrodinger Hamiltonian will be absolutely the same.

It is convenient to take 𝑢 and represent it in terms of two component spinors. So, the

𝑢 is a four-component, but it can be split into 𝜑 and 𝜒:

𝑢 =

(︃
𝜑

𝜒

)︃
(13.10)

and plug into equation (13.6) and then the expression for 𝛼 and 𝛽 in terms of Pauli

matrices can be used. Therefore, the equation will take the following form:⎧⎨⎩(𝐸 −𝑚𝑐2)𝜑− 𝑐𝜎⃗ · 𝑝 · 𝜒 = 0

−𝑐𝜎⃗ · 𝑝 · 𝜑+ (𝐸 +𝑚𝑐2)𝜒 = 0
(13.11)

The (13.11) is simply a system of 4 homogeneous equations for the components of

spinors 𝜑 and 𝜒. In terms of the 2x2 blocks the corresponding matrix, which acting on 𝜑

and 𝜒 can be written as follows:(︃
𝐸 −𝑚𝑐2 −𝑐𝑠⃗ 𝑝
−𝑐𝜎⃗ 𝑝 𝐸 +𝑚𝑐2

)︃(︃
𝜑

𝜒

)︃
= 0 . (13.12)

This is a homogeneous system of of four algebraic equations for components of this spinors

𝜑 and 𝜒 and it is known that in order for this system to have a non-trivial solution it

is necessary that the determinant of the matrix, which defines this homogeneous system

must be equal to zero. Otherwise there is no non-trivial solution of this system at all.

This means that the condition to have a non-trivial solution should be imposed and

determinant of the matrix from the (13.12) must be equal to zero:⃒⃒⃒⃒
⃒𝐸 −𝑚𝑐2 −𝑐𝑠⃗ 𝑝
−𝑐𝜎⃗ 𝑝 𝐸 +𝑚𝑐2

⃒⃒⃒⃒
⃒ = 0 . (13.13)

The determinant (13.13) is a

13.13 = 𝐸2 −
(︀
𝑚𝑐2

)︀2 − 𝑐2𝑝 2 = 0 , (13.14)

From the (13.14), it can be seen that the condition of vanishing of determinant of

the matrix is nothing else as a relativistic dispersion relation or dispersion relation for
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relativistic particle, which tells that the energy of the plane wave solution is related to

the momentum of the plane wave by the following condition:

𝐸 = ±
√︀
𝑝 2𝑐2 +𝑚2𝑐4 . (13.15)

The relation (13.15) can be also called in the context of Klein-Gordon equation as the

on-shell condition.

It is interesting that the classical Dirac theory contains solutions with both signs of

energy. It has positive solutions and it has negative solutions. Therefore, from classical

point of view, the Dirac theory is not well defined, because solutions with negative energy

should not exist. Energy typically in usual dynamical systems is quantity which must be

restricted from below. But it can be seen that solutions with any value of negative energy

are possible. It will be shown that this kind of unwanted feature of the classical Dirac

theory will turn into advantage of this theory, when a transition to the quantum case will

be completed.

Meanwhile, the sign in front of the expression for the energy can be chosen and an

explicit solution can be produced. If the positive sign is fixed, then the following solution

can be gotten:

𝑢+ (𝑝) =

(︃
𝜑

𝑐𝜎⃗ 𝑝
𝐸(𝑝 )+𝑚𝑐2

𝜑

)︃
, (13.16)

where 𝑢+ means the solution with positive sign of the energy. So, solution is given in

terms of two components spinor 𝜑, which remains to be unrestricted. Once forever 𝐸 (𝑝 )

will be fixed to be positive:

𝐸 (𝑝 ) =
√︀
𝑝 2𝑐2 +𝑚2𝑐4 . (13.17)

If the negative sign is fixed in front of the square root, then the following solution will

be gotten:

𝑢− (𝑝) =

(︃
𝜑

𝑐𝜎⃗ 𝑝
−𝐸(𝑝 )+𝑚𝑐2

𝜑

)︃
, (13.18)

where 𝐸 (𝑝 ) again given by the same positive solution (13.17).

Since 𝜑 remains arbitrary there are two solutions with positive energy, where two

solutions means two components of 𝜑, and two solutions with negative energy. The fact

that we have two solutions hints that there exists another operator, which commutes with

the Dirac Hamiltonian and which distinguishes between themselves two components of

𝜑. So, the fact that 𝜑 remains to be arbitrary and unspecified and has two components
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means that there is another operator, which commutes with the Dirac Hamiltonian and

which distinguishes between these two components of 𝜑 and this operator indeed can be

constructed in an explicit way and it has a name Helicity operator.

Helicity operator

The Helicity operator is constructed as follows:

J =
1

|𝑝 |
𝛾5𝛾0𝛾𝑖𝑝𝑖 . (13.19)

If 𝛾 matrices are presented in the Dirac representation, then the following answer will be

found:

J =
1

|𝑝 |

(︃
𝜎⃗ 𝑝 0

0 𝜎⃗ 𝑝

)︃
. (13.20)

Then from the discussion of the law of matrices transformation, which realize a representation

of the Lorenz group, the (13.20) can be written as:

J =
(︁

Σ⃗ · 𝑛⃗
)︁
, (13.21)

where 𝑛⃗ is a unit vector in the direction of momentum and it’s equal to

𝑛⃗ =
𝑝

|𝑝 |
. (13.22)

Σ is understood as a 4x4 matrix on the one hand. On the other hand, Σ⃗ is a vector

built up from three Pauli matrices

Σ⃗ =

(︃
𝜎⃗ 0

0 𝜎⃗

)︃
. (13.23)

and the operator Σ can be called as the spin operator, because 3 matrices Σ⃗ satisfy the

Lie algebra relations for the angular momentum and this is an operator, which can be

identified with the spin of a particle.

It can be seen that the operator, which was constructed in (12.19)-(12.21) is nothing

else as a projection of spin on the direction of propagation or the direction of motion.

Now, it can be checked that an operator J commutes with the Dirac Hamiltonian:

[𝐻, J] = 0 . (13.24)

From the course on linear algebra it is known that if there are two commuting operators,

then they can be simultaneously diagonalized and this means that these operators will
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have the same basis in the Hilbert space made from common eigenstates of these two

commuting operators.

Properties of this operator are the following. The square of the Helicity operator is

equal to

J2 = 1 , (13.25)

which means that the eigenvalues of this operator are simply ±1. Thus a state with positive

energy can also be an eigenstate of the helicity operator with either positive or negative

helicity and the same, of course, true for states with negative energy. If we now take the

general solution for states with positive energy and the same general solution for states

with negative energy and further use these states to diagonalize the Helicity operator

on these states, which are already made to be eigenstates of the Hamiltonian, then the

following explicit solution for this the amplitude 𝑢 will be found, which is simultaneously

an eigenstate of both operators of 𝐻 and of J. Somehow to distinguish states with positive

and negative Helicity indices 1 and 2 will be used. For instance, for 𝑢+ (𝑝) a solution with

positive energy and positive Helicity can be written in the following way:

𝑢1+ (𝑝 ) = 𝜂 (𝑝)

⎛⎜⎜⎜⎜⎜⎝
𝑝3 + |𝑝 |
𝑝1 + 𝑖𝑝2

𝑐|𝑝 |(𝑝3+|𝑝 |)
𝑚𝑐2+𝐸(𝑝 )

𝑐|𝑝 |(𝑝1+𝑖𝑝2)
𝑚𝑐2+𝐸(𝑝 )

⎞⎟⎟⎟⎟⎟⎠ , (13.26)

where 𝜂 (𝑝) is a normalization, which can be used for normalization of the spinor in a

convenient way. This is how the solution with positive Helicity and the positive energy

looks like.

Then, it will also be an eigenstate of the Helicity operator with negative sign and the

solution for positive energy and this eigenstate will look as follows:

𝑢2+ (𝑝) = 𝜂 (𝑝)

⎛⎜⎜⎜⎜⎜⎝
− (𝑝1 − 𝑖𝑝2)

𝑝3 + |𝑝 |
𝑐|𝑝 |(𝑝1−𝑖𝑝2)
𝑚𝑐2+𝐸(𝑝 )

− 𝑐|𝑝 |(𝑝3+|𝑝 |)
𝑚𝑐2+𝐸(𝑝 )

⎞⎟⎟⎟⎟⎟⎠ . (13.27)
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Analogously, solutions with negative energy and different helicities can be written as

𝑢1− (𝑝 ) = 𝜂 (𝑝)

⎛⎜⎜⎜⎜⎜⎝
− 𝑐|𝑝 |(𝑝3+|𝑝 |)

𝑚𝑐2+𝐸(𝑝 )

− 𝑐|𝑝 |(𝑝1+𝑖𝑝2)
𝑚𝑐2+𝐸(𝑝 )

𝑝3 + |𝑝 |
𝑝1 + 𝑖𝑝2

⎞⎟⎟⎟⎟⎟⎠ (13.28)

and

𝑢2− (𝑝) = 𝜂 (𝑝)

⎛⎜⎜⎜⎜⎜⎝
− 𝑐|𝑝 |(𝑝1−𝑖𝑝2)

𝑚𝑐2+𝐸(𝑝 )

𝑐|𝑝 |(𝑝3+|𝑝 |)
𝑚𝑐2+𝐸(𝑝 )

− (𝑝1 − 𝑖𝑝2)

𝑝3 + |𝑝 |

⎞⎟⎟⎟⎟⎟⎠ . (13.29)

Overall, normalization can be chosen in a convenient way to provide a convenient

orthogonality relations for the four different solutions presented above. It turns out then

if the normalization is chosen in the following way:

𝜂 (𝑝) =
1

2

√︃
𝑚𝑐2 + 𝐸 (𝑝 )

𝑚𝑐2 (𝑝 2 + 𝑝3 |𝑝 |)
, (13.30)

then solutions are conveniently normalized in the following way:

𝑢𝑟+ (𝑝 )𝑢𝑠+ (𝑝 ) = 𝛿𝑟𝑠 , (13.31)

where 𝑢̄ is Dirac conjugate spinor. In other words, the scalar product of Dirac conjugate

spinor with positive energy spinor of different helicity gives 0. For negative energy solutions

with different helicity the story is similar with a little exception that on the right hand

side it will be -1:

𝑢𝑟− (𝑝 )𝑢𝑠− (𝑝 ) = −𝛿𝑟𝑠 . (13.32)

In fact, these relations also can be found by using the projector operations or projectors

on solutions with a definite helicity simply by using the fact (13.25). So helicity plus and

minus projection operators can be introduced, which are simply equal to

J± =
1± J

2
. (13.33)

Because of the fact that J squared is equal to 1, J± have all the properties of projectors

and, in particular, it can be also checked that they satisfy the following properties. If J±
is an operator, which depends on momentum, then it can be seen that

J± (𝑝 ) = J∓ (−𝑝 ) . (13.34)
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This is one of the properties that can be verified explicitly from the form of the operator.

In fact, solutions that was found for an amplitude 𝑢 look pretty complicated, because

there is a certain amount of symmetry broken, because of the fact that components of

momentum entering differently in different elements of the corresponding spinors. But, in

fact, these formulas immensely simplify if we go to the rest frame of a massive particle.

So, if particle is massive, a transition to the rest frame can be done, where

𝑝 = 0 . (13.35)

Then it can be checked that components with positive and negative energy and definite

helicity are simply turn into

𝑢1+ =

⎛⎜⎜⎜⎜⎜⎝
1

0

0

0

⎞⎟⎟⎟⎟⎟⎠ , 𝑢2+ =

⎛⎜⎜⎜⎜⎜⎝
0

1

0

0

⎞⎟⎟⎟⎟⎟⎠ , 𝑢1− =

⎛⎜⎜⎜⎜⎜⎝
0

0

1

0

⎞⎟⎟⎟⎟⎟⎠ , 𝑢2− =

⎛⎜⎜⎜⎜⎜⎝
0

0

0

1

⎞⎟⎟⎟⎟⎟⎠ , (13.36)

where matrices are turned to the standard basis in the space C4.

In fact, this simple expression for components of the spinors can be used to perform a

Lorentz transformation in the arbitrary Lorentz frame. And then the result, which already

was found, will be obtained. The only point is that solutions, which will be obtained in this

way do not have a definite helicity and an extra rotation of the spinors should be performed

to diagonalize the helicity operator by taking linear combinations of two positive energy

solutions and then separately two negative energy solutions.

If solutions with positive energy are considered, then solutions for positive energy,

but for different helicities are orthogonal. The same is true for solutions with negative

energies.

It is interesting to discuss what happens if now solutions with positive and negative

energy are taken and a scalar product is needed to be evaluated. There is a little problem,

because helicity operator commutes with the matrix 𝛾0 that can be understood from the

explicit form of this operator. [︀
J, 𝛾0

]︀
= 0 (13.37)

Indeed helicity operator does commute with 𝛾0 and 𝛾0 is important, because it is used

to define the Dirac conjugate spinor, which can be recalled as

𝑢 (𝑝 ) = 𝑢+ (𝑝 ) 𝛾0 . (13.38)
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It should be noticed that the Dirac conjugate spinors, but not Hermitian conjugate

spinors, are interested, because Dirac conjugate spinors transform under Lorentz transformation

with the inverse matrix of Lorentz transformation, in comparison to the matrix of under

which the spinor 𝑢 transforms. That is useful, because then the Lorentz covariant combinations

can be easily built up. For instance,

𝑢 (𝑝)𝑢 (𝑝) (13.39)

is a scalar,

𝑢 (𝑝) 𝛾𝜇𝑢 (𝑝) (13.40)

is a vector and so on. So, that is very useful for constructing objects with well-defined

transformation properties under Lorentz transformations.

With respect to Helicity everything is fine, Helicity goes through 𝛾0 and act on the 𝑢

itself, because Helicity commutes with 𝛾0, but this is not the case for the Hamiltonian 𝐻,

for which such a nice property does not exist. It does not commute with 𝛾0[︀
𝐻, 𝛾0

]︀
̸= 0 . (13.41)

This leads to the fact that if two spinners of different energy are taken, then the scalar

product will not be equal to zero. 𝛾0 enters into the definition of the Dirac conjugate

spinner rather the exact relation between 𝐻 and 𝛾0 is as follows:

𝛾0𝐻 (𝑝 ) 𝛾0 = 𝐻 (−𝑝 ) . (13.42)

That is clear from the definition of 𝐻:

𝐻 (𝑝 ) = 𝑐𝛼𝑖𝑝𝑖 +𝑚𝑐2𝛽 , (13.43)

where 𝛼𝑖 are simply given by

𝛼𝑖 = 𝛾0𝛾𝑖 (13.44)

and 𝛽 is again equal to:

𝛽 = 𝛾0 . (13.45)

In fact, the property (13.42) can be used in the following way. First of all, it can be

seen that if a solution with a positive energy is taken and the Hamiltonian is applied to

it, then a positive eigenvalue will be gotten:

𝐻 (𝑝 )𝑢+ (𝑝) = 𝐸 (𝑝 )𝑢+ (𝑝) . (13.46)
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Then from the (13.46) the next expression follows. Since the Hamiltonian is Hermitian,

then:

𝑢†+ (𝑝)𝐻 (𝑝 ) = 𝐸 (𝑝 )𝑢†+ (𝑝) . (13.47)

𝑢†+ (𝑝) contains 𝛾0 and now the 𝛾0 can be compensated by:

𝑢+ (𝑝) 𝛾0𝐻 (𝑝 ) 𝛾0 . (13.48)

Then the (13.48) is simply the following thing:

13.48 = 𝐸 (𝑝 )𝑢+ (𝑝) , (13.49)

because what is written down here is simply the same relation as (13.47), but with plug

between 𝑢†+ (𝑝) and 𝐻 (𝑝 ) 𝛾0 squared matrix and multiplied by 𝛾0 from the right.

On the other hand, it is known that

𝛾0𝐻 (𝑝 ) 𝛾0 = 𝐻 (−𝑝 ) (13.50)

and, therefore, the (13.49) can be written as:

𝑢+ (𝑝)𝐻 (−𝑝 ) = 𝐸 (𝑝 )𝑢+ (𝑝) . (13.51)

The relation (13.51) can be multiplied by a spinor 𝑢− (−𝑝) from the right:

𝑢+ (𝑝)𝐻 (−𝑝 )𝑢− (−𝑝) = 𝐸 (𝑝 )𝑢+ (𝑝)𝑢− (−𝑝) . (13.52)

The (13.52) can be simplified further if the following property will be used:

𝐻 (−𝑝 )𝑢− (−𝑝) = −𝐸 (𝑝 )𝑢− (−𝑝) , (13.53)

where minus sign appeared due to the fact that −𝐸 (𝑝 ) is eigenvalue for the negative

energy solution.

According to the (13.53), the (13.52) can be simplified and the following equation can

be gotten:

− 𝐸 (𝑝 )𝑢+ (𝑝)𝑢− (−𝑝) = 𝐸 (𝑝 )𝑢+ (𝑝)𝑢− (−𝑝) . (13.54)

From the (13.54) it can be concluded that

𝑢+ (𝑝)𝑢− (−𝑝) = 0 . (13.55)

This means that solutions 𝑢+ (𝑝) and 𝑢− (−𝑝) carry a different sign of energy: one energy

is positive, another energy is negative. Moreover they are orthogonal to each other and
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this orthogonality is proved by using the consideration that is done. This is what should

be taken as an orthogonality condition of positive-negative solution, because if the pairing

of solutions with the same momentum is done, then it will be found that it is not-zero

for the reason, which was mentioned that 𝛾0 does not commute with the Hamiltonian.

Although, if the sign of solution with negative energy is changed, then the result is zero.

This consideration suggests that it is convenient to introduce a spinor 𝑣𝑠−, which should

be defined or as

𝑣𝑠− (𝑝 ) = 𝑢𝑠− (−𝑝 ) . (13.56)

Then the full set of the orthogonality conditions, which can be deduced from relations

above is the following:

𝑢𝑟+ (𝑝 )𝑢𝑠+ (𝑝 ) = 𝛿𝑟𝑠 . (13.57)

Then it also can be checked that with minuses or with 𝑣-s, which correspond to negative

energy solutions, these solutions are orthogonal for different helicities:

𝑣𝑟− (𝑝 ) 𝑣𝑠− (𝑝 ) = −𝛿𝑟𝑠 . (13.58)

Finally, the orthogonality condition for different energy solutions is

𝑣𝑟− (𝑝 )𝑢𝑠+ (𝑝 ) = 0 (13.59)

for any 𝑟 and 𝑠. Analogously,

𝑢𝑟+ (𝑝 ) 𝑣𝑠− (𝑝 ) = 0 . (13.60)

For helicity two projections, which project on states with positive and negative helicity,

were introduced, where in fact the same also can be done for projections on solutions

with positive and negative energy. This is convenient if an arbitrary spinor exist, it can be

decomposed into solutions of positive and negative energy by using the projectors. One

projector projects on solution with positive energy and the other will project on solutions

with negative energy and these projections are explicitly constructed as follows:⎧⎨⎩Λ+ = 𝑚𝑐·1+�𝑝
2𝑚𝑐

Λ− = 𝑚𝑐·1−�𝑝
2𝑚𝑐

(13.61)

This is how projectors on positive and negative energy are constructed and if �𝑝 is written

down explicitly, then the (13.61) will look as follows:⎧⎨⎩Λ+ = 𝛾0𝐸(𝑝 )−𝑐𝛾𝑖𝑝𝑖+𝑚𝑐2·1
2𝑚𝑐

Λ− = −𝛾0𝐸(𝑝 )−𝑐𝛾𝑖𝑝𝑖−𝑚𝑐2·1
2𝑚𝑐

(13.62)

206



THE PRINCIPLES OF QUANTUM FIELD THEORY

GLEB ARUTYUNOV

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

Projectors Λ+ and Λ− are projectors, which means that the following relations are

satisfied: ⎧⎨⎩Λ2
+ = Λ+

Λ2
− = Λ−

(13.63)

Then, these projectors are orthogonal, which means that

Λ+Λ− = 0 . (13.64)

Finally, it can be seen that

Λ+ + Λ− = 1 / (13.65)

It cab be also checked that Λ+ applied to spinors will give the following expression

Λ+𝑢
1,2
+ = 𝑢1,2+ . (13.66)

Analogously, for 𝐿− the following expression can be gotten:

Λ−𝑣
1,2
− = 𝑢1,2− . (13.67)

So, 𝑢+ and 𝑣− form a basis in the full space of solutions and these are separately

eigenstates in the subspaces, which are defined by means of projectors Λ+ and Λ−. There

are also important formulas, which people often use, namely, Λ+ and Λ− can be expressed

in the components of spinors 𝑢+ and 𝑣−.

In particular, Λ+ is a 4x4 matrix and its elements 𝑖 and 𝑗 can be written in the

following way:

(Λ+)𝑖𝑗 =
2∑︁
𝑟=1

(︀
𝑢𝑟+
)︀
𝑖

(︀
𝑢𝑟+
)︀
𝑗

=
2∑︁
𝑟=1

(︀
𝑢𝑟+
)︀
𝑖

(︀
𝑢𝑟+

+𝛾0
)︀
𝑗
. (13.68)

Also the similar expression can be written for Λ−:

(Λ−)𝑖𝑗 = −
2∑︁
𝑟=1

(︀
𝑣𝑟−
)︀
𝑖

(︀
𝑣𝑟−
)︀
𝑗

= −
2∑︁
𝑟=1

(︀
𝑣𝑟−
)︀
𝑖

(︀
𝑣𝑟−

+𝛾0
)︀
𝑗
. (13.69)

That is basically all, which allows now to write down the general solution of the Dirac

equation or basically a decomposition of the Dirac spinor via the basis of plane waves. If

a superposition of solutions is taken, then it will be gotten a general solution of the Dirac

equation. So, plane waves actually provide the basis over which an arbitrary solution can

be expanded and this means that a superposition principle can be implemented, because

Dirac equation is the linear equation. If there are two solutions, then the sum of these
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two solutions is another solution of this equation. If we want to construct an arbitrary

solution, then a sum of all solutions should be taken, which means that an integral with

a certain integration measure implied by the normalization of spinors should be taken:

𝜓 (𝑥) = 𝑐
1
2

∫︁
d𝑝

(2𝜋~)3/2

(︂
𝑚𝑐2

𝐸 (𝑝 )

)︂1/2

×
2∑︁
𝑟=1

(︀
𝑏𝑟 (𝑝 )𝑢𝑟+ (𝑝 ) 𝑒−𝑖𝑝𝜇𝑥

𝜇/~ + 𝑑*𝑟 (𝑝 ) 𝑣𝑟− (𝑝 ) 𝑒𝑖𝑝𝜇𝑥
𝜇/~)︀ ,

(13.70)

where 𝑏𝑟 (𝑝 ) and 𝑑*𝑟 (𝑝 ) are amplitudes. The written above integral is a general solution

of the Dirac equation, which is written as a superposition of plane wave solutions that

was found. And the fact that the 𝑢𝑟+ (𝑝 ) and 𝑣𝑟− (𝑝 ) form a basis in the space of solutions

was used. Then for each momentum 𝑝 the corresponding spinors are exist.

By direct calculation it can be checked that the (13.70) is a solution of the Dirac

equation. All what is needed to do is just to take the Dirac operator(︂
𝑖𝛾0

𝜕

𝑐𝜕𝑡
+ 𝑖𝛾𝑖

𝜕

𝜕𝑥𝑖
− 𝑚𝑐

~

)︂
(13.71)

and act with it on 𝜓 (𝑥) and when the Dirac operator acts on 𝜓 (𝑥) this essentially means

that it can be passed under the integral and act on the exponent, because it’s an exponent,

which depends on axis over which differentiation is performed. Therefore,(︂
𝑖𝛾0

𝜕

𝑐𝜕𝑡
+ 𝑖𝛾𝑖

𝜕

𝜕𝑥𝑖
− 𝑚𝑐

~

)︂
𝑒−𝑖(𝐸𝑡−𝑝 𝑥⃗ )/~𝑢𝑟+ =

𝛾0

𝑐~
(𝐸 (𝑝 ) −𝐻 (𝑝 ))𝑢𝑟+𝑒

−𝑖(𝐸𝑡−𝑝 𝑥⃗ )/~ . (13.72)

𝑢𝑟+ is a positive energy solution of the Dirac equation with eigenvalue 𝐸 (𝑝 ) and,

therefore

𝐸 (𝑝 ) −𝐻 (𝑝 ) = 0 . (13.73)

and

13.72 = 0 . (13.74)

Analogously, it can be shown for the negative energy solutions that they satisfy Dirac

equation.

In the quantum theory the operator 𝑏𝑟 (𝑝 ) will become an operator of annihilation

of electron, while 𝑑*𝑟 (𝑝 ) will turn into the operator of creation of positron. This is how

amplitudes of classical theory will be reinterpreted in the quantum theory.

So, it’s very similar to what was done when a general solution of the Klein-Gordon

was discussed. The amplitudes 𝑎 and 𝑎* there were only 𝑎 and 𝑎*, because in that case

a real scalar field was implied. If a complex scalar field is implied than there will be

found two independent amplitudes 𝑎 and 𝑏 or 𝑎* and 𝑏* star. And here not just complex
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scalar field was introduced, but a spinor field and as it can be seen the spinor field must

have four complex components and, indeed, it has two components, which are described

by 𝑏𝑟 like independent coefficients, which are taken values 1 and 2, and the other two

independent complex components are related to 𝑑*𝑟, because 𝜓 (𝑥) has arbitrary four

complex components.

One more moment to discuss here is the following. For a massive particle the helicity

operator does not commute with Lorentz transformations. Besides helicity and the Hamiltonian,

in principle, what is also in the game are Lorentz transformations. Under arbitrary Lorentz

transformations neither Hamiltonian nor helicity operators are preserved even with respect

to their usual rotations. The following transformation properties are exist. So, the Dirac

Hamiltonian transforms as follows. If a Lorentz transformation is taken as

𝑆−1 (𝑅)𝐻 (𝑝)𝑆 (𝑅) , (13.75)

then the result of this will be

13.75 = 𝐻 (𝑅𝑝 ) . (13.76)

This is related to the fact that 𝐻 is a matrix and 𝑆 (𝑅) is also a 4x4 matrix. The (13.76)

means that, when a Lorentz frame is transformed by means of Lorentz transformation,

in general, the Hamiltonian undergoes a transformation particular, it is the Hamiltonian

evaluated at the transformed value of momentum 𝑝 . Similarly, if the helicity is taken, it

transforms also under this Lorentz transformations in a similar way:

𝑆−1 (𝑅) J (𝑝)𝑆 (𝑅) = J (𝑅𝑝 ) . (13.77)

In the case of the Klein-Gordon field there was a difference. So, the Hamiltonian was

invariant with respect to such transformations, because the Hamiltonian in that case

depends on 𝑝 2 and 𝑝 is a vector, which length is invariant under rotations. So, if a vector

is taken and rotated, by the definition of the rotation group the length of this vector must

be preserved. The Dirac Hamiltonian is different, because it involves momentum not like

a 𝑝 2, but involves it as

𝛾𝑖𝑝𝑖 (13.78)

and it’s a big difference. Now under rotations by Lorentz transformations result is that we

have Hamiltonian at rotated momentum 𝑝 and that is a different Hamiltonian. In general,

it can be seen the only thing, which preserves actually the Hamiltonian and also helicity

are rotations, which happen in the plane orthogonal to momentum. If the momentum is
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looking in one direction of particles, then if a orthogonal plane to this momentum is taken

and rotated around the direction of 𝑝 in this plane, then this will be invariant momentum

𝑝 . In this case under the restricted rotations neither Hamiltonian nor helicity will be

changed (fig. 13.2).

Fig. 13.2. The plane orthogonal to momentum 𝑝

The situation with helicity is actually dramatic, because helicity depends on the Lorenz

frame. In other words, a state with a positive helicity in a different Lorenz frame can

become a state with a negative helicity. So, helicity is not a Lorenz invariant quantity for

a massive particle. If particle is massive, then helicity is not a good observable, because

it depends on the choice of the Lorenz frame. But for massless particle the situation is

different. This is due to the massless Dirac equation, because if the Dirac equation for the

massless particle is written, then there is no the term with 𝑚𝑐2 and the massless Dirac

equation takes the following form:

𝛾𝑖𝑝𝑖 =
𝐸

𝑐
𝛾0 . (13.79)

So, in the momentum space for a plane wave this is how the massless Dirac equation looks

like. For massless equation it is known that energy is given by

𝐸 (𝑝 ) = ±𝑐 |𝑝 | . (13.80)

This is a formula, which can be gotten from the general formula

𝐸 =

√︁
𝑝2𝑐2 +�

��𝑚2𝑐4 , (13.81)

if the mass turns to zero. This means that the operator of helicity, in general, is equal to

J =
1

|𝑝 |
𝛾5𝛾0𝛾𝑖𝑝𝑖 (13.82)
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and because of the relation (13.59) this can be simplified to the following form:

J = ±𝛾5 . (13.83)

So, for massless particle helicity operator is the same as chirality operator, which was

introduced at the previous lecture. Helicity and chirality becomes the same and they

become an absolute thing, which does not depend on the Lorentz frame and this is also

something obvious, because in the Lorentz frame for a massless particle a rest frame is

not exist. Basically a particle is moving with the speed of light and since we’re a massive

persons, we can never reach it.

For a massive particle if a momentum is high enough, the observer can be placed in

the particle’s frame and in this system the sign of momentum will change. So the helicity

in this case can be changed, because the sign of 𝑝 can be changed in the frame of observer

if it, for instance, will go faster than a particle.
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Lecture 14. Charge Conjugation and Anti-Particles

At this lecture the operation of quantum field theory, which acts on the Dirac equation,

will be observed. This operation of charge conjugation, which actually allows to understand

the notion of anti-particles. To do this, firstly it is needed to understand, how a Dirac

particle interacts with an electromagnetic field. And this is needed in order to be able

to introduce the notion of electric charge in the context of a Dirac particle, because the

Dirac equation didn’t involve electric charge at all. On the other hand, the properties of

the electron concerning its electric charge only shown up, when an electron is put in the

an external electromagnetic field. There should be electromagnetic field around, which

then influences the motion of an electrically charged particle.

Indeed, there is a coupling of the particle to surrounding electromagnetic field and

tracing the change of the particle trajectory. Therefore, to detect the presence of electromagnetic

field around on the one hand side and on the other hand side it is needed to say that

a particle possess a property, which can be called as electric charge. In other words, the

ability of a particle to interact with electromagnetic field is called as electric charge.

The first step would be to introduce the coupling of the Dirac spinor or a Dirac particle

to an external electromagnetic field. In this case, the four electromagnetic field has been

given. And as it known from classical electrodynamics already, the electromagnetic field

is defined by means of an electromagnetic potential 𝐴𝜇, which can be introduced in the

Dirac equation in the following way:[︁
𝛾𝜇
(︁
𝑖~𝜕𝜇 −

𝑒

𝑐
𝐴𝜇

)︁
−𝑚𝑐

]︁
𝜓 = 0 , (14.1)

where 𝑒 is a charge of a Dirac particle.

In other words, the introduction of the potential amounts to a procedure of, as people

sometimes say, making the usual derivative to become with long derivative, which means

that the electromagnetic potential 𝐴𝜇 was extended. In fact, the quantity in the brackets of

the (14.1) is a covariant derivative or derivative where 𝐴𝜇 is considered to be a connection

on a certain bundle. 𝐴𝜇 is an electromagnetic potential given in the whole space-time. So,

it’s a function of a space-time point 𝑥.

In natural units electric charge has a physical dimension of

[𝑒] =
[︁√

~𝑐
]︁
. (14.2)

This is useful to have in mind that electric charges have the same dimension as
√
~𝑐

in terms of fundamental constants. And this fact can be deduced from the Coulomb force
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between two equal charges, because, as it is known, the Coulomb force between two such

charges simply equal to

𝐹 =
𝑒2

𝑟2
, (14.3)

where 𝑟 is a distance between charges and charges are equal to each other.

From the (14.3) it is clearly seen that

[𝑒]2 =
[︀
𝐹 · 𝑙2

]︀
=

[︃
𝐹 · 𝑙 ·𝑡 · 𝑐⏟ ⏞ 

𝑙

]︃
, (14.4)

where 𝐹 multiplied by length is a work, which is the same as energy. And it is known

that an energy multiplied by time is a Plank constant ~. Therefore,

[𝑒]2 = [~ · 𝑐] . (14.5)

So, electromagnetic field is not a matrix, it’s just the full component vector 𝐴𝜇 (𝑥)

and the coupling is coming through the product 𝛾𝜇𝐴𝜇. Then there is a constant, which

regulates the strengths of this coupling and this is what is called as an electric charge.

It should be noticed, that an introduced electromagnetic field is external, because

the dynamical equations for electromagnetic field were not added, because the dynamical

equations for an electromagnetic field would be Maxwell equations. And if electromagnetic

field interacts with a spinor particle, then this particle would serve as a source for

electromagnetic field. So, there will be nontrivial back reaction of a spinor field on an

electromagnetic field, but this back reaction for the moment is completely neglected.

That is because the given field is strong enough not to be influenced by the motion of a

Dirac particle itself.

But on the other hand, the presence of this electromagnetic field, of course, influences

the dynamics of the Dirac particle itself and that’s the reason why it is said that a particle

couples to the field.

The new Dirac equation, which was written in the (14.1) turns out that it has a new

fundamental discrete symmetry, which is a symmetry over the theory with respect to the

change of the sign of the electric charge and this is the symmetry, which is also considered

as symmetry replacing the particle by its antiparticle. To understand this a name for it

should be introduced. This symmetry is called charge conjugation. The generator of this

symmetry can be denoted as C, which is a charge conjugation. It is a new fundamental

symmetry of the Dirac equation.
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Now, existence of this symmetry implies that there is a one to one correspondence

between solutions, which was denoted as 𝜓, of the Dirac equation with a negative energy

and positive energy (a particle have the same mass). Wave functions for this cases are

connected by the following expression:

𝜓𝑐 = C𝜓 , (14.6)

where 𝜓𝑐 is a wave function of a particle with positive charge and 𝜓 is a wave function of

a particle with negative charge.

If there is a particle, which is an electron and it is described by solution with positive

energy, as it should be, then there will be another solution, which is constructed from side

with negative energy as 𝜓𝑐 and this solution will carry opposite charge. It has to be treated

as a positron. So, electrons with 𝐸 less than zero should be treated as positrons with

normal situation, where energy is positive. That’s a fundamental thing in this existence of

the theory actually, in a way, returns to the Dirac equation the status of being physical,

because normally dynamical systems, which have solutions with negative energy should

be neglected. Energy must always be restricted either from above or from below and in

the Dirac equation this is not the case, because there are solutions with negative energy

and with positive energy and they are not restricted or bounded, neither from above nor

from below.

From this point of view we might say that this equation should not be interpreted as

physical. On the other hand, due to the new fundamental symmetry a new interpretation

for the solution with negative energy can be given. Namely, they can be treated as solutions

with positive energy, but opposite sign of electric charge.

In fact, the real understanding of what’s happening with this fundamental symmetry

comes only upon performing the quantization of the Dirac theory.

If second quantization in this case is performed, there will be no any more solutions

with negative energy at all, but there will be electrons and positrons solutions with

opposite sign of electric charge, but only with positive energy.

Now, it is needed to be found how the symmetry acts on 𝜓. The equation for the

charge conjugated 𝜓 should be understood in the following way. The equation for 𝜓𝑐 have

the next form: [︁
𝛾𝜇
(︁
𝑖~𝜕𝜇 −

𝑒

𝑐
𝐴𝑐𝜇

)︁
−𝑚𝑐

]︁
𝜓𝑐 = 0 , (14.7)

where 𝐴𝑐𝜇 is a charge conjugated potential and 𝜓𝑐 is exactly the wave function, which is

obtained from side by application of the charge conjugation operation. The 𝐴𝑐𝜇 is simply
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amounts to change the sign of the electromagnetic potential. So, charge conjugation is

an operation, which acts on fields and the index. Since now two kinds of fields are exist:

𝜓 and 𝐴𝜇, and the charge conjugation is operation, which acts on all fields, which are

presented in a theory, it does not touches constants.

And charge conjugation acts on the potential 𝐴𝜇 in a very simple way. In a sense, it

can be seen that changing the sign of electromagnetic potential is exactly equivalent to

changing the sign of the electric charge, because they come together:

𝐴𝑐𝜇 (𝑥) = −𝐴𝜇 (𝑥) . (14.8)

If the (14.7) is compared with the original Dirac equation, then it has exactly the same

form except that it acts on charge conjugate 𝜓𝑐 not on 𝜓.

Once fields was transformed by symmetry transformation, the Dirac equation should

be covariant and, in other words, in terms of new transformed quantities, it should look

the same as in terms of the old or the original quantities.

Now, the following can be seen that the implementation of charge conjugation on the

electromagnetic field amounts to the change of sign minus into plus. So, if 𝐴𝜇 will be

replaced by 𝐴𝑐𝜇 in the (14.1), then it will lead to appearance of plus sign:[︁
𝛾𝜇
(︁
𝑖~𝜕𝜇 +

𝑒

𝑐
𝐴𝑐𝜇

)︁
−𝑚𝑐

]︁
𝜓 = 0 , (14.9)

but this change of sign can be easily done by the operation of conjugation, because the

electromagnetic field is real.

In other words, what we should start from equation (14.1) and perform an operation

of complex conjugation. In this way, what will be gotten can be then written as follows:[︁
𝛾*𝜇

(︁
−𝑖~𝜕𝜇 −

𝑒

𝑐
𝐴𝑐𝜇

)︁
−𝑚𝑐

]︁
𝜓* = 0 . (14.10)

Then minus in the brackets of the (14.10) can be taken out and the equation can be

written in the following form:[︁
𝛾*𝜇

(︁
𝑖~𝜕𝜇 +

𝑒

𝑐
𝐴𝑐𝜇

)︁
+𝑚𝑐

]︁
𝜓* = 0 . (14.11)

Then, to reach a goal, it should be assumed that the operation of charge conjugation

can be explicitly realized by applying a certain matrix to 𝜓𝑐, where 𝜓𝑐 is a spinor, which

is charge conjugation of the original spinor 𝜓:

𝜓* =
(︀
C𝛾0

)︀−1
𝜓𝑐 , (14.12)
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where C is a 4x4 matrix and C𝛾0 is a matrix of transformation from the 𝜓𝑐 to 𝜓*

In other words,

𝜓𝑐 = C𝛾0 · 𝜓* . (14.13)

Now, the 𝜓* in the (14.11) can be replaced by 𝜓𝑐 and, therefore the following expression

will be gotten: [︁(︀
C𝛾0

)︀
𝛾*𝜇

(︀
C𝛾0

)︀−1
(︁
𝑖~𝜕𝜇 −

𝑒

𝑐
𝐴𝑐𝜇

)︁
+𝑚𝑐

]︁
𝜓𝑐 = 0 (14.14)

If we want to restore equation (14.7), then the following should be required(︀
C𝛾0

)︀
𝛾*𝜇

(︀
C𝛾0

)︀−1
= −𝛾𝜇 . (14.15)

The (14.15) also can be written in the following way:(︀
C𝛾0

)︀−1
𝛾𝜇
(︀
C𝛾0

)︀
= −𝛾*𝜇 . (14.16)

The first question, which arises here is if such a matrix C, which has the property

(14.15), exists, because this transformation formula should be valid for all 𝜇, which can

be equal to 0, 1, 2 and 3.

As can be see easily seen easily an transformation

𝛾𝜇 → −𝛾*𝜇 (14.17)

is automorphism of the Clifford algebra, which means that under this transformation a

Clifford algebra is not changing, it turns to itself. But, on the other hand, it is known from

the power of theorems that any of the morphism of the Clifford algebra in four dimensions

is internal. In other words there should exist a unitary matrix 𝑈 , such that

− 𝑈𝛾*𝜇𝑈−1 = 𝛾𝜇 (14.18)

So transformation from a set 𝛾*𝜇 to 𝛾𝜇 is done by unitary transformation, where 𝑈 is

equal to:

𝑈 = C𝛾0 . (14.19)

It’s form depends on the representation of 𝛾 matrices that is used. It will have one form

in the Dirac representation and it will have other forms in other representations.

It is known that a spinor transforms under the group of proper orthochronous Lorentz

transformation or, in other words under the 𝑆𝑂+ (1, 3). And an interesting point is that,

in fact, the charge conjugate spinor transforms under the same transformation, under

which 𝜓 transforms.
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If 𝜓 undergoes under Lawrence transformations, it can be written in the following

way:

𝜓 → 𝑆𝜓 , (14.20)

where 𝑆 as it known is given by

𝑆 = exp

(︂
1

4
𝛾𝜇𝛾𝜈𝜔𝜇𝜈

)︂
. (14.21)

Then for 𝜓𝑐 the same formula will be found:

𝜓𝑐 → 𝑆𝜓𝑐 . (14.22)

And this is a consequence of the relation (14.15) and (14.13):

C𝛾0𝜓* → C𝛾0𝑆*𝜓* . (14.23)

Then, 𝜓* can be replaced by 𝜓𝑐:

14.23 =
(︀
C𝛾0

)︀
𝑆* (︀

C𝛾0
)︀−1

𝜓𝑐 . (14.24)

Then, we can look in more detail at the term (C𝛾0)𝑆* (C𝛾0)
−1:(︀

C𝛾0
)︀
𝑆* (︀

C𝛾0
)︀−1

= C𝛾0 exp

(︂
1

4
𝛾*𝜇𝛾*𝜈𝜔𝜇𝜈

)︂(︀
C𝛾0

)︀−1
. (14.25)

Using the property of exponential term C𝛾0 can be raised into the exponent and, therefore,

14.25 = exp
1

4

(︀
C𝛾0

)︀
𝛾*𝜇

(︀
C𝛾0

)︀−1 (︀
C𝛾0

)︀
𝛾*𝜈
(︀
C𝛾0

)︀−1
𝜔𝜇𝜈 . (14.26)

Then according to the (14.15), formula (14.26) can be written as:(︀
C𝛾0

)︀
𝑆* (︀

C𝛾0
)︀−1

= exp

(︂
1

4
𝛾𝜇𝛾𝜈𝜔𝜇𝜈

)︂
= 𝑆 . (14.27)

In other words, the (14.26) can be transformed into

C𝛾0𝜓* → 𝑆𝜓𝑐 . (14.28)

Moreover, if 𝑈 is introduced as C𝛾0, then it’s natural to require that this transformation

𝑈 is unitary, because the equivalence of 𝛾 matrices 𝛾𝜇 and −𝛾*𝜇 will be then unitary

equivalence of two representations of the Clifford algebra. And this requirement as can be

seen amounts to the following.

𝑈𝑈+ = C𝛾0𝛾+0
C
+ = CC

+ = 1 . (14.29)
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So, matrix C itself must be unitary.

Then, for transformation of the Lawrence representation 𝑆 the following can be seen:

𝑈𝑆*𝑈+ = 𝑆 . (14.30)

So, this is a property of the Lawrence transformation from 𝑆𝑂+ (1, 3), which can be derived

in this way. It shows in fact that complex conjugate representation Lorentz representation

𝑆* is related to 𝑆 by means of the formula:

𝑆* = 𝑈+𝑆𝑈 . (14.31)

Mathematically this fact means that the original representation 𝑆𝑂+ (1, 3) on four-dimensional

spinors and it’s complex conjugate representation are simply a unitary equivalent.

On the other hand, now a new property of this representation was found, namely, if

he complex conjugated that in reality we don’t get new representation, but the unitary

equivalent representation is gotten and representations, for which complex conjugate are

equivalent to the original representation are called pseudoreal.

Therefore, from here the representation of 𝑆𝑂+ (1, 3) on four-component Dirac spinors

is reducible and it is pseudoreal.

If the unitary matrix 𝑈 would be one, then such representations would be called in the

representation theory as real representations. Representations for each complex conjugate

are unitary equivalent to the original representation are called pseudoreal. And finally, if,

in general, 𝑆* is not related to 𝑆 by unitary transformation, then such representations are

called complex. If two group elements 𝐴 and 𝐵 are taken, then this is a homomorphism,

which satisfy the relation:

𝜌 (𝐴𝐵) = 𝜌 (𝐴) 𝜌 (𝐵) , (14.32)

where 𝐴 and 𝐵 are any two elements of the group.

If the representation is complex conjugated than this representation still will be a

representation:

𝜌* (𝐴𝐵) = 𝜌* (𝐴) 𝜌* (𝐵) . (14.33)

And then the questions, which can be asked is how 𝜌* is related to 𝜌. Is it unitary

equivalent to the original representation? Is it’s absolutely the same as original representation?

The answer to this questions is to give a classification of representations as real,

pseudoreal and complex. And for the case of the Lorentz representation of 𝑆𝑂+ (1, 3)

and four-component Dirac spinors will learn that such a representation is pseudoreal.
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Then it is interesting to observe what will happen if electromagnetic field is absent or

if there is no electromagnetic field at all. So, in this case, if there is no electromagnetic

field or this field is switched off, then it can be seen that the transformation 𝜓 → 𝜓𝑐

is just a novel discrete symmetry of the Dirac equations. This is because it transforms

solutions into solutions of the Dirac equation. So, there is one solution, which can be called

as 𝜓 and, then, if the operation of charge conjugation is applied, another solution of the

same Dirac equation will be gotten. Moreover, this discrete symmetry is very similar to,

for instance, parity or time reversal. So, it acts in a similar way. It turns out that this

symmetry maps positive energy solutions into negative energy solutions and vice versa.

And it can be seen from the following. If the symmetry of charge conjugation is taken and

acts on positive energy solution, which is obtained by acting on the Dirac spinor, then

this can be written in the following way:

C (Λ+𝑢) = C𝛾0
(︀
Λ*

+𝑢
*)︀ . (14.34)

The matrix Λ*
+ can be replaced by definition and the following expression can be gotten:

C (Λ+𝑢) = C𝛾0
𝛾*0𝐸 − 𝑐𝛾*𝑖𝑝𝑖 +𝑚𝑐2 · 1

2𝑚𝑐2⏟  ⏞  
Λ*
+

(︀
C𝛾0

)︀−1 (︀
C𝛾0

)︀
𝑢* . (14.35)

Expression (14.35) can be simplified and as a result the following expression will be

gotten:

C (Λ+𝑢) =
−𝛾0𝐸 + 𝑐𝛾𝑖𝑝𝑖 +𝑚𝑐2 · 1

2𝑚𝑐2⏟  ⏞  
Λ−

𝑐𝛾0𝑢* = Λ− (C𝑢) . (14.36)

In other words, the following commutation relations exist:

CΛ+ = Λ−C . (14.37)

That’s why a positive energy solution and the charge conjugation go to the negative

energy solutions and vice versa. So it’s a symmetry, which maps positive solutions into

negative solutions.

Now the same trick with helicity can be done, because for helicity projectors on solution

with positive helicity and negative helicity are exist.

C (J± (𝑝 )𝑢) = C𝛾0
(︂

1 ± 𝛾*5𝛾*0𝛾*𝑖𝑝𝑖

|𝑝 |

)︂(︀
C𝛾0

)︀−1 (︀
C𝛾0

)︀
𝑢* . (14.38)
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Then it can be seen, analogously to the previous case, that what expression (14.38) will

be simplified into:

C (J± (𝑝 )𝑢) =
1

2

(︂
1 ∓ 𝛾5𝛾0𝛾𝑖𝑝𝑖

|𝑝 |

)︂
(C𝑢) = J∓ (𝑝 )C𝑢 . (14.39)

So, intertwining of helicity happens in the following way:

CJ± = J∓ (𝑝 )C . (14.40)

In other words, solutions with positive helicity go to solutions with negative helicity and

vice versa.

In general, now it can be concluded that this operation acts like positive energy

solution and the definite helicity goes to negative energy solution and opposite helicity

and vice versa. So, this is how this symmetry acts on solutions of the Dirac equation

even in the absence of electromagnetic field, because if there is an electromagnetic fields

and charge conjugation also implies that electromagnetic field changes the sign. But if

electromagnetic field is absent, there is nothing to charge conjugate from the point of view

of electromagnetic field and, therefore, what then is gotten is just a statement about the

charge conjugation been in 𝑈 discrete symmetry of the Dirac equation, which transforms

solutions into solutions.

Further determination of the concrete matrix 𝐶 relies on the representation chosen.

And, for instance, for the Dirac representation of 𝛾 matrices, the matrix 𝐶 can be chosen

to be equal to:

C = 𝛾2𝛾0 . (14.41)

Then it can be seen that this matrix exactly does the job, which is needed. So, for instance,

C𝛾0 = 𝛾2 . (14.42)

Then, it can be seen that the following expression is right(︀
𝛾2
)︀−1

𝛾𝜇𝛾2 = −𝛾*𝜇 . (14.43)

According to the property (︀
𝛾2
)︀2

= −1 , (14.44)

the (14.43) can be written as follows:

𝛾2𝛾𝜇𝛾2 = 𝛾*𝜇 . (14.45)
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For instance, it can be seen that in the Dirac representation a matrix 𝛾0 is a diagonal

matrix and it’s given by

𝛾0 =

(︃
1 0

0 −1

)︃
. (14.46)

So, from this point of view, 𝛾0 is real. Then,

𝛾2𝛾0𝛾2 = −𝛾0
(︀
𝛾2
)︀2

= 𝛾0 . (14.47)

Now, for other matrices the relation (14.45) can be checked. For this purpose, 𝛾𝑖

matrices should be recalled:

𝛾𝑖 =

(︃
0 𝜎𝑖

−𝜎𝑖 0

)︃
. (14.48)

And it should be noticed that 𝜎1 and 𝜎3 are real. Therefore, under complex conjugation

𝛾1 and 𝛾3 matrices will be unchanged(︀
𝛾1
)︀*

= 𝛾1 ,
(︀
𝛾3
)︀*

= 𝛾3 , (14.49)

while for 𝛾2 the following expression will be gotten:(︀
𝛾2
)︀*

= −𝛾2 . (14.50)

It is exactly seen that 𝛾1 and 𝛾3 matrices will behave themselves exactly like 𝛾0:⎧⎨⎩𝛾2𝛾1𝛾2 = −𝛾1 (𝛾2)
2

= 𝛾1

𝛾2𝛾3𝛾2 = −𝛾3 (𝛾2)
2

= 𝛾3
(14.51)

For 𝛾2 the situation is different. So, we will get

𝛾2 𝛾2𝛾2⏟ ⏞ 
=−1

= −𝛾2 . (14.52)

Therefore, in the (14.52) the required expression is gotten.

Indeed, for the Dirac representation C = 𝛾2𝛾0 is a matrix, which satisfies the required

property. Then it was also seen that unitarity conditions are satisfied.

In addition the matrix C has the following properties:

C
2 = 1 , → 𝛾2𝛾0𝛾2𝛾0 = − 𝛾2𝛾2⏟ ⏞ 

−1

𝛾0𝛾0⏟ ⏞ 
1

= 1 , (14.53)

C
* = −C ,

(︀
𝛾2𝛾0

)︀*
= 𝛾*2𝛾0 = −𝛾2𝛾0 = −C , (14.54)
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CC
+ = CC

*𝑡 = −CC𝑡 = −𝛾2 𝛾0𝛾𝑡0⏟  ⏞  
1

𝛾𝑡2 = −𝛾2 𝛾𝑡2⏟ ⏞ 
𝛾2

= 1 . (14.55)

Then the charge conjugate spinor in the Dirac representation explicitly can be realized

as:

𝜓𝑐 = C𝛾0𝜓* = 𝛾2𝜓* . (14.56)

The 𝜓𝑐 can also be written in the following way. The 𝜓 should be introduced, which is

explicitly

𝜓 = 𝜓*𝑡𝛾0 , (14.57)

where 𝜓*𝑡 is a row vector. So, if then 𝜓 is transposed, then the following expression will

be gotten:

𝜓
𝑡

= 𝛾0𝜓* . (14.58)

According to the (14.58), the (14.56) can be written as:

𝜓𝑐 = C𝜓
𝑡
. (14.59)

One remark, also can be given here is the following:

C
−1𝛾𝜇C = −𝛾0𝛾*𝜇𝛾0 , (14.60)

where the following relation was used:(︀
C𝛾0

)︀−1
𝛾𝜇
(︀
C𝛾0

)︀
= −𝛾*𝜇 (14.61)

and the brackets (C𝛾0)
−1 was opened to get:

𝛾0C−1𝛾𝜇C𝛾0 = −𝛾*𝜇 (14.62)

where the (14.60) can be gotten by multiplying by 𝛾0 from the left and from the right.

But, on the other hand, what is written down in the (14.60) is nothing else in the

Dirac representation as

C
−1𝛾𝜇C = − (𝛾𝜇)𝑡 . (14.63)

So, complex conjugate matrix multiplied from the left and from the right by 𝛾0 is the

same as 𝛾𝜇 transposed. Alternatively, in the Dirac representation, the matrix C can be

characterized by the property that conjugating of 𝛾𝜇 with the unitary matrix C gives the

(14.63).
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Again, this shows the unitary equivalence of 𝛾𝜇 with (𝛾𝜇)𝑡 e.g. with the other representation

of the Clifford algebra, which is performed with the help of the unitary conjugation by by

the matrix C.

Also here another interesting simple consequence can be deduced that if

C
−1𝛾𝜇C = − (𝛾𝜇)𝑡 , (14.64)

then it can be checked what happens with 𝛾5, when it conjugated. And this simply

amounts to

C
−1𝛾5C =

(︀
𝛾5
)︀𝑡
, (14.65)

because 𝛾5 is the product

𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3 (14.66)

and when C−1 and C are applied, then this transposes each of this matrices. So, it becomes

C
−1𝛾0𝛾1𝛾2𝛾3C = 𝛾𝑡0𝛾𝑡1𝛾𝑡2𝛾𝑡3 . (14.67)

On the other hand, it is known that in the Dirac representation the 𝛾5 matrix is

symmetric and it does not change under transposition, but then under the result (14.67)

it follows that since

C
−1𝛾5C = 𝛾5 , (14.68)

C actually commutes with 𝛾5: [︀
C, 𝛾5

]︀
= 0 . (14.69)

Sometimes this property is also interesting and should be taken into account in some

considerations.

So in any case, this is a consequence of the explicit representation for C in the case of

Dirac representation.

In summary, the Dirac theory is invariant under charge conjugation of a spinor supplied

with a simultaneous change of electromagnetic field to minus electromagnetic field. The

physical meaning of this charge conjugation operation is that any physically realizable

state of electron in the field 𝐴𝜇 corresponds to a physically realizable state of a positron in

the field −𝐴𝜇. So, operation of charge conjugation changes electrons with negative energy

and spin up to positrons with positive energy and spin down. If we have a solution of the

Dirac equation, for instance, with a negative energy, which can be called as 𝜓(−), which

is wave function corresponding to a solution with negative energy, and an electric charge,
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which can be denoted by 𝑒, then we should take as a physically realizable or physically

relevant quantity not the wave function 𝜓(−), because it’s a solution with negative energy,

but rather it’s a charge conjugated solution 𝜓𝑐(+), which has then positive energy and

given explicitly by

𝜓𝑐(+) = C𝜓
(−)𝑡 . (14.70)

This 𝜓𝑐(+) will then describe a particle with a positive energy, which is a physical

particle, but with different sign in comparison to the sign of original electron.

Therefore, we can identify the positive energy plane waves 𝜓 for an electron as

𝜓𝑟𝑒 (𝑥⃗ , 𝑡) = 𝑢𝑟+ (𝑝 ) 𝑒−𝑖𝑝𝜇𝑥
𝜇/~ (14.71)

and for a positron as

𝜓𝑟𝑝 (𝑥⃗ , 𝑡) = C
[︀
𝑢𝑟− (−𝑝 )

]︀𝑡
𝑒−𝑖𝑝𝜇𝑥

𝜇/~ . (14.72)

The (14.72) can be also written in terms of 𝑣− (𝑝 ), because as it was shown in the

previous lecture:

𝑣− (𝑝 ) = 𝑢− (−𝑝 ) (14.73)

and the (14.73) will be linked with (14.72) by the following expression:

𝑣− (𝑝 ) (𝑝 ) 𝑒𝑖𝑝𝜇𝑥
𝜇/~ →

C

C
[︀
𝑢𝑟− (−𝑝 )

]︀𝑡
𝑒−𝑖𝑝𝜇𝑥

𝜇/~ . (14.74)

So, then it can be checked that under a charge conjugation the (14.73) will turn into the

(14.72).

Let’s return back to the general solution of the Dirac equation, which was represented

in terms of plane waves and then it would be natural to treat the amplitude, which

is given in terms of the coefficient 𝑏𝑟 in the general solution of Dirac equation as an

annihilation operator of electron, while then 𝑑*𝑟, which appears as another amplitude

standing in front of the 𝑖~𝑝𝜇𝑥𝜇 as a creation operator of a positron. That’s consideration

relates to the positive and negative energy solutions in the general expression for the

Dirac equation. So, negative energy solutions we would like to interpret from the point

of view of the new understanding of the charge conjugation symmetry as those, which

correspond to actually positive energy solution, but for another particle, which is called

as positron. Correspondingly, this gives an interpretation to the amplitudes, which are

existed in general solution of the Dirac equation. There are amplitudes, which introduces

𝑏𝑟 and 𝑑*𝑟 as correspondingly annihilation operator of electrons and the creation operator
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of positrons. That’s something, which can be further understood, when transition to the

quantization of the Dirac equation is performed.

The final topic, which linked with the consideration of reality properties and the charge

conjugation, concerns with the issue of so-called Majorana spinors.

Majorana spinors

We already learned that there are four-component Dirac spinors. There are also Weyl

spinors, which are two-component complex spinors. And now another kind of spinors,

which are called Majorana will be introduced. It is known that the Dirac spinor in four-

dimensional Minkowski space has four complex components, which is equivalent to 8

real degrees of freedom. It is possible to reduce a number of independent components

of this Dirac spinner by imposing certain conditions, which are compatible with Lorentz

transformations from 𝑆𝑂+ (1, 3). One of these conditions is a Weyl condition, which was

discussed and that allows to define the Weyl spinor, which has two complex components.

And the spinor transforms as it known irreducibly under 𝑆𝑂+ (1, 3).

Now, another condition can be imposed, which is called Majorana condition. This is

condition, which says to take spinor 𝜓 and identify it with its charge conjugation.

𝜓 = 𝜓𝑐 . (14.75)

In other words, Majorana condition is a condition that states that particle is its own

antiparticle.

The special Dirac spinner, which satisfies the condition (14.75) is called Majorana.

This condition is allowed to impose, because it is known that 𝜓 and 𝜓𝑐 transform in

the same way under Lorentz transformations. So, this condition does not break Lorentz

symmetry and it is Lorentz invariant.

An explicit form of the Majorana spinner depends on the chosen representation for

𝛾 matrices, because the explicit form of the charge conjugate matrix C depends on the

representation chosen. For instance, in the Dirac and Weyl representations, C is given by

C = 𝛾2𝑔0 (14.76)

and, therefore, when the Majorana condition is imposed, that means that we have to solve

the following equation:

𝜓 = C𝛾0𝜓* = 𝛾2𝜓* . (14.77)
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If 𝜓 is written in terms of two components spinors 𝜑 and 𝜒:

𝜓 =

(︃
𝜑

𝜒

)︃
, (14.78)

then the (14.77) can be written as:(︃
𝜑

𝜒

)︃
=

(︃
0 𝜎2

−𝜎2 0

)︃(︃
𝜑*

𝜒*

)︃
. (14.79)

It can be seen that from the condition (14.79) 𝜒 can be expressed and the answer will

be that such a Majorana spinor in the Dirac representation of 𝛾 matrices will have the

following form:

𝜓 =

(︃
𝜑

−𝜎2𝜑*

)︃
. (14.80)

Moreover, there exists another representation of 𝛾 matrices, in which the Majorana

condition becomes very simple and transparent. This representation of 𝛾 matrices is

called Majorana representation. Majorana representation is a representation in which

all 𝛾 matrices are imaginary. So the Dirac operator contains, in fact, only real coefficients

and explicitly it can be written down straight away. In this representation:

𝛾0𝑀 =

(︃
0 𝜎2

𝜎2 0

)︃
, 𝛾1𝑀 =

(︃
𝑖𝜎3 0

0 𝑖𝜎3

)︃
, 𝛾2𝑀 =

(︃
0 −𝜎2

𝜎2 0

)︃
, 𝛾3𝑀 =

(︃
−𝑖𝜎1 0

0 −𝑖𝜎1

)︃
.

(14.81)

It can be checked that the Clifford algebra relations for these 𝛾 matrices will be satisfied

and this means by Pauli theorem that there exists a unitary matrix that transforms Dirac

representation into this new Majorana representation by means of conjugation with the

unitary matrix 𝑈 . So,

𝑈𝛾𝜇𝐷𝑈
−1 = 𝛾𝜇𝑀 , (14.82)

where it can be checked that explicitly the matrix 𝑈 is given by

𝑈 =
1√
2

(︃
1 𝜎2

𝜎2 −1

)︃
(14.83)

and this matrix is explicitly unitary

𝑈+𝑈 = 1 . (14.84)

Now, the charge conjugation matrix should be determined from the condition(︀
C𝛾0

)︀−1
𝛾𝜇
(︀
C𝛾0

)︀
= −𝛾*𝜇 . (14.85)
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But in the Majorana representation it is know that the 𝛾*𝜇 is simply

𝛾*𝜇 = −𝛾𝜇 , (14.86)

because all 𝛾 matrices are purely imaginary and, therefore, the (14.85) can written as(︀
C𝛾0

)︀−1
𝛾𝜇
(︀
C𝛾0

)︀
= 𝛾𝜇 . (14.87)

From here, it follows that [︀
C𝛾0, 𝛾𝜇

]︀
= 0 . (14.88)

So, this means that C𝛾0 is the only matrix, which commutes with all 𝛾𝜇 in four dimensions.

So, it can be gotten that

C𝛾0 = 1 (14.89)

and from here, it can be concluded that C is simply equals to:

C = 𝛾0 . (14.90)

Then, charge conjugate spinor in this representation is given by:

𝜓𝑐 = C𝛾0𝜓* = 𝛾0𝛾0𝜓* = 𝜓* . (14.91)

Therefore, we got that 𝜓* in Majorana representation of 𝛾 matrices is equal to the

charge conjugate spinor. Therefore, in this representation Majorana condition becomes

extremely simple and transparent:

𝜓 = 𝜓* , (14.92)

which means that in the Majorana representation spinor 𝜓 is simply real. It has simply

four real components and in this representation it can be also seen that 𝑆 matrix of

Lorentz transformations must preserve reality of a spinor. So, spinor 𝜓 is equal to 𝜓* and

that means that 𝜓 is real and, therefore, 𝑆 acting on it must transform a real matrix into

real matrix. This means that in this case 𝑆 itself is real and that’s can be easily seen from

the fact that it’s given by

𝑆 = exp

(︂
1

4
𝛾𝜇𝑀𝛾

𝜈
𝑀𝜔𝜇𝜈

)︂
. (14.93)

In the Majorana representation each of the 𝛾 matrices is real and then the product of

the two imaginary 𝛾 matrices then gives a real result. So, in this representation Lorentz

transformations are realized by real matrices.
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