

ВВЕДЕНИЕ В ТОПОЛОГИЮ

МИЩЕНКО АЛЕКСАНДР СЕРГЕЕВИЧ АЛАНИЯ ЛЕВАН АНЗОРОВИЧ

MEXMAT MICY

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ ПРОФ. РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ. СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU.

ЕСЛИ ВЫ ОБНАРУЖИЛИ ОШИБКИ ИЛИ ОПЕЧАТКИ ТО СООБЩИТЕ ОБ ЭТОМ, НАПИСАВ СООБЩЕСТВУ VK.COM/TEACHINMSU.

БЛАГОДАРИМ ЗА ПОДГОТОВКУ КОНСПЕКТА СТУДЕНТА МЕХАНИКО-МАТЕМАТИЧЕСКОГО ФАКУЛЬТЕТА МГУ РОДИОНОВА ДАНИЛА ОЛЕГОВИЧА

лекция 1.	5
Пункт 1. Элементы теории множеств	
Пункт 2. Построение равномощных множеств	
ЛЕКЦИЯ 2	9
Пункт 1. Теорема Кантора-Бернштейна.	
Пункт 2. Метрические пространства	
ЛЕКЦИЯ 3	
Пункт 1. Топология на множестве.	
Пункт 2. Классификация точек. Пункт 3. Отображения.	
Пункт 4. Гомеоморфизмы.	
ЛЕКЦИЯ 4.	18
Пункт 1. Произведение топологических пространств	
ЛЕКЦИЯ 5.	
· ·	
Пункт 1. Лемма Урысона	
ЛЕКЦИЯ 6.	
ТЕОРЕМА 1. ТЕОРЕМА 2.	
ТЕОРЕМА 3.	
Пункт 2. Метризуемые пространства	26
ЛЕКЦИЯ 7.	28
Пункт 1. Теорема Урысона о метризуемости	28
Пункт 2. Связность. Связные множества.	
лекция 8.	31
Пункт 1. Гомотопии.	31
Пункт 2. Лемма о гомоморфизмах.	34
ЛЕКЦИЯ 9.	35
Пункт 1. Функториальные свойства.	35
Пункт 2. Накрывающие пространства	
Пункт 3. Леммы о поднятии	
ЛЕКЦИЯ 10.	
Пункт 1. Теорема о поднятии гомотопии	
Пункт 2. Теорема о связи отображения, накрытия и поднятия	
ЛЕКЦИЯ 11.	
Пункт 1. Морфизмы	
Пункт 2. Алгебраический сюжет о фундаментальной группе. Пункт 3. Группа автоморфизмов над окружностью	
ЛЕКЦИЯ 12.	
/12R1411/1/1/16	45

Пункт 1. Теорема о существовании накрытия	
ЛЕКЦИЯ 13	47
Пункт 1. Теорема Борсука-Улама.	47
Пункт 2. Графы.	
ЛЕКЦИЯ 14	51
Пункт 1. Теорема Зейферта-ван-Кампена	51
Пункт 2. Теорема о стягиваемости дерева	52
Пункт 3. Свойство подгруппы свободной группы	53

Лекция 1.

Пункт 1. Элементы теории множеств.

Пусть X — некоторое множество. Тогда $a \in X$ — его элементы. Будем определять некоторое множество X следующим образом: пусть заведомо существует некоторое множество Y, тогда $X = \{a \in Y: a y д o в летворяет некоторому свойству\}.$

Примеры множеств:

 $\mathbb N$ - множество натуральных чисел, $\mathbb Z$ - множество целых чисел, $\mathbb Q$ - множество рациональных чисел, $\mathbb R$ - множество вещественных чисел, $\mathbb C$ - множество комплексных чисел.

Определение 1.

Пусть X и Y – некоторые множества. Тогда X является подмножеством в Y ($X \subset Y$) $\Leftrightarrow \forall a \in X \Rightarrow a \in Y$.

Определение 2.

Пусть А и В – некоторые подмножества множества Х. Тогда

- 1) пересечением A и B называется множество $X \supset A \cap B = \{a : a \in A \ u \ a \in B\}$.
- 2) объединением A и B называется множество $X \supset A \cup B = \{a : a \in A$ или $a \in B\}$. Определение 3.

Разностью множеств A и X, A \subset X называется множество X\A = $\{a: a \in X, a \notin A\}$. Из этого определения следует очевидное равенство: $X \setminus A = X \setminus (X \cap A)$

Утверждение 1. (Законы де Моргана)

Если X – некоторое множество, $\bigcup_{\alpha} A_{\alpha}$ – объединение множеств A_{α} по индексу α . Тогда $X \setminus \bigcup_{\alpha} A_{\alpha} = \bigcap_{\alpha} (X \setminus A_{\alpha})$, где \bigcap_{α} – пересечение множеств по индексу α .

Пусть A и B — некоторые подмножества множества X. Тогда определим отображение между множествами A и B как некоторую диаграмму $f:A \to B$. Иногда эти отображения могут быть заданы явными формулами на элементы множества A, например $f(a) = a^2$.

Определение 4.

Если A, B, C – некоторые множества (подмножества некоторого большого множества X), и заданы отображения $f: A \to B, g: B \to C$, то композицией этих отображений называется отображение $g \circ f: A \to C$.

Определение 5.

Рассмотрим множество всех отображений $f: A \to A$. Тогда мы можем выделить некоторое отображение f(a) = a, которое называется **тождественным** и обозначается как id_A . Из этого определения можно вывести следующее простое свойство:

Если $f:A \to A, g:A \to A$ такие, что $g \circ f = id_A$, то $\forall a,b \in A, a \neq b$ следует, что $f(a) \neq f(b)$.

Доказательство:

Пусть f(a) = f(b). Подействуем на эти элементы отображением $g: A \to A$. Получим: $g \circ f(a) = a = g \circ f(b) = b \Rightarrow a = b$. Противоречие.

Таким образом, разные элементы множества А переходят в разные множества В. Такое отображение называется **сюръекцией**. Если же для каждого образа \exists ! прообраз, то такое отображение называется **инъекцией**. Если же отображение является инъекцией и сюръекцией одновременно, то такое отображение называется **биекцией**.

Определение 6.

Пусть $f: A \to B$ – биекция. Тогда отображение $f^{-1}: B \to A$, $f^{-1}(b) = \{a \in A, f(a) = b\}$ называется **обратным** отображением.

Данное выше определение биекции позволяет вывести важное определение, связывающее некоторые множества А и В. Итак,

Определение 7.

Множества A и B называются равномощными, если \exists биекции $f:A \to B$ и $f^{-1}:B \to A$. Определение 8.

Порядком множества A называется класс множеств, равномощных множеству A. Обозначение: cord(A)

Пункт 2. Построение равномощных множеств.

Введем несколько наглядных конструкций равномощных множеств.

1) Декартово произведение множеств.

Определение 9.

Декартовым произведением множеств A и B, $(A \subset X, B \subset X)$ называется множество $A \times B = \{(a, b): a \in A, b \in B\}$. A и B называются компонентами декартова произведения.

Данное выше определение позволяет корректно задать формулировку графика отображения множеств.

Определение 10.

Графиком отображения $f: A \to B$ называется подмножество их декартова произведения $\Gamma_f \subset A \times B$, такое, что $\Gamma_f = \{(a,b) \in A \times B : b = f(a)\}.$

Однако данное выше определение обладает некоторым свойством, которое мы можем сформулировать в виде утверждения: $\Gamma \subset A \times B$ является графиком некоторого отображения $f \colon A \to B \Leftrightarrow$ отображение $p \colon \Gamma \to A, p(a,b) \mapsto a$ — биекция. Действительно, если Γ — график, то $\Gamma = \{a, f(a)\}$ и тогда р — биекция. Интуитивному представлению этого понятия соответствует рис.1.1

6

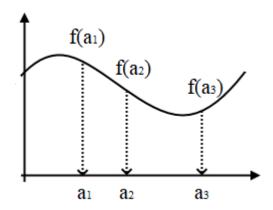


Рис. 1.1 График

Рассмотрим обобщение декартова произведения на случай количества компонент > 2. Пусть задано некоторое семейство множеств A_{α} , где α пробегает некоторое множество. Тогда $\square \alpha = \{\{a_{\alpha}\}: a_{\alpha} \in A_{\alpha}\}$. Такое произведение также называют тихоновским произведением множеств.

2) В качестве следующей конструкции рассмотрим операцию на множества, называемую несвязным объединением.

Определение 11.

Несвязным объединением множеств A и B, $(A \subset X, B \subset X)$ называется множество A \sqcup B = $\{x: x \in A \text{ или } x \in B, A \cap B = \emptyset\}$.

Введенное нами определение позволяет ввести определение образа и прообраза отображения f .

Определение 12.

Пусть $f:A \to B$. Тогда определим $f(A) \subset B, f(a) = \{b \in B: \exists \ a \in A, b = f(a)\}$ – образ f.

Для
$$f:A \to B \supset C$$
 определим $f^{-1}(C) = \{a \in A: f(a) \in C\}$ – прообраз f .

Несколько ранее мы определили биективный вид отображения между множествами. Сформулированное выше определение образа и прообраза отображения разрешают вопрос о критерии его биективности. Итак,

Утверждение 2.

Если $f: A \to B$, то f – биекция $\iff f^{-1}(x_0)$ состоит из единственного элемента $\forall x_0$.

3) Фактор-отображение.

Определение 13.

Пусть заданы множества A и B, $A \subset B$. Тогда фактор-отображением называется отображение $B/A = \left\{ egin{align*} b \in A \\ A \end{array} \right.$

То есть мы "стянули" множество A в одну точку. Или же, что то же самое, задали отображение $p: B \longrightarrow B/A$, $p(b) = \begin{cases} b, \text{если } b \notin A \\ A, \text{если } b \in A \end{cases}$

Пункт 3. Равномощные множества и теорема Кантора.

Если $\exists [1,...,n]$, то cord([1,...,n]) = n при конечном n. Но может быть и так, что количество элементов в этом "массиве" бесконечно. Такие множества называются бесконечными.

Пример бесконечного множества: \mathbb{N} . Действительно, $\nexists f : [1, ..., n] \to \mathbb{N}$ при конечном n.

Определение 14.

Множество A называется счётным, если \exists биекция $f:A \longrightarrow \mathbb{N}.$ ($A \sim \mathbb{N}$)

Определение 15.

Множество А называется не более чем счетным, если оно либо конечно, либо счётно.

Определение 16.

Если $A_0 \sim A$ и $A_0 \subset B \subset A$, то говорят, что $cord(A_0) \leq cord(B)$) $\leq cord(A)$ (по теореме Кантора-Бернштейна).

Будем говорить, что cord(A) < cord(B), если $cord(A)) \leq cord(B)$ и $cord(A) \neq cord(B)$

Теорема 1. (Теорема Кантора)

Для \forall множества A $cord(A) < cord(2^A)$, где $2^A = \{B: B \subset A\}$. Определение множества 2^A эквивалентно определению множества всех отображений $f_B: A \longrightarrow [1, 2]$:

$$f_B(a) = \begin{cases} 1, a \in B \\ 2, a \notin B \end{cases}$$

Доказательство этой теоремы будет приведено в следующей лекции.

Лекция 2.

Пункт 1. Теорема Кантора-Бернштейна.

Напомним, что cord(X) — мощность множества X. Если $A \subset B$, то $cord(A) \leq cord(B)$. Если же $cord(A) \leq cord(B)$ и $cord(B) \leq cord(A)$, то cord(A) = cord(B). Таким образом мы можем сказать, что для произвольных множеств выполнено одно из указанных выше соотношений.

Определение 1.

Пусть задано некоторое множество X. Скажем, что на нём задано отношение частичного порядка (\leq), если для некоторых пар элементов $x,y\in X$ выполнено условие $x\leq y$ со свойством $x\leq y,y\leq z\implies x\leq z$. Обозначение: (X,\leq) .

Примеры упорядоченных множеств:

- 1) Множество натуральных чисел N
- 2) Множество вещественных чисел ℝ

Определение 2.

Пусть X – некоторое множество с заданным отношением частичного порядка (X, \leq) . Будем говорить, что на X задан линейный порядок, если

$$\forall x, y \in X \ x \leq y$$
 или $y \leq x$.

В качестве примера множества с линейным порядком рассмотрим декартову плоскость $\mathbb{R}^2 = \{(x,y): x \in \mathbb{R}, y \in \mathbb{R}\}$. Тогда $(x,y) \le (a,b)$ если $x \le a$ и $y \le b$.

Выше мы сформулировали два важных свойства отношений между мощностями множеств. На самом деле первое утверждение равносильно теореме Кантора-Бернштейна, а второе – теореме Цермело. Переформулируем их еще раз и докажем. Итак,

Теорема 1. (Теорема Кантора-Бернштейна)

Если $cord(A) \leq cord(B)$ и $cord(B) \leq cord(A)$, то cord(A) = cord(B).

Доказательство.

Построим цепочку вложенных множеств A_i и B_i :

$$A_1 \supset A_2 \supset A_3 \supset A_4 \supset \cdots$$
 , $B_1 \supset B_2 \supset B_3 \supset B_4 \supset \cdots$ со следующими свойствами:

 $A_1 \supset B_1 \supset A_2 \supset B_2 \supset A_3 \supset B_3 \supset \cdots$. По условию теоремы $A_2 \sim A_1$, $B_2 \sim B_1$, $A_3 \sim A_2$ Тогда все эти множества можно переписать в единую последовательность вложений. Во избежание путаницы переобозначим их всех за A_i . Теперь мы получили последовательность $A_1 \supset A_2 \supset A_3 \supset A_4 \supset \cdots$. Так как по предположению $A \sim B_1$, $B \sim A_1 \Longrightarrow \exists$ отображение $\varphi \colon A \longrightarrow B_1$ и отображение $\psi \colon B_1 \longrightarrow A$.

Осталось лишь выразить A_1 и A_2 из последней полученной последовательности. $A_2 = (A_2 \backslash A_3) \sqcup (A_3 \backslash A_4) \sqcup (A_4 \backslash A_5) \sqcup ...$ Таким же образом получим

 $A_1 = (A_1 \backslash A_2) \sqcup (A_2 \backslash A_3) \sqcup (A_3 \backslash A_4) \sqcup (A_4 \backslash A_5) \sqcup \dots$. Теперь с помощью отображения ϕ мы можем получить искомую биекцию между множествами $A_1 = A$ и $A_2 = B$. Запишем биективное соответствие через диаграммы:

 $\varphi: (A_1 \backslash A_2) \to (A_3 \backslash A_4), \qquad \varphi: (A_2 \backslash A_3) \to (A_2 \backslash A_3), \qquad \varphi: (A_3 \backslash A_4) \to (A_5 \backslash A_6),$ $\varphi: (A_4 \backslash A_5) \to (A_4 \backslash A_5)$ и т.д. Таким образом, мы получили требуемое соответствие \Longrightarrow теорема доказана.

Вернемся к утверждению (2): для произвольных множеств выполнено одно из указанных выше соотношений. Это высказывание эквивалентно теореме Цермело, которую мы сформулируем ниже, но сначала введем важное определение:

Определение 3.

Множество A с заданной на нём структурой порядка (A, \leq) называется вполне упорядоченным (а порядок - полным), если $\forall B \subset A \exists min(B) \in B$ (если для каждого его подмножества существует минимальный элемент из него).

Пример вполне упорядоченного множества:

Множество натуральных чисел N.

Теорема 2. (Теорема Цермело).

Каждое множество может быть вполне упорядоченным.

Доказательство:

Для доказательства этой теоремы воспользуемся аксиомой выбора: если $\{X_{\alpha} \neq \emptyset, \alpha \in I\}$, $\forall \alpha \ X_{\alpha} \subset X$ — некоторое семейство множеств, то $\forall \alpha \exists x_{\alpha} \in X_{\alpha}$. Это утверждение равносильно утверждению о существовании отображения $\varphi: I \longrightarrow X, \varphi(\alpha) \in X_{\alpha}$. Неформально это можно объяснить так: у каждого множества из данного семейства можно выбрать по точке.

Доказательство этой теоремы эквивалентно задаче поиска порядка " \leq ", такого, что $\forall x, y \in X \ x \leq y$ или $y \leq x$. Если X конечно или счётно, то с помощью биекции в \mathbb{N} мы можем задать такой порядок явно и доказывать нечего.

Предположим, что X — несчётно. Тогда рассмотрим множество всех подмножеств X, не содержащих само X — $2^X \setminus \{X\}$. Построим отображение φ следующим образом: $\varphi: 2^X \setminus \{X\} \longrightarrow X$, такое, что $\varphi(A) \notin A$ для некоторого A. Если какое-то $A \subset X$ уже упорядочено, то возьмем элемент $\varphi(A) \notin A$. Построим множество $B = A \cup \{\varphi(A)\}$. Это множество будет "наследовать" порядок из A, т.е. $a \le \varphi(a) \ \forall a \in A$. Последнее предложение можно переформулировать так: будем говорить, что на A задан порядок, согласованный с φ , если $\varphi([1_A, \beta)) = \beta$, где 1_A — минимальный элемент A (существует по определению).

Теперь рассмотрим два множества, на которых задана структура порядка: (A, \leq_A) и (B, \leq_B) . Тогда на их пересечении заданы два порядка. Теперь нам потребуется следующая лемма:

Лемма 1.

Если заданы (A, \leq_A) и (B, \leq_B) – вполне упорядоченные множества, то либо A является начальным отрезком B, либо B является начальным отрезком A.

Для доказательства этой леммы достаточно построить изоморфизм $\varphi: A \to B$ со следующим свойством: или φ – биекция, или $\varphi(A) = [1_B, \beta) \subset B$.

Построить его можно с помощью трансфинитной индукции: $\varphi(1_A) = 1_B$; $\varphi(min(A \setminus \{1_A\}) = 2_A) = 2_B$ и т.д. То есть, для каждого $min\{A \setminus \{1_A,\alpha\}\} = \alpha$, $\varphi(\alpha) = min\{B \setminus \varphi([1_A,\alpha]\}\}$. Осталось показать, что если заданы (A, \leq_A) и (B, \leq_B) , то, как мы только что доказали, либо $A \subset A \cap B$, либо $B \subset A \cap B$, откуда немедленно следует, что $A \cup B$ имеет согласованный с φ порядок.

Завершим доказательство теоремы Цермело следующим фактом: если рассмотреть $\cup \{(A, \leq_A), \text{ согласованный с } \phi\} \subset X$, то это объединение совпадает с X (иначе просто продолжаем процедуру построения максимального семейства множеств с согласованным с ϕ порядком путем указанного выше алгоритма) \Longrightarrow мы получили исходное множество с полным порядком. Доказано.

Важность этой теоремы состоит в том, что теперь мы знаем, что множество мощностей всех множеств может иметь полный порядок, поэтому с этого момента мы вправе определять отношения мощностей множеств. Таким образом мы можем определить мощность конечного множества (n), мощность множества натуральных чисел \mathbb{N} (\aleph_0), мощность несчётного множества (\aleph_1) (доказательство существования последнего см. доказательство теоремы Кантора или доказательство несчетности \mathbb{R} из курса математического анализа).

Абстрактные множества обладают единственным свойством – мощностью, поэтому в дальнейшем нам придется конструировать некоторые новые структуры – топологию или метрику на множестве – для более детального изучения. Для этого сформулируем важное определение.

Пункт 2. Метрические пространства.

Определение 4.

Метрикой на множестве X называется отображение $\rho: X \times X \to \mathbb{R}$, удовлетворяющее следующим свойствам:

- 1) $\rho(x,y) \ge 0 \ \forall x,y \in X$
- 2) $\rho(x,y) = \rho(y,x)$
- 3) $\rho(x,y) = 0 \iff x = y$
- 4) $\forall x, y, z \in X \rho(x, y) \leq \rho(x, z) + \rho(y, z)$. Это свойство также носит название "неравенство треугольника".

Множество с заданной на нём метрикой называется метрическим пространством. Его элементы будем называть точками.

Примеры метрических пространств:

- 1) Вещественная ось или некоторое её подмножество: $(\mathbb{R},\rho), \rho(x,y) = |x-y|, \forall x,y \in \mathbb{R}$
- 2) Произвольное n-мерное арифметическое пространство: (\mathbb{R}^n, ρ) , $\mathbb{R}^n = (x^1, ..., x^n): x^i \in \mathbb{R}, \ \rho(x, y) = \sqrt{(x^1 y^1)^2 + \cdots + (x^n y^n)^2}$
- 3) Множество всех непрерывных функций на [0,1]: (C[0,1], ρ), $\rho(f,g) = \max_{x \in [0,1]} |f(x) g(x)|$

Теперь сконструируем структуру топологии на произвольном множестве Х.

Определение 5.

Топологией на множестве X называется такое семейство открытых множеств

 $\mathfrak{J} = \{U: U \subset X\}$ со следующими свойствами:

- 1) $X,\emptyset \in \mathfrak{F}$
- 2) $U \in \mathfrak{J}, V \in \mathfrak{I} \Rightarrow U \cap V \in \mathfrak{I}$
- 3) $U_{\alpha} \in \mathfrak{I} \Longrightarrow \bigcup_{\alpha} U_{\alpha} \in \mathfrak{I}$

Множество X со структурой топологии на нём (X,\mathfrak{F}) называется топологическим пространством. Элементы топологического пространства называются точками, а множества $U \in \mathfrak{F}$ - открытыми множествами. Примеры топологий будут приведены в следующей лекции.

Лекция 3.

Пункт 1. Топология на множестве.

В прошлой лекции мы дали два важных определения, которые напрямую связаны с множествами — метрики и топологии на множестве, а также привели примеры метрических пространств и метрик на них. Теперь приведем примеры топологий. Если на множестве X заданы две топологии (X,\mathfrak{I}_1) и (X,\mathfrak{I}_2) , то будем говорить, что топология \mathfrak{I}_1 слабее топологии \mathfrak{I}_2 , если $\mathfrak{I}_1 \subset \mathfrak{I}_2$.

Примеры топологий на множестве:

- 1) Минимальная топология на $X: \mathfrak{I}_{min}=\{X, \emptyset\} \subset \mathfrak{I} (\forall \mathfrak{I})$
- 2) Максимальная топология на X: $\mathfrak{I}_{max}=2^X$. $\forall \mathfrak{I}, \mathfrak{I} \subset \mathfrak{I}_{max}$

Определение 1.

Если $A \in \mathfrak{I}$ (то есть открытое множество), то множество $X \setminus A$ называется замкнутым подмножеством.

Замечание к определению 1: при замене топологии замкнутость множества может изменяться.

Определение 2.

Если $U \in \mathfrak{F}$ - некоторое множество, $x \in U$, то U называется открытой окрестностью точки x.

Замечание к определению 2: определение открытой окрестности зависит от выбора топологии.

Определение 3.

 $\mathcal{B} \subset \mathfrak{J}$ называется базой топологии \mathfrak{J} , если выполнено условие: $\forall U \in \mathfrak{J} \exists V_{\alpha} \in \mathcal{B}$, такие, что $\bigcup_{\alpha} V_{\alpha} = U$.

Напомним, что элементы топологического пространства (множества, снабженного топологической структурой) называются его точками. Теперь нужно понять, какими они бывают, то есть классифицировать их.

Пункт 2. Классификация точек.

Пусть X — некоторое "большое" множество, $A \subset X$.

Определение 4.

Точка $x \in A$ называется внутренней точкой множества A, если $\exists U$, такое, что $x \in U, U \subset A$. Обозначим множество внутренних точек как Int(A).

Введенное нами определение позволяет сформулировать технически важную теорему.

Теорема 1.

Множество внутренних точек множества А является открытым множеством.

Доказательство.

Если $x \in Int(A)$, то $\exists \ U = U(x) \subset A \Longrightarrow \bigcup_x U_x = Int(A)$, где \bigcup_x - объединение по всем точкам множества А. Доказано.

Таким образом, Int(A) является максимальным множеством $U \subset A$.

Определение 5.

Назовём замыкание множества A множество $\bar{A} = X \setminus Int(X \setminus A)$. Для более ясного определения этого понятия введём

Определение 6.

Точка $x \in X$ называется точкой прикосновения к множеству A (или точкой прикосновения множества A), если $\forall U(x)$, где U(x) – открытая окрестность точки x, $U(x) \cap A \neq \emptyset$.

Рассмотрим одну важную конструкцию для вещественной плоскости \mathbb{R}^2 – базу окрестностей: $O_{\varepsilon}(x) = \{y \in \mathbb{R}^2 : \rho(x,y) < \varepsilon\}$. Тогда некоторое множество $U \subset \mathbb{R}^2$ открыто, если $\exists O_{\varepsilon}(x)$, где x – точка прикосновения.

Вернёмся к определению 6 и сформулируем еще одно определение замыкания множества А.

Определение 7.

Множество всех точек прикосновения \bar{A} множества A называется замыканием множества A. Нетрудно заметить, что множество \bar{A} – замкнуто.

Утверждение 1.

Определения замыкания множества А 5 и 7 эквивалентны.

Доказательство:

Для доказательства этого утверждения достаточно заметить, что \bar{A} действительно совпадает с множеством $Int(X \backslash A)$, что и утверждалось.

Теперь введём важное определение точки прикосновения по Гейне.

Определение 8.

Точка х является точкой прикосновения множества $A \Leftrightarrow \exists$ последовательность $\{x_n\}$, такая, что $\lim_{n\to\infty} x_n = x$.

Однако в определении напрямую используется множество натуральных чисел \mathbb{N} , то есть частный случай. Поэтому необходимо ввести ряд новых определений, чтобы перейти к общему. Итак, пусть (X, \mathfrak{F}) – топологическое пространство. Тогда

Определение 9.

Базой точки х называется множество $O_{\mathfrak{I}}(x) = \{U \subset \mathfrak{I}: x \in U\}.$

Множество $O_{\mathfrak{I}}(x)$ частично упорядочено. Частичный порядок задаётся так: если $U_1(x)$ и $U_2(x) \in O_{\mathfrak{I}}(x)$, то будем обозначать $U_1(x) \prec U_2(x)$, если $U_2(x) \subset U_1(x)$. Этот порядок удовлетворяет следующему свойству: $U_1(x)$ и $U_2(x) \in O_{\mathfrak{I}}(x)$ $\exists U_3(x)$, такой, что $U_3(x) \succ U_1(x)$, $U_3(x) \succ U_2(x)$. В таком случае говорят, что задано направляющее множество. В конкретном примере можем считать, что направляющее множество – это множество.

Теперь мы можем ввести корректное определение предела последовательности.

Определение 10.

Пусть I — направленное семейство индексов, то есть задано множество $\{x_{\alpha}, \alpha \in I\}$, (X, \mathfrak{F}) — топологическое пространство. В этом случае

$$x_0 = \lim_{\alpha \in I} (x_\alpha) \iff \forall U, x_0 \in U, \; \exists \; \alpha = \alpha(U),$$
такое, что если $\beta \succ \alpha(U),$ то $x_\beta \in U.$

Теорема 2.

Пусть $A \subset (X,\mathfrak{J}), x_0 \in X$. Тогда $x_0 \in \bar{A} \Leftrightarrow \exists$ последовательность $\{x_\alpha, \alpha \in I\}$, такая, что $\lim_{\alpha \in I} (x_\alpha) = x_0$.

Доказательство.

Действительно, если $x_0 \in \bar{A}$, то $\forall U(x) \ U(x) \cap A \neq \emptyset$, откуда напрямую следует, что $\exists \ x_\alpha \in A$, такое, что последовательность $\{x_\alpha\}$ имеет предел $\lim_{\alpha \in I} (x_\alpha) = x_0$, что и нужно было доказать.

Пункт 3. Отображения.

Пусть даны два топологических пространства (X, \mathfrak{I}_X) и (Y, \mathfrak{I}_Y) и отображение (1) $f: (X, \mathfrak{I}_X) \to (Y, \mathfrak{I}_Y)$. Введем важные понятия, касающиеся непрерывности отображений топологических пространств. Итак, во всех определениях будем подразумевать отображение (1).

Определение 11.

Отображение f называется непрерывным, если $\forall V \in \mathfrak{J}_Y, f^{-1}(V) = U \in \mathfrak{J}_X$.

Определение 12.

Отображение f непрерывно $\Leftrightarrow \forall x \in X, y = f(x), \forall V = V(y) \in \mathfrak{I}_Y \exists U = U(x) \in \mathfrak{I}_X$, то $\forall x' \in U(x) \Rightarrow f(x') \in V(y)$.

Утверждение 2.

Определения 11 и 12 эквивалентны.

Доказательство предлагается проделать самостоятельно.

Определение 13.

Отображение f непрерывно $\iff F \subset Y, F$ – замкнуто и $f^{-1}(F)$ – замкнутое множество.

Все данные выше определения принято понимать определениями по Коши. Однако для дальнейшего повествования стоит ввести определения непрерывности по Гейне.

Определение 14. (Определение непрерывности по Гейне)

Отображение f непрерывно $\Leftrightarrow \exists$ последовательность точек множества $X \{x_n\}$, такая, что $\lim_{n\to\infty} (x_n) = x$ и $\lim_{n\to\infty} f(x_n) = f(x)$ для $\forall x \in X$.

Утверждение 3.

Определения 13 и 14 эквивалентны.

Доказательство:

Если F – замкнуто, то $f^{-1}(F) \subset X$. Если же $f^{-1}(F)$ не замкнуто, то $\exists x_0 \notin f^{-1}(F)$ и $y_0 = f(x_0)$. Тогда \exists последовательность $\{x_n\}$, $\lim_{n \to \infty} (x_n) = x_0$ и $\lim_{n \to \infty} f(x_n) = f(x_0) = y_0 \Longrightarrow x_0 = f^{-1}(y_0) \in f^{-1}(F)$. Но по предположению $x_0 \notin f^{-1}(F)$, противоречие.

Теперь докажем, что из определения по Коши следует определение по Гейне. $\forall V(y_0) \exists U(x_0)$, такая, что $f(U(x_0)) \subset V(x_0)$. Таким образом нужно доказать, что $x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$. Возьмем $V(y_0)$, такую, что $\exists U(x_0)$ и выберем некоторое n, такое, что при n' > n $x_{n'} \in U(x_0)$ и $f(x_{n'}) \in V(y_0)$. Тогда получаем, что $\underset{n \to \infty}{\lim} f(x_n) = y_0$, что и требовалось доказать. Доказано.

Заметим, что при доказательстве мы использовали для большей доступности нумерацию через множество натуральных чисел N, поэтому для соблюдения строгости изложения нужно заменить нумерацию через N на нумерацию через некоторое направляющее семейство.

Из утверждений 2 и 3 следуют несколько важных свойств непрерывных отображений топологических пространств, которые мы сформулируем в качестве утверждения 4.

Утверждение 4.

- 1) Если $f: X \to Y$ непрерывно, то $\forall V \in \mathfrak{J}_Y$ $f^{-1}(V) \in \mathfrak{J}_X$.
- 2) Композиция непрерывных отображений является непрерывным отображением.

Доказательство.

- 1) Немедленно следует из определения непрерывного отображения
- 2) Если мы рассмотрим композицию отображений $f: X \to Y$, $g: Y \to Z$, $g \circ f: X \to Z$, то достаточно применить сначала отображение g^{-1} , затем f^{-1} и воспользоваться свойством 1. Доказано.

Пункт 4. Гомеоморфизмы.

Пусть X и Y – топологические пространства.

Определение 15.

Если заданы отображения $f: X \to Y$ и $g: Y \to X$, такие, что $g \circ f = id_X$, $f \circ g = id_Y$, то будем говорить, что f и g являются гомеоморфизмами пространств X и Y, если f и g являются непрерывными. Соответственно пространства X и Y в этом случае называются гомеоморфными.

Определение 16.

Назовём топологическое пространство (X,\mathfrak{F}) связным, если $X=X_1\sqcup X_2$, то есть $X_1\cap X_2=\emptyset$, $X_1\neq\emptyset$, $X_2\neq\emptyset$ и X_1,X_2 замкнуты.

Примеры гомеоморфных пространств:

- 1) Отрезок [0,1] и интервал (0,1) не гомеоморфны. В самом деле, если построить отображение $f:([0,1]\backslash\{1\}) \to ((0,1)\backslash\{f(x)\})$, то множество $([0,1]\backslash\{1\})$ обладает свойством свзяности, а множество $((0,1)\backslash\{f(x)\})$ нет. Из этого примера следует важное свойство связность является инвариантом гомеоморфизма.
- 2) Отрезки X = [0,1] и Y = [1,2] гомеоморфны. Рассмотрим отображения $f: X \to Y, f(t) = t+1, t \in X$ и $g: Y \to X, g(\tau) = \tau-1, \tau \in Y$. Гомеоморфизм построен. Из этого примера вытекает ряд полезных наблюдений: \forall отрезок [a,b] гомеоморфен \forall отрезку [c,d]; \forall интервал (a,b) гомеоморфен \forall интервалу (c,d); \forall полуинтревал [a,b) гомеоморфен \forall полуинтервалу [c,d).
- 3) (0,1) и $(-\infty, +\infty)$ также гомеоморфны (проверьте!).

Определение 17.

Пусть (X, \mathfrak{F}) — некоторое топологическое пространство, $A \subset X$. Тогда $\mathfrak{F}_A = \{A \cap G, G \in \mathfrak{F}\}$. В этом случае говорят, что A - подпространство в X.

Теперь мы можем сформулировать важную теорему о непрерывном отображении.

Теорема 3. (Теорема о непрерывности).

Пусть (X, \mathfrak{I}_X) – некоторое топологическое пространство, $X = F_1 \cup F_2$, F_1 и F_2 – замкнутые множества. Отображение $f: X \to Y$, отображение $f|_{F_1}: F_1 \to Y$ – ограничение f на F_1 , отображение $f|_{F_2}: F_2 \to Y$ – ограничение f на F_2 . Тогда отображение f непрерывно \Leftrightarrow непрерывны его ограничения $f|_{F_1}$ и $f|_{F_2}$.

Замкнутость множеств F_1 и F_2 играет очень большую роль. Проиллюстрируем это примером. Пусть $X=\mathbb{R}$, в качестве одного подмножества возьмём множество рациональных чисел \mathbb{Q} , в качестве другого – его дополнение $\mathbb{R}\setminus\mathbb{Q}$. Если $f\colon X \to Y$, то его ограничения $f|_{\mathbb{Q}}\colon \mathbb{Q} \to Y$ и $f|_{\mathbb{R}\setminus\mathbb{Q}}\colon \mathbb{R}\setminus\mathbb{Q} \to Y$ — непрерывны, но само отображение f не непрерывно. Для этого положим $f|_{\mathbb{Q}}\equiv 1$, $f|_{\mathbb{R}\setminus\mathbb{Q}}\equiv 0$. Тогда действительно ограничения f непрерывны, но общее отображение f — разрывно.

17

Лекция 4.

Пункт 1. Произведение топологических пространств.

В предыдущей лекции мы детально рассмотрели топологические пространства. Теперь мы введём очень важную конструкцию – декартово произведение топологических пространств.

Определение 1.

Пусть (X, \mathfrak{I}_X) и (Y, \mathfrak{I}_Y) — топологические пространства. Определение декартова произведения множеств было введено нами ранее (см. лекцию 1). Определим топологию декартова произведения $\mathfrak{I}_{X\times Y}=\{U\times V\colon U\subset X, V\subset Y,\ U\in \mathfrak{I}_X,\ V\in \mathfrak{I}_Y\}.$

Определение 2.

Множество $W \subset X \times Y$ называется открытым, если $\exists U_{\alpha_i} \ V_{\alpha}$, $\ \alpha \in I$, такие, что

$$\bigcup_{\alpha} (U_{\alpha} \times V_{\alpha}) = W$$

Теперь определим некоторое отображение $pr_X: X \times Y \to X$, $pr_Y: X \times Y \to Y$.

Теорема 1.

Отображения pr_{x} и pr_{y} непрерывны.

Доказательство.

Достаточно заметить, что $(pr_X)^{-1}(U) = U \times Y$, то есть прообраз этого отображения открыт, а следовательно – оно непрерывно. Аналогично для pr_Y . Доказано.

Теперь сформулируем еще одно утверждение в виде теоремы:

Теорема 2.

$$z_{\alpha}=(x_{\alpha},y_{\alpha})\in X\times Y.\ \exists \underset{\alpha\in I}{lim}z_{\alpha}\Leftrightarrow\exists \underset{\alpha\in I}{lim}x_{\alpha}=x_{0}\text{ и }\exists \underset{\alpha\in I}{lim}y_{\alpha}=y_{0}.$$

Доказательство: достаточно тривиально, в этом мы убедимся немного позднее.

Также в первой лекции мы дали определения графика отображения. Теперь сформулируем

Теорема 3.

Пусть $f: X \to Y$. Тогда график функции Γ_f — замкнутое множество.

Доказательство:

Достаточно заметить, что при $x_{\alpha} \to x_0$ верно и $f(x_{\alpha}) \to f(x_0)$. В свою очередь, если $x_0 \in \Gamma_f$, то и $f(x_0) \in \Gamma_f$. Следовательно, каждая предельная точка принадлежит множеству \Longrightarrow множество замкнуто. Доказано.

Определение 3.

Топологическое пространство X называется хаусдорфовым, если $\forall x, y \in X$

 $\exists \ G(x)$ и G(y) (окрестности точек) $\in \mathfrak{T}_X$, $G(x) \cap G(y) = \emptyset$.

Замечание.

Как мы сможем убедиться позже – не каждое топологическое пространство является хаусдорфовым.

Теорема 4. (о хаусдорфовости метрического пространства)

Всякое метрическое пространство является хаусдорфовым.

Доказательство.

Пусть $x, y \in X$ – метрическое пространство. $x \neq y \Longrightarrow \rho(x, y) > 0$.

Тогда $\exists \ arepsilon = rac{
ho(x,y)}{2} \Longrightarrow \exists \ O_{arepsilon}(x), O_{arepsilon}(y),$ такие что $O_{arepsilon}(x) \ \cap \ O_{arepsilon}(y) = \emptyset.$

Это верно, т. к. $\nexists z \in O_{\varepsilon}(x) \cap O_{\varepsilon}(y)$. Если бы такое z существовало, то из неравенства треугольника $\rho(x,y) \leq \rho(x,z) + \rho(z,y) < \frac{\rho(x,y)}{2} + \frac{\rho(x,y)}{2} = \rho(x,y)$. Противоречие. Доказано.

Во всех формулах выше мы использовали определение предела, однако может ли быть так, что предел не единственен? Ответ на этот вопрос нам даёт теорема 5.

Теорема 5.

Пусть X — хаусдорфово пространство, $x_{\alpha} \in X$, $\alpha \in I$ -направленность. Тогда если $\exists \lim_{\alpha \in I} x_{\alpha} = x_0$ и $\exists \lim_{\alpha \in I} y_{\alpha} = y_0$, то $x_0 = y_0$.

Доказательство.

Так как пространство хаусдорфово $\Rightarrow \exists G(x_0), G(y_0): G(x_0) \cap G(y_0) = \emptyset$. То есть, $\exists G(x_0)$, такая, что $\exists \alpha_0 \in I$, что $\forall \alpha, \alpha_0 < \alpha \quad x_\alpha \in G(x_0)$.

Но $\exists G(y_0)$, такая, что $\exists \alpha_1 \in I$, что $\forall \alpha, \alpha_1 < \alpha \ x_\alpha \in G(y_0)$.

Тогда выберем из α_1 и α_0 наибольшее (можем это сделать) и обозначим как α_2 . Но тогда для некоторого x_α , $\alpha > \alpha_2$, $x_\alpha \in G(x_0) \cap G(y_0) = \emptyset$. Противоречие. Доказано.

Для того, чтобы упорядочить все полученные нами свойства топологических пространств, введём ряд обозначений. Будем говорить, что топологическое пространство удовлетворяет условию (аксиоме или свойству отделимости):

 T_0 (аксиома Колмогорова) — любые две различные точки пространства X отделяются окрестностью.

 T_1 – если $\forall x, y \in X \ \exists G(x)$, такая, что $y \notin G(x)$.

 T_2 - если пространство хаусдорфово.

 T_3 – если $\forall x \in X$, $\forall F$ – замкнутого множества, такого, что $x \notin F$, то $\exists G(x)$, $\exists G_F = G(F)$, $G(x) \cap G_F = \emptyset$.

 T_4 — если F_1 и F_2 — непересекающиеся замкнутые множества, то $\exists \ G_1$ и G_2 такие, что $G_1 \cap G_2 = \emptyset$.

Очевидно, что верна импликация $T_2 \Longrightarrow T_1 \Longrightarrow T_0$.

Определение 4.

Топологическое пространство со свойствами T_0 и T_3 , выполняющимися одновременно, называется регулярным топологическим пространством.

Упражнение.

Проверьте, что верна следующая импликация: $T_0 + T_3 \Longrightarrow T_2 \Longrightarrow T_1$.

Определение 5.

Топологическое пространство со свойствами T_1 и T_4 , выполняющимися одновременно, называется нормальным топологическим пространством.

Теорема 6. (о нормальности метрического пространства)

Если X – метрическое пространство, то X нормально.

Доказательство:

Фактически надо построить отображение $f: X \to \mathbb{R}$, такое, что если F_1 и F_2 его замкнутые непересекающиеся подмножества, то ограничения f на них соответственно тождественно равны 0 и 1. Для этого воспользуемся теоремой Урысона:

Теорема 7. (Теорема Урысона)

Если X — нормальное пространство, F_1 и F_2 его замкнутые непересекающиеся подмножества, то $\exists f: X \longrightarrow [0,1], f$ — непрерывна на X и $f|_{F_1} \equiv 0$ и $f|_{F_2} \equiv 1$.

Доказательство этой теоремы приведем несколько позже.

Вернемся к доказательству теоремы 6. В качестве такой функции f мы можем взять метрику пространства X. Определим расстояние $\rho(x,F)$ от точки x до подмножества F, как $\inf_{y\in F}\rho(x,y)$. Осталось доказать, что метрика есть непрерывная функция переменной f

χ . Поэтому

Теорема 8.

Функция $\rho(x, F)$ непрерывна по переменной x.

Доказательство теоремы 8:

Нужно лишь доказать неравенство $|\rho(x,F) - \rho(y,F)| \le \rho(x,y)$. Для этого рассмотрим два справедливых неравенства:

$$\rho(x,y) \le \rho(x,z) + \rho(z,y); \ \rho(y,z) \le \rho(z,x) + \rho(x,y).$$

Так как x и y "равноправны", то переходя сначала к $\rho(y,F) = \inf_{z \in F} (\rho(z,x) + \rho(x,y))$, а

затем аналогично к $\rho(x,F)$ получаем требуемый результат: $\rho(x,F)$ непрерывна. Доказано.

Для завершения доказательства теоремы 6 осталось лишь явно построить функцию $f=rac{
ho(\mathbf{x},F_1)}{
ho(\mathbf{x},F_1)+
ho(\mathbf{x},F_2)}.$ Очевидно, что она непрерывна и при этом если $x\in F_1$, то $f\equiv 0$, а при $x\in F_2$ $f\equiv 1$. Доказано.

Мы не будем приводить полное доказательство теоремы 7 (теоремы Урысона), а докажем её схематично: достаточно лишь разбить отрезок [0,1] на открытые множества \Rightarrow прообразы также будут открытыми. Индуктивно продолжая подобное построение мы получим два таких множества F_1 и F_2 , а следовательно, наше предположение верно. Более строгое рассуждение читатель может проделать самостоятельно.

Теперь приведём важный пример хаусдорфова, но не регулярного пространства:

$$X = [0,1]$$
, некоторая топология \Im . Рассмотрим множество $Z = \{\frac{1}{n}, \text{где } n > 0\}$.

Тогда "новая" топология будет содержать все множества "старой" и множество $X \setminus Z$. Это пространство будет заведомо хаусдорфовым, но регулярность будет нарушаться в точке 0: $\{0\} \cap Z = \emptyset$, но в любой окрестности точки 0 присутствуют элементы Z.

Теперь рассмотрим пример регулярного, но не нормального пространства. Это пространство называется плоскостью Немыцкого:

$$L \subset \mathbb{R}^2 = \{(x, y), y \ge 0\}. \ L_0 = \{(x, y), y = 0\}$$

Пространство, полученное благодаря L_0 заведомо хаусдорфово, регулярно, но ненормально.

Лекция 5.

Пункт 1. Лемма Урысона.

В предыдущей лекции нами не было дано четкого доказательства теоремы Урысона (или леммы Урысона, как её часто обозначают в литературе) по причине использования её в доказательстве другой важной теоремы. Поэтому сформулируем и докажем её автономно еще раз. Обозначим [0,1] = I.

Теорема 1.(Лемма Урысона).

Если X — нормальное пространство, U и V его замкнутые непересекающиеся подмножества, то $\exists \ f \colon X \longrightarrow [0,1], f$ — непрерывна на X и $f|_U \equiv 0$ и $f|_V \equiv 1$. Доказательство:

Условие нормальности эквивалентно следующему: $U \subset X, U$ – замкнуто и $\forall O_U \Longrightarrow \exists O_U'$, такая, что $O_U' \subset O_U$. В данном случае O_U – открытая окрестность U.

Теперь построим семейство множеств F_r $(r=\frac{m}{2^m}, m=2k+1, r<1)$ так, что $F_r\subset F_{r'}$, при r< r' и $\overline{F_r}$ лежит в $\overline{F_{r'}}$.

Определим F_0 как некоторую окрестность $U, F_1 = X \setminus V$. Тогда $F_{\frac{1}{2}}$ удовлетворяет следующим свойствам: $\overline{F_0} \subset F_{\frac{1}{2}}, \ \overline{F_{\frac{1}{2}}} \subset F_1$. Далее можем построить $F_{\frac{1}{4}}$ и $F_{\frac{3}{4}}$ и т.д. индуктивно. Теперь мы имеем дело с непрерывно "расширяющимся" семейством множеств.

Построим функцию f следующим образом: $f(x) = \begin{cases} \inf\{r: x \in F_r\}, \text{при } x \notin V \\ 1, x \in V \end{cases}$

Докажем непрерывность f на I. Пусть 0 < a < 1 и рассмотрим окрестности типа [0,a) (a,1].

 $(*) \ \forall \ (a,b) = [0,b) \cap (a,1]$ (то есть, окрестности из предыдущего предложения являются двупараметрическими).

Прообраз $f^{-1}([0,a)) = \{ \bigcup F_r, r < a \}$ – суть открытое множество. В свою очередь $f^{-1}((a,1]) = \{ \bigcup X \setminus \overline{F_r}, r > a \}$ – также открытое множество. Так как мы показали (см (*)), что \forall подмножество I представимо таким образом и прообразы f на каждой части окрестности открыты $\Longrightarrow f$ непрерывна. Доказано.

Упражнение-вопрос.

В каком месте использовалась нормальность?

Теперь сформулируем одну важную теорему, которая еще неоднократно будет фигурировать в наших дальнейших рассуждениях и не только.

Теорема 2.(О разбиении единицы)

Пусть X — нормальное пространство, $u=(U_1,...,U_n)$ — конечное открытое покрытие $(\bigcup_i U_i=X)$, каждое U_i — открытое. Тогда \exists набор $\varphi_i(x)$: $X\to [0,1]$, такой, что

 $\forall i = 1, ..., n \quad \varphi_i$ непрерывна, $supp(\varphi_i) \subset U_i, \sum_i \varphi_i = 1$.

(Напоминание: $supp(f) = \{x \in X : f(x) \neq 0 \}$)

Доказательство теоремы будет опираться на следующую лемму.

Лемма 1.

Если $u=(U_1,...,U_n)$ – открытое покрытие X (нормальное пространство), то $\exists \ v=(V_1,...,V_n)$, такое, что $(\overline{V_i}) \subset U_i$.

Доказательство леммы:

Построим v пошагово. Пусть $F_1 = X \setminus (\bigcup_{i=2} U_i) \implies \exists$ окрестность $F_1 \subset V_1 \subset U_1 \implies (V_1, U_2, ..., U_n)$ – открытое покрытие X.

Предположим, что для некоторого k наше предположение уже верно, то есть построено семейство $(V_1, ..., V_k, U_{k+1}, ..., U_n)$. Тогда $F_{k+1} = X \setminus (V_1 \cup V_2 \cup ... \cup V_k \cup U_{k+1} \cup ... \cup U_n)$. Применяя для F_{k+1} рассуждения, аналогичные рассуждениям об F_1 , можем сказать, что лемма верна \forall n. Доказано.

Вернемся к доказательству теоремы:

По лемме 1 можем считать, что уже построено вышеуказанное покрытие $v=(V_1,...,V_n)$, $\overline{V_i}\subset U_i$. Тогда для $\forall\ i=1,...,n$ рассмотрим множество отображений $\psi_i\colon X\to\mathbb{R}$ и их ограничений на дополнения к V_i и на $X\backslash U_i$, таких, что $\psi_i|_{\overline{V_i}}\equiv 1,\ \psi_i|_{X\backslash U_i}\equiv 0$. Существование таких функций гарантируется теоремой Урысона. Тогда

 $arphi_i = rac{\psi_i(x)}{\sum \psi_i(x)}$. Очевидно, что эта функция непрерывна. Достаточно легко также проверить, что $\sum_i arphi_i(x) = 1$. Теорема доказана.

Замечание-задача.

При каких условиях вышеизложенное доказательство справедливо для случая бесконечного покрытия?

Далее мы приведем теорему, доказательство которой, возможно, будет реализовано нами позже. Итак,

Теорема 3. (Титце-Урысона)

Пусть $F \subset X$, F — замкнуто, X — нормальное пространство. Если $f: F \to \mathbb{R}$, $\exists \sup_{x \in F} |f(x)| = ||f||$ (норма функции) $\Longrightarrow \exists H: X \to \mathbb{R}$, H непрерывна, $H|_F = f$, ||H|| = ||f||.

Пункт 2. Компактные пространства. Компактность.

Определение 1.

Некоторое множество X называется компактным, если из любого открытого покрытия $u = (U_{\alpha})$ можно выделить конечное подпокрытие.

Определение 2.

Некоторое множество X называется компактным, если \forall покрытии U можно "вписать"

конечное подпокрытие. В данном случае u вписано в v (два покрытия), означает, что для $\forall U \in u \; \exists \; V \in v$, такое, что $U \subset V$.

Предложение 1.

Определения 1 и 2 эквивалентны.

Определение 3.

X локально компактно $\Leftrightarrow \forall x \in X, O(x) \subset X \exists O'_x$ такая, что $\overline{O'_x} \subset O(x)$. Пример локально компактного множества: \mathbb{R} .

Определение 4.

Пусть u — семейство подмножеств пространства X. U локально конечно, если $\forall x \in X$, $\exists O(x)$, такая, что пересечение этой окрестности с возможно конечным подсемейством U не пусто.

Определение 5.

X — паракомпактно, если в любом открытом покрытии u можно вписать локально конечное покрытие.

Пример паракомпактного пространства: \forall евклидово пространство \mathbb{R}^n .

Лекция 6.

В прошлой лекции мы ввели важные определения компактности, локальной компактности и паракомпактности. Теперь посмотрим, какими свойствами эти определения обладают. Итак,

Теорема 1.

Пусть $F \subset X$, F – замкнуто. Если X компактно (локально компактно, паракомпактно) \Longrightarrow F также компактно (локально компактно, паракомпактно).

Доказательство.

Проведем доказательство для случая компактности, так как в остальных случаях рассуждения те же.

Если U_{α} — покрытие X, то достаточно лишь "присовокупить" к этому покрытию множество $X \setminus F$, которое является открытым. Тогда семейство $(U_1, ..., U_N, X \setminus F)$ является открытым покрытием F. Аналогично для двух оставшихся случаев. Доказано.

Теперь обобщим введенные нами термины с помощью теоремы 2:

Теорема 2.

Если X – хаусдорфово и паракомпактно, то оно нормально.

Доказательство:

Для доказательства сначала докажем регулярность множества X. Для доказательства нормальности потребуются те же рассуждения.

Из условия X – хаусдорфово. Пусть $F \subset X$. Тогда из условия имеем:

 $\forall x \in X, \forall y \in F, \exists O(x), O(y),$ такие, что $O(x) \cap O(y) = \emptyset$.

Рассмотрим $UO(y) = O_F$. Это множество открыто. Напомним один теоретикомножественный факт — операция объединения конечного числа множеств перестановочна с операцией взятия замыкания к этому объединению (верно лишь для объединения конечного числа множеств!). То есть $\overline{(A \cup B)} = \overline{A} \cup \overline{B}$.

Вернемся к рассмотрению окрестностей O(y). Из вышесказанного \Longrightarrow

$$\overline{\cup O(y)} = \cup (\overline{O(y)}) = O_F \Longrightarrow X$$
 регулярно.

Для доказательства нормальности нужно лишь от пары (F,x) перейти к паре (F,G), где и F, и G замкнуты. Дальнейшие рассуждения аналогичны рассуждениям при доказательстве регулярности. Доказано.

Предложение 1. (обратное к теореме о компактности подмножества)

Если F – компакт, X – хаусдорфово пространство, $F \subset X \implies F$ – замкнуто.

Доказательство:

Рассмотрим некоторую точку $x \in X \setminus F$. Если u_v — открытое покрытие F, то из компактности F следует, что из u_v можно выделить конечное. Переходя к объединению замыканий получаем требуемое — F замкнуто. Доказано.

Следствия из предложения 1.

- 1) Если $X \subset \mathbb{R}^n$, X компакт $\implies X$ замкнуто и ограничено.
- 2) $\forall n \mathbb{R}^n$ хаусдорфово.

Предложение 2.

Пусть $f: X \to Y$, X -компактно, f – непрерывно $\Longrightarrow f(X)$ – компактно. Доказательство.

Пусть U_{α} – открытое покрытие f(X). Тогда $f^{-1}(U_{\alpha})$ – открытое покрытие X. Из непрерывности f мы можем выделить конечное подпокрытие $f^{-1}(U_1)$, ..., $f^{-1}(U_N) \Longrightarrow \cup_I f^{-1}(U_i) = X$, откуда следует, что $f(x) \subset \bigcup_i^N (U_i)$, что и требовалось доказать. Предложение доказано.

Ранее нами было введено понятие гомеоморфизма. Заметим, что если f взаимооднозначно и непрерывно, то из этого вообще говоря не следует, что f – гомеоморфизм.

Теорема 3.

Пусть X — компактно, Y — хаусдорфово. Тогда если $f: X \to Y$ непрерывно и взаимнооднозначно, то f — гомеоморфизм.

Доказательство:

Докажем, что f – замкнутое отображение(f(F) замкнуто, если $\forall F \subset X$, F -замкнуто). Действительно, так как X компактно, то f является замкнутым отображением. Но тогда если $U \subset Y$, $f^{-1}(Y \setminus U)$ - замкнуто, что, в свою очередь, говорит об открытости $f^{-1}(U)$. Из вышенаписанного и из предположения, что f непрерывно и взаимооднозначно напрямую следует, что f – гомеоморфизм, что и необходимо было доказать. Доказано.

Пункт 2. Метризуемые пространства.

Некоторое время назад одновременно с введением топологии на множестве мы ввели также такое понятие, как метрика. Ряд сформулированных фактов позволяет нам задаться вопросов о решении ряда задач, касаемых метризуемых пространств, то есть пространств, на которых можно ввести метрику. Сформулируем это определение строго.

Определение 1.

Топологическое пространство X называется метризуемым \Leftrightarrow если $\exists \ \rho: X \times X \to \mathbb{R}$, где ρ — функция метрики. Тогда топологическое пространство X_{ρ} гомеоморфно топологическому пространству X.

Далее мы сформулируем и докажем важную теорему о метризуемости пространств доказательство которой будет опираться на следующую лемму, а также на введенные нами ранее определения декартова произведения топологических пространств(см. пред. лекции.).

Лемма 1.

Счётное произведение метризуемых пространств метризуемо.

Перед доказательством леммы сделаем важное замечание: если (X, ρ) — метрическое пространство, то $\exists \ \rho'$, такое, что X_{ρ} и $X_{\rho'}$ гомеоморфны.

Доказательство:

Введём метрику ρ : $X_1 \times X_2 \times ... \times X_N \times ... \rightarrow \mathbb{R}$.

Под точками пространства $X=X_1\times X_2\times ...\times X_N\times ...$ можем понимать привычный нам результат декартова произведения: $X=(X_1,...,X_N,...),\ y=<\cdots>$.

Тогда $\rho(x,y) = \frac{\sqrt{\sum \rho_i^2(x_i,y_i)}}{2^i}$, где суммирование ведётся по индексу i. С помощью введённой метрики мы можем ввести топологию на этом пространстве. Однако на этом пространстве еще может быть введена топология Тихонова с помощью окрестностей вида $O(x) = (x_1 \pm \epsilon_1, ..., x_N \pm \epsilon_N, ...)$. Нужно заметить, что топология, построенная нами и топология Тихонова совпадают (упражнение - проверить).

Теперь сформулируем теорему:

Теорема 4.

Если X нормальное пространство со счётной базой, то X метризуемо.

Полноценно сформулируем и докажем эту теорему в следующей лекции.

Лекция 7.

Пункт 1. Теорема Урысона о метризуемости.

В прошлой лекции мы определили несколько важных фактов и утверждений, связанных с метризуемостью пространств и их декартовых произведений, а также утвердили, что топология Тихонова и построенная нами напрямую топология с метрикой $\rho(x,y) = \frac{\sqrt{\sum \rho_i^2(x_i,y_i)}}{2^i}$ эквивалентны. Теперь со всей строгостью сформулируем и докажем теорему о

 $\frac{\sqrt{1-t^2+3-t^2}}{2^t}$ эквивалентны. Теперь со всей строгостью сформулируем и докажем теорему о метризуемости, которая завершала нашу предыдущую лекцию (теорема 4).

Теорема 1. (Теорема Урысона о метризуемости)

Если топологическое пространство X обладает свойством нормальности и содержит счётную базу, то X метризуемо.

Доказательство:

Если X обладает свойством нормальности и содержит счётную базу, то \exists f: X \to I^N, где I = [0, 1] (гильбертов куб), такое, что f является гомеоморфизмом с образом f(X). Докажем это утверждение:

Заметим, что I – метризуемо \Longrightarrow по лемме из предыдущей лекции I^N также метризуемо. Пусть $\mathscr B$ - база топологии в X. Рассмотрим множество (*) $\{(U,$

V): U, V \subset \mathscr{B} , V \subset U, \overline{V} \subset U}. Так как \mathscr{B} счётно \Longrightarrow \mathscr{B}^2 счётно. Тогда занумеруем пары (U, V) как (U_n, V_n). Теперь по лемме Урысона построим следующее семейство отображений:

$$\varphi_i: X \to [0, 1]. \, \varphi_i(x) = \begin{cases} 1, x \in V_n \\ 0, x \in X \setminus U_n \end{cases}$$

Теперь также по лемме Урысона построим функцию $f = \phi_1 \times \phi_2 \times ...$. Её можно интерпретировать как f(x)= $(\phi_1(x), \phi_2(x), ...)$. После введенной нами конструкции уместно сделать следующие замечания:

- 1) f непрерывна. Читателю рекомендуется самостоятельно воспроизвести доказательство этого очевидного факта.
- 2) f является инъективной функцией. Действительно, пусть $x,y \in X$ различные элементы. Тогда из построенного выше множества (*) можем определить окрестности точек как $O_x = U_x$, $O_y = X \setminus \overline{U_x}$. Но тогда $\Longrightarrow \exists i$, такой, что множество $(X \setminus U_y, U_x)$ "эквивалентно" множеству (U_i, V_i) (фактически это просто наглядное построение такого множества).

В таком случае $\varphi_i(x) = 1$

 $\varphi_i(y)=0 \Rightarrow f(x) \neq f(y),$ так как они отличаются минимум в одном "месте" (то есть отличаются как минимум i-ой координатой) \Rightarrow f — действительно инъекция.

3) f $^{-1}$ — гомеоморфизм. Читателю рекомендуется самостоятельно воспроизвести доказательство этого очевидного факта (доказательство аналогично п. 1).

Таким образом мы пришли к нашему исходному утверждению: X – метризуемое пространство, что и необходимо было доказать.

Теорема доказана.

Теперь рассмотрим еще одну важную теорему этого курса, доказательство которой зачастую вызывает некоторые сложности, связанные с её теоретико-числовыми свойствами.

Теорема 2. (Теорема Тихонова о компактности)

Пусть X_{α} , $\alpha \in A$, - компактные пространства. Тогда любое их декартово произведение является компактным пространством, или на языке кванторов: если X_{α} компактное пространство, то $\forall \prod_{\alpha \in A} X_{\alpha}$ является компактным пространством.

Доказательство:

Доказательство этой теоремы опирается на две леммы:

Лемма 1. (Куратовского-Цорна)

Если (X, \leq) множество с отношением порядка, тогда $\forall Y \subset X$ – линейно упорядоченного подмножества, содержащего максимальный элемент X - максимальный элемент.

Эту лемму мы приводим без доказательства.

Лемма 2. (Александера)

Пусть \exists предбаза \mathscr{B} , такая, что \forall покрытия $X = \bigcup_{\alpha} U_{\alpha}, U_{\alpha} \in \mathscr{B}$ можно выделить конечное подпокрытие $\Longrightarrow X$ является компактным.

Мы приведем лишь набросок доказательства этой леммы, предоставив читателю завершить его со всей подобающей строгостью:

Пусть X — не компактно. Тогда пусть u_0 — открытое покрытие, из которого нельзя выделить конечное подпокрытие. Рассмотрим множество покрытий $U=\{u,$

 $u_0 \subset u$, и не содержит конечного подпокрытия $\}$. Справедливо следующее замечание:

Множество U является упорядоченным, для него выполняется лемма Куратовского-Цорна \Longrightarrow \exists максимальный элемент max U=b. Дальнейшие рассуждения проделайте самостоятельно.

Теперь вернемся непосредственно к доказательству теоремы Тихонова:

(**) Пусть $P_{\alpha}^{-1}(U)$ - предбаза, $U_{\alpha} \subset X_{\alpha}$. Докажем теперь, что $\exists \ \beta \in A$ – индекс, такой, что $P_{\alpha}^{-1}(\beta) \subset$ некоторый элемент покрытия, $x \in X_{\beta}$.

Предположим противное – пусть \nexists такого индекса β . Это эквивалентно тому, что \forall индекса $\alpha \in A$, $\exists x_{\alpha} \in X_{\alpha}$, такой, что $P_{\alpha}^{-1}(x_{\alpha}) \notin$ элементу покрытия, откуда напрямую следует, что произведение таких множеств не является покрытием, то есть покрытие не является покрытием. Явное противоречие.

Теперь по лемме Александера и из проделанных нами выше рассуждений (см. (**)) теорема Тихонова доказана.

Доказано.

Пункт 2. Связность. Связные множества.

Рассмотрим множества X = [0,1] и $Y = [0,1] \cup [2,3]$. Существует ли гомеоморфизм между этими множествами?

Ответ на этот вопрос можно получить с помощью введения понятия связности.

Определение 1.

Множество X связно, если его нельзя представить в виде следующего объединения множеств: $U \cup V = X$, $U \cap V = \emptyset$, где U и V являются открытыми множествами.

Замечание: введенное нами определение эквивалентно следующему объединению связного множества:

Определение 2.

Множество X связно, если никакое его подмножество не является одновременно открытым и замкнутым.

Определение 3.

Множество U называется компонентой связности X, если U открыто, замкнуто и связно.

Утверждение 1.

При непрерывном отображении f количество компонент связности множества не изменяется.

Рассмотрим один важный пример: гомеоморфны ли отрезок I и окружность O?

Чтобы дать ответ на этот вопрос выберем произвольную точку x данного отрезка и "выкинем" её, то есть перейдем ко множеству $I\setminus\{x\}$. Аналогично для окружности, но из неё мы будем "выбрасывать" точку f(x), то есть, перейдем ко множеству $O\setminus f(x)$. У множества $I\setminus\{x\}$ две компоненты связности, у множества $O\setminus f(x)$ — одна. Далее см. утверждение 1.

Лекция 8.

Пункт 1. Гомотопии.

В предыдущей лекции мы ввели понятие линейной связности и её компонент. Теперь мы будем подразумевать под топологическими пространствами связные пространства, только если не оговорено обратное. Рассмотрим важную структуру на пространстве – путь и определим гомотопность (эквивалентность) путей. Напомним обозначение: [0,1] = I. Итак,

Определение 1.

Пусть $f, g: I \to X$. Будем говорить, что пути f и g гомотопны $(f \sim g)$, если выполняются следующие свойства:

1)
$$f(0) = g(0) = x$$
, $f(1) = g(1) = y$

2) \exists отображение $H:I\times I\to X$, такое, что

$$H(t,0) = f(t), H(t,1) = g(t), H(0,s) = x, H(1,s) = y$$

Это условие также даёт регулярную гомотопность ("гомотопия с закрепленными концами").

Наглядно это утверждение можно изобразить, как (см. рис. 8.1):

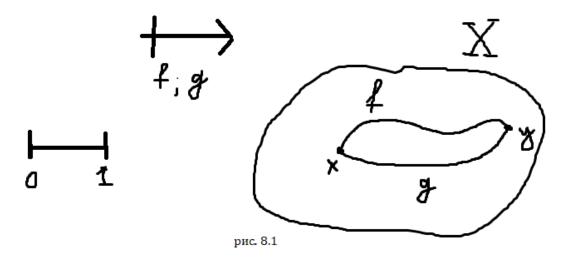


Рис. 8.1

Теперь введем важное определение двух путей f и g.

Пусть $x_0 \in X$ – произвольно. Тогда

Определение 2.

Определим произведение путей f и g следующим образом: введем отношение эквивалентности $\pi_1(X, x_0) = \{[f] \mid f: I \to X, f(0) = f(1) = x_1\}$ (можно понимать это

множество как некоторое множество петель). Тогда под произведением путей будем понимать следующее отображение:

$$[f] \cdot [g] = \begin{cases} f(2\mathsf{t}), \text{ если } \mathsf{t} \le \frac{1}{2} \\ g(2\mathsf{t}) - 1, \text{ если } \mathsf{t} \ge \frac{1}{2} \end{cases}$$

Нетрудно заметить, что это отображение является непрерывным. В связи с этим читателю предлагается следующее

Упражнение 1.

Пусть X = $U_1 \cup U_2$, U_1, U_2 — замкнуты. $f_1 \colon U_1 \to Y$, $f_2 \colon U_2 \to Y$, f_1 , f_2 — непрерывны. Доказать, что если $f_1|_{U_1 \cap U_2} = f_2|_{U_1 \cap U_2}$, то отображение

$$F(x) = \begin{cases} f_1(x), & x \in U_1 \\ f_2(x), & x \in U_2 \end{cases}$$

является непрерывным.

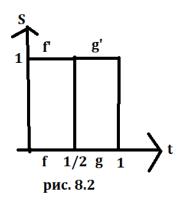
Лемма 1.

Пусть f, f', g, g' — некоторые пути. Тогда если $f \sim f', g \sim g' \Longrightarrow f \cdot g \sim f' \cdot g'$. (У всех путей гомотопии разные соответственно).

Доказательство:

Доказательство этой леммы сводится к рассмотрению разбиений квадрата $I \times I$. Построим отображение $H(t,s) = \begin{cases} F(2t,s), \text{ если } t \leq \frac{1}{2} \\ G(2t-1,s), \text{ если } t \geq \frac{1}{2} \end{cases}$

Это отображение можно проиллюстрировать следующим образом (рис 8.2):



Доказательство опирается на следующий факт: π_1 (см. определение 2) с операцией Н образует группу. Нам нужно лишь проверить аксиомы ассоциативности, наличия нейтрального и обратного элементов:

1) ассоциативность. Если $f,g,h:I\to X$, то $(f\cdot g)\cdot h\sim f\cdot (g\cdot h)$. Для доказательства достаточно явно предъявить отображения, которые стоят в левой и правой частях: отображение

$$(f \cdot g) \cdot h = egin{cases} f(4t), ext{ если } t \leq rac{1}{4} \ g(4t-1), ext{ если } rac{1}{4} \leq t \leq rac{1}{2} \ h(2t-1), ext{ если } t \geq rac{1}{2} \end{cases}$$

отображение

$$f \cdot (g \cdot h) = egin{cases} f(2t), ext{если } t \leq rac{1}{2} \ g(4t-2), ext{если } rac{1}{2} \leq t \leq rac{3}{4} \ h(4t-3), ext{если } rac{3}{4} \leq t \leq 1 \end{cases}$$

Это свойство также можно наглядно изобразить в виде разбиения изображенного на рис. 8.2 квадрата.

- 2) наличие нейтрального элемента: действительно, рассмотрим $\exists \ e(t) = x_0$. Тогда $\mathbf{f} \cdot \mathbf{e} \sim \mathbf{e} \cdot \mathbf{f} \sim \mathbf{f}$ (требует проверки, например можно также изобразить в виде разбиения квадрата).
- 3) наличие обратного элемента: $\exists f^{-1}$, такой, что $f \cdot f^{-1} \sim f^{-1} \cdot f \sim e$. Такой элемент можно предъявить явно: $f^{-1} = f(1-t)$. Действительно, в таком случае произведение кривых(петель) f и f^{-1} даёт единичную прямую(также можно убедиться наглядно).

Таким образом с помощью утверждения о том, что $\pi_1(X, x_0)$ с операцией H образуют группу получаем, что утверждение леммы верно. (Такие группы называются фундаментальными группами)

Доказано.

Теперь сформулируем и докажем важное утверждение, касающееся изоморфности фундаментальных групп. Итак,

Утверждение 1.

Пусть X – линейно связно, $x_0, y_0 \in X \Longrightarrow \pi_1(X, x_0) \cong \pi_1(X, y_0)$ (эти группы изоморфны).

Доказательство:

Рассмотрим множество кривых с началом в точке х и концом в точке у: $\Omega(X, x, y) = \{f: I \to X, f(0) = x, f(1) = y\}$. Введем операцию умножения таких кривых следующим образом:

33

$$f imes g=\Omega(\mathrm{X},\mathrm{x},\mathrm{y}) imes \Omega(\mathrm{X},\mathrm{y},\mathrm{z})=\Omega(\mathrm{X},\mathrm{x},\mathrm{z})=egin{cases} f(2t) ext{, если }t\leqrac{1}{2}\ g(2t-1) ext{, если }t\geqrac{1}{2} \end{cases}$$

Интерпретация этой операции очевидна — это кривая с началом в точке x и концом в точке y. Заметим, что для таких кривых выполняется свойство леммы 1: если $f \sim f', g \sim g' \Longrightarrow f \cdot g \sim f' \cdot g'$.

Построим гомоморфизм между группами следующим образом: введем отображение $\gamma: I \to X, \gamma(0) = x_0, \gamma(1) = y_0$. Тогда изоморфизм γ_* определим так: $\gamma_*: \pi_1(X, x_0) \to X$

$$\pi_1(X,y_0),\gamma_*(f) = \begin{cases} \gamma(-3t+1), \text{если } t \leq \frac{1}{3} \\ \gamma(3t-1), \text{если } \frac{1}{3} \leq t \leq \frac{2}{3} \\ \gamma(3t-2), \text{если } t \geq \frac{2}{3} \end{cases}$$

Осталось лишь убедиться в том, что γ_* - гомоморфизм. По определению имеем: $\gamma_*(f) = \gamma^{-1} \cdot f \cdot \gamma$, где · — операция в $\Omega(X,x,y)$. Тогда $\gamma_*(f \cdot g) = \gamma^{-1} \cdot f \cdot g \cdot \gamma$

Но в то же время из определения γ_* мы знаем, что $\gamma_*(f) \cdot \gamma_*(g) = \gamma^{-1} \cdot f \cdot \gamma \cdot \gamma^{-1} \cdot g \cdot \gamma$ = $\gamma^{-1} \cdot f \cdot g \cdot \gamma = \gamma_*(f \cdot g) \Longrightarrow \gamma_*$ — гомоморфизм. Осталось лишь доказать, что $\gamma_*(f \cdot g)$ — изоморфизм. Для этого достаточно рассмотреть обратное отображение $\gamma_*^{-1}(g) = \gamma \cdot g \cdot \gamma^{-1}$ — которое является изоморфизмом(требует проверки), а следовательно исходное отображение γ_* также является изоморфизмом, что и требовалось доказать.

Утверждение доказано.

Пункт 2. Лемма о гомоморфизмах.

Лемма 2.

Пусть дано непрерывное отображение $f: X \to Y$, базисные(фиксированные) точки x_0, y_0 , такие, что $f(x_0) = y_0$. Определим отображение $f_*: \pi_1(X, x_0) \to \pi_1(X, y_0)$ так, что $f(\gamma) = f \circ \gamma: I \to Y$.

Тогда верны следующие два утверждения:

- 1) f_* определено корректно, т.е. если $\gamma \sim \gamma' \implies f_*(\gamma) \sim f_*(\gamma')$.
- 2) f_* гомоморфизм

Доказательство этой леммы мы приведем в следующей лекции.

Лекция 9.

Пункт 1. Функториальные свойства.

В конце прошлой лекции мы ввели лемму о гомоморфизме групп с фиксированными точками. На самом же деле эта лемма является одним из свойств, называемых функториальными свойствами. Сформулируем их ниже, однако доказательство предлагается читателю в виде упражнения.

Функториальные свойства (продолжение леммы 2 из лекции 8):

- 1) если γ и γ' гомотопны $(\gamma {\sim} \gamma') \Longrightarrow f \circ \gamma \sim f \circ \gamma'$
- 2) $f_*([\gamma] \cdot [\delta]) = f_*([\gamma]) \cdot f_*([\delta])$, где $\gamma, \delta \in \pi_1(X, x_0)$ (по свойству гомоморфизма)
- 3) если заданы отображения $f:(X,x_0)\to (Y,y_0),g:(Y,y_0)\to (Z,z_0)$, тогда $f_*:\pi_1(X,x_0)\to\pi_1(Y,y_0),g_*:\pi_1(Y,y_0)\to\pi_1(Z,z_0)$ и говорят, что $f\circ g$ индуцирует гомоморфизм $f_*\circ g_*$.

Утверждение: если заданы такие f, g, что

$$f \sim g$$
, и $H(x, 0) = f(x)$, $H(x, 1) = g(x)$, $H(x_0, t) = x_0$, $\implies f_* = g_*$.

4) Отображение $id:(X,x_0)\to (X,x_0)$ индуцирует тождественный гомоморфизм $(id)_*=id.$

Пункт 2. Накрывающие пространства.

В дальнейшем все рассматриваемые пространства будут считаться линейно связными и линейно локально связными, если не оговорено обратное.

Определение 1.

Пространство X линейно локально связно, если $\forall x \in X$, U_x – окрестности $x \exists$ элемент базы V_x , такой, что $V_x \subset U_x$ и V_x линейно связно.

Определение 2.

Накрывающим пространством пространства X называется тройка (\tilde{X}, X, P) , где $P: \tilde{X} \to X$, такое, что $\forall x \in X \exists U_x$, такая, что $P^{-1}(U_x) = \bigcup_{\alpha} V_{\alpha}$ — несвязное объединение и $P|_{V_{\alpha}}: V_{\alpha} \to U_x$ — гомеоморфизм. ($\alpha \in A$ — множество индексов). Накрывающее пространство также называют накрытием.

Примеры накрывающих пространств.

1) а)
$$P \colon \mathbb{R} o S^1$$
, где $S^1 = \{z \in \mathbb{C}, |z| = 1\}$ и $p(t) = e^{2\pi i t}$

Б)
$$P: S^1 \to S^1, p(z) = z^k, k \in \mathbb{Z}$$

2) (отображение плоскости на двумерный тор) $P\colon\mathbb{R}^2\to T^2=~S^1\times~S^1$

 $p(t,s)=(e^{2\pi it},e^{2\pi is})$. Для иллюстрации достаточно изобразить двумерную плоскость и вложить в неё клеточное пространство(множество прямых y=const, x=const). Тогда из "склейки маленьких квадратов" получаются "слои" накрытия тора.

Так как накрытие есть суть представления некоторого расслоения, то возникает резонный вопрос о том, как можно оперировать конструкциями самого пространства в накрывающем пространстве.

Пункт 3. Леммы о поднятии.

Лемма 1.(О поднятии пути)

Пусть задано накрытие некоторого пространства $X, f: I \to X, f$ — непрерывно и $\forall \widetilde{\chi_0} \in P^{-1}(f(0)) \Longrightarrow \exists ! \ \tilde{f}: I \to \tilde{X}, \ \text{такое}, \ \text{что} \ p \circ \tilde{f} = f \ \text{и} \ \tilde{f}(0) = \widetilde{\chi_0}$

Доказательство:

Так как отрезок I является компактом \Rightarrow из любого его открытого покрытия можно выделить конечное подпокрытие, то есть систему окрестностей. Так как подпокрытие конечно, можем считать, что отрезок I разбит на N частей, а наши "подотрезки" подпокрытия отрезка имеют вид $\left[\frac{k}{N}, \frac{k+1}{N}\right]$, где $k \ge 0, k \le N$.

Тогда из условия леммы $\tilde{f}|_{[0,\frac{1}{N}]} = p^{-1} \circ f$. Далее определяем \tilde{f} на других отрезках по такому же принципу(можем это сделать, так как число отрезков конечно)

В итоге из такого построения мы и получим искомую кривую \tilde{f} , то есть существование \tilde{f} будет прямым следствием из нашего построения.

Доказано.

Лемма 2. (О поднятии гомотопии)

Если задано накрытие пространства X, отображение $f: I \times I \to X$, такое, что $f(0,s) = f(0,0), \ f(1,s) = f(1,0),$ точка $\forall \ \widetilde{x_0} \in P^{-1}(f(0,0) = x_0)$. Тогда $\exists ! \ \widetilde{f}: I \times I \to \widetilde{X},$ такое, что $\widetilde{f}(0,0) = \widetilde{x_0} \ \widetilde{f}(0,s) = \widetilde{x_0}, \widetilde{f}(1,s) = \widetilde{x_1}$

Доказательство:

Доказательство этой леммы в общих чертах имеет сходство с сходство с доказательством предыдущей леммы, однако мы восстановим его с точностью до условия данной леммы.

Аналогично мы можем разбить квадрат $I \times I$ не на отрезки, но на прямоугольники. Тогда повторяя предыдущие рассуждения мы можем поднять путь, а как следствие – гомотопию, что и требуется в условии леммы.

Доказано.

Стоит сказать, что леммы 1 и 2 являются частными случаями теоремы о сохранении структур при накрытии, которую мы сформулируем и докажем несколько позже.

Теорема 1(теорема о мономорфизме).

Пусть дано накрытие пространства X, $P: \widetilde{X} \to X$, $P_*: \pi_1(\widetilde{X_0}, \widetilde{x_0}) \to \pi_1(X_0, x_0)$. Тогда P_* является мономорфизмом(мономорфность означает, что никакой ненулевой элемент не переходит в ноль или, что тоже самое, если $P_*(\gamma) = 1 \Longrightarrow \gamma = 1$).

Доказательство этой теоремы строится на двух предыдущих леммах, и будет представлено нами в следующей лекции.

Лекция 10.

Пункт 1. Теорема о поднятии гомотопии.

В предыдущей лекции мы сформулировали две важных леммы о поднятии пути и гомотопии, однако при доказательстве мы без строгости отнеслись к факту единственности. Следующая лемма важна является связующим звеном, так как из неё следует единственность конструкций в предшествующих леммах. Итак,

Лемма 1.

Положим X – пространство и \exists его накрытие. Y – линейно связное и линейно локально связное пространство, $f_0, f_1: Y \to \tilde{X}$, $pf_0 = pf_1$. Тогда множество $\{y \in Y, f_0(y) = f_1(y)\}$ является открытым и замкнутым одновременно.

Доказательство:

Докажем открытость этого множества, а доказательство замкнутости оставим читателю в качестве упражнения, так как оно требует тех же рассуждений.

Итак, пусть $y \in Y$, $f_0(y) = f_1(y)$. Докажем, что \exists W – окрестность, $y \in W$, $y' \in W \Rightarrow f_0(y) = f_1(y')$. Воспользуемся определением накрытия, то есть найдем такую окрестность W по определению. Это возможно(дабы предотвратить тавтологию: такое множество существует по сути накрывающего пространства и по предположению леммы).

Но тогда $f_0(W) \subset V$, $f_1(W) \subset V$, где V — связная компонента накрывающего пространства. То есть $f_0(W)$, $f_1(W)$ лежат в одной компоненте накрытия, а значит — условие леммы выполнено.

Доказано.

Теперь сформулируем важную теорему и важные следствия из неё, которые являются своеобразным обобщением последних трех лемм:

Теорема 1.(О поднятии гомотопии)

Пусть дано накрытие пространства X, $f_0, f_1: I \to \tilde{X}, f_0(0) = f_1(0), pf_0 \sim pf_1 -$ гомотопные пути. Тогда $f_0, \sim f_1$.

Доказательство:

Доказательство этой леммы сводится к вопросу о том, что при поднятии гомотопии $P\widetilde{H} = H$, где \widetilde{H} , H соответственно гомотопии. Нетрудно понять, что это утверждение верно и доказательство синонимично доказательству леммы 2 из предыдущей лекции, а следовательно — утверждение теоремы верно.

Доказано.

Следствия из теоремы 1:

A)
$$f_0(1) = f_1(1)$$

Б) Пусть дано накрытие (X, \widetilde{X}, P) пространства X, индуцированный гомоморфизм $P_*: \pi_1(\widetilde{X}, \widetilde{\chi_0}) \to \pi_1(X, \chi_0)$ и $p(\widetilde{\chi_0}) = \chi_0$. Тогда P_* - мономорфизм.

Доказательство:

- А) Напрямую следует из теоремы. Доказано
- Б) Заметим, что если [γ] не является тривиальным элементом, то и его образ при отображении P_* не перейдет в нейтральный, что напрямую подтверждает, что P_* мономорфизм.

Доказано.

Рассмотрим следующие группы $P_*\left(\pi_1(\widetilde{X},\widetilde{\chi_0})\right) \subset \pi_1(X,\chi_0)$, $P_*\left(\pi_1(\widetilde{X},\widetilde{y_0})\right) \subset \pi_1(X,\chi_0)$, $P(\widetilde{y_0}) = \chi_0$. По отношению к этим группам справедливо следующее замечание

Замечание 1.

Группы
$$P_*\left(\pi_1(\widetilde{X},\widetilde{x_0})\right) \subset \pi_1(X,x_0), \ P_*\left(\pi_1(\widetilde{X},\widetilde{y_0})\right) \subset \pi_1(X,x_0),$$
 являются сопряженными.

Доказательство:

Выберем некоторую
$$\gamma: I \to \widetilde{X}$$
, такую, что $\gamma(0) = \widetilde{\chi_0}, \gamma(1) = \widetilde{y_0}$ и $p\gamma(0) = p\gamma(0) = x_0$.

Рассмотрим элемент $[f] \in (\pi_1(\tilde{X}, \widetilde{\chi_0}))$ Тогда $[\gamma^{-1} f \gamma] \in (\pi_1(\tilde{X}, \widetilde{y_0}))$. Тогда из построенных структур немедленно вытекает следующее свойство:

 $P_*[\gamma^{-1}f\gamma] = [p\gamma^{-1}] \cdot P_*[f] \cdot [p\gamma]$, то есть элементы сопряжены \Longrightarrow группы также сопряжены, что и требовалось доказать.

Доказано.

Верно также и "обратное" замечание(2):

$$P_*\left(\pi_1\left(\widetilde{X},\widetilde{\chi_0}
ight)
ight)\subset\pi_1(X,\chi_0)$$
. Пусть $G\subset\pi_1(X,\chi_0)$, такая, что $g^{-1}Gg=P_*\left(\pi_1\left(\widetilde{X},\widetilde{\chi_0}
ight)
ight)$.

Тогда
$$\exists \ \widetilde{y_0} \in P_*^{-1}(\pi_1(\widetilde{X}, \widetilde{x_0})).$$

Доказательство:

Положим
$$g: I \to X$$
, $g(0) = g(1) = x_0$

Пусть
$$\widetilde{g}$$
 — поднятие g , то есть $p\widetilde{g}=g$, $\widetilde{g}(0)=\widetilde{x_0}, \widetilde{y_0}=\widetilde{g}(1)\in P^{-1}(x_0).$

Дальнейшие рассуждения предлагаются читателю в качестве упражнения (нужно лишь написать аналогичную к замечанию 1 формулу).

Пункт 2. Теорема о связи отображения, накрытия и поднятия.

Теорема 2. (О связи отображения, накрытия и поднятия)

Напомним, что все пространства подразумеваются связными и локально связными.

Пусть даны (Y,y₀), (X, x₀), (\widetilde{X} , $\widetilde{x_0}$) и соответственно отображения $f\colon (Y,y_0)\to (X,x_0)$

$$P: (\widetilde{X}, \widetilde{x_0}) \to (X, x_0), f(y_0) = x_0.$$

Тогда
$$\exists \ \widetilde{f}: (Y, y_0) \to (\widetilde{X}, \widetilde{\chi_0}) \iff f_*\pi_1(Y, y_0) \subset \subset P_*\pi_1(\widetilde{X}, \widetilde{\chi_0}).$$

Доказательство:

Необходимость практически очевидна: $P_*\left(\widetilde{f}_*(a)\right) \in \subset P_*\pi_1(\widetilde{X},\widetilde{\chi_0})$.

Пусть $f(y_0) = \widetilde{x_0}$. Рассмотрим некоторую точку $y \in Y$ и построим кривую γ , которая их соединяет. Теперь нужно рассмотреть $f\gamma$:

 $f\gamma: I \to X, f\gamma(0) = x_0, f\gamma(1) = f(y)$, откуда можно сделать вывод о единственности поднятия кривой(\exists ! Поднятие кривой). Теперь введем следующее определение для \tilde{f} : $\tilde{f}(y) = (\tilde{f\gamma})(1)$.

Нужно проверить корректность такого определения (зависит ли от кривой γ). Независимость от кривой следует напрямую из условия.

Дальнейшие рассуждения о том, что это определение корректно в том плане, что не зависит от выбора точки у, предлагается проделать самостоятельно (подсказка: для равенства $(\widetilde{f\gamma})(1) = (\widetilde{f\gamma}')(1)$ нужно рассмотреть петлю $\gamma\gamma'^{-1}$).

Таким образом теорема доказана с точностью до последнего рассуждения.

Доказано.

Пример.

Пусть
$$P: \mathbb{R} \to S^1$$
, $P(x) = e^{2\pi i x}$, $Y = S^1$.

Замечание 3.

Если $P: \tilde{X} \to X, x, y \in X$. Тогда $P^{-1}(x)$ и $P^{-1}(y)$ равномощны. Мощность этих множеств называется количеством листов накрытия.

Доказательство:

Так как X линейно связно, то \exists путь γ между x и y и \exists $\gamma^{-1} = \gamma(1-t)$ — обратный путь. Тогда по пути γ мы можем построить отображение $P^{-1}(x) \to P^{-1}(y)$, а по пути $\gamma^{-1} = \gamma(1-t)$ отображение $P^{-1}(y) \to P^{-1}(x)$.

Доказано.

Лекция 11.

Пункт 1. Морфизмы.

В предыдущих лекциях мы обсуждали накрывающие пространства (или накрытия) и их свойства. Теперь нашей задачей будет являться классификация этих накрывающих пространств или определение категории накрывающих пространств. Напомним, что все пространства линейно связны и локально линейно связны.

Определение 1.

Пусть X – пространство с накрытием $P_{\alpha}: \widetilde{X_{\alpha}} \to X, f: \widetilde{X_{1}} \to \widetilde{X_{2}}$ со свойством $p_{2}f = p_{1}$.

Тогда f называется гомоморфизмом(или просто морфизмом) накрывающих пространств.

К этому определению справедливы следующие замечания:

Замечание 1.

Если заданы два морфизма $f\colon \widetilde{X_1} \to \ \widetilde{X_2}$, $g\colon \widetilde{X_2} \to \ \widetilde{X_3}$, то $g\circ f$ также морфизм.

Проверьте самостоятельно.

Замечание 2.

Если f – морфизм накрытий $\Longrightarrow f$ также накрытие.

Доказательство:

Пусть дано накрытие и f — морфизм. Если мы выберем точку $x \in X$ и $y \in \tilde{X}_1$ то по теореме о поднятии пути $\exists !$ поднятие пути, такое, что $f(\tilde{y}) = y$, что доказывает сюръективность морфизма f.

Осталось лишь убедиться, что $\forall x \in X \exists$ окрестность, любая точка которой удовлетворяет условиям морфизма. Это вытекает напрямую из определения(см. определение 1).

Доказано.

Определение 2.

Пусть X — пространство с накрытием $P_{\alpha}\colon \widetilde{X_{\alpha}} \to X, \ f\colon \widetilde{X_{1}} \to \widetilde{X_{2}}$. Тогда f называется изоморфизмом, если $\exists \ g\colon \widetilde{X_{2}} \to \widetilde{X_{1}}$ со свойством gf=fg=id.

Теперь сформулируем важную теорему о существовании изоморфизма двух сопряженных подгрупп.

Теорема 1. (о существовании изоморфизма двух сопряженных подгрупп).

Пусть
$$\widetilde{x_1} \in \widetilde{X}_1$$
, $\widetilde{x_2} \in \widetilde{X}_2$, $p_1(\widetilde{x_1}) = p_2(\widetilde{x_2}) = x_0$, $P_{1*}\left(\pi_1\left(\widetilde{X}_1,\widetilde{x_1}\right)\right) \subset \pi_1(X,x_0)$,

, $P_{2*}\left(\pi_2(\widetilde{X}_2,\widetilde{X}_2)\right) \subset \pi_1(X,X_0)$. Тогда \exists изоморфизм $f\colon \widetilde{X}_1 \to \widetilde{X}_2$, если эти группы сопряжены в $\pi_1(X,X_0)$.

Доказательство:

Пусть \widetilde{X}_1 , \widetilde{X}_2 – накрытия. Тогда для доказательство сводится к вопросу о существовании $f\colon \widetilde{X}_1\to \widetilde{X}_2$. Пусть $\widetilde{x_1}\in \widetilde{X}_1,\widetilde{x_2}\in \widetilde{X}_2, p_1(\widetilde{x_1})=p_2(\widetilde{x_2})=x_0$, где отображения определены как $P_1\colon \widetilde{X}_1\to X, P_2\colon \widetilde{X}_2\to X$.

Тогда $f\colon \widetilde{X_1} \to \widetilde{X_2}$ - есть поднятие проекции P_1 . По теореме поднятие существует тогда и только тогда $P_{1*}\left(\pi_2\big(\tilde{X}_1,x_1\big)\right) \subset P_{2*}\left(\pi_2\big(\tilde{X}_2,x_2\big)\right)$.

Поменяем местами $\widetilde{x_1}$ и $\widetilde{x_2}$. Получим включение $P_{1*}\left(\pi_2(\widetilde{X}_2,\widetilde{x_2})\right) \subset P_{2*}\left(\pi_2(\widetilde{X}_1,\widetilde{x_1})\right)$ и условие теоремы выполнено.

Доказано.

Пункт 2. Алгебраический сюжет о фундаментальной группе.

Рассмотрим следующий алгебраический сюжет.

Пусть задано накрытие пространства $X, f: \tilde{X} \to \tilde{X}$. Рассмотрим группу автоморфизмов $f \in Aut(\tilde{X}), pf = p$. Заметим, что $P^{-1}(x_0), x_0 \in X$. Обладает важным свойством.

Замечание 3.

 $P^{-1}(x_0), x_0 \in X$ является $\pi_1(X, x_0)$ — пространством.

Доказательство.

Достаточно заметить, что если $[\gamma] \in \pi_1(X, x_0)$, то $\widetilde{x}(\gamma \gamma') = \widetilde{(x \gamma)} \gamma'$

Доказано.

Замечание 4.

Действие транзитивно.

Доказательство:

Пусть
$$\tilde{x}, \tilde{y} \in P^{-1}(x_0)$$
. Тогда $\tilde{\gamma}: I \to \tilde{X}, \tilde{\gamma}(0) = \tilde{x}, \tilde{\gamma}(1) = \tilde{y}$.

Заметим, что $\gamma = p\tilde{\gamma} \Longrightarrow \gamma(0) = \gamma(1) = x_0, \Longrightarrow [\gamma] \in \pi_1(X, x_0)$ по лемме о единственности существования пути. Тогда $\tilde{x}[\gamma] = \tilde{\gamma}$, что и утверждалось в условии замечания.

Доказано.

Утверждение 1. (из курса алгебры)

1) Напомним, что стабилизатор точки есть $St(x) = \{g \in \pi_1(X, x_0), gx = x\}.$

Тогда St(x) = St(y).

Перед вторым пунктом утверждения рассмотрим следующий случай. Пусть $P^{-1}(x_0) \subset \tilde{X}, \gamma \in \pi_1(X, x_0)$ и пусть $f \in Aut(\tilde{X})$ и $f|_{P^{-1}(x)}: P^{-1}(x) \to P^{-1}(x)$.

Проверьте, что $f(\tilde{x})\gamma = f(\tilde{x}\gamma)$.

Определение 3.

Отображение $f\colon \widetilde{X} \to \widetilde{X}$ также часто называют движением, скольжением или монодромией.

2) (к утверждению 1) Введенные выше ограничения также образуют группу, которая $\cong NSt(x)/St(x)$. (нормализатор стабилизатора x по стабилизатору x).

Важные следствия из этого утверждения:

Следствия из утверждения 1.

1)
$$Aut(\widetilde{X}) \cong N P_*(\pi_1(\widetilde{X}, \widetilde{x_0})) / P_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$$

2) Если
$$\pi_1\big(\tilde{X},\widetilde{\chi_0}\big)=0$$
, то $Aut\big(\tilde{X}\big)\cong\ \pi_1(X,\chi_0).$

Пункт 3. Группа автоморфизмов над окружностью Пример группы автоморфизмов над окружностью.

Пусть дана окружность S^1 , $P: \mathbb{R} \to S^1$, где $p(x) = e^{2\pi i x}$, $\pi_1(\mathbb{R}) = 0$. Построим

$$T:\mathbb{R} \to \mathbb{R}$$
, $pT=p$, или, что то же самое, $e^{i\pi T(x)}=e^{i\pi x}\Longrightarrow T(x)=x+k$, $k\in\mathbb{Z}$.

В таком случае $Aut(\mathbb{R},P)=\mathbb{Z} \Longrightarrow \pi_1(S^1)=\mathbb{Z}$.

Если $H \subset \mathbb{Z}$ — подгруппа, то H имеет вид $H = k\mathbb{Z}$, k = 0,1,2,...

Тогда структура накрытия выглядит так: $P_k \colon S^1_k \to S^1$, $P_k(z) = z^k$, где $z \in \mathbb{C}$, |z| = 1.

Для неё выполняются следующие ниже условия:

 $\pi_1(S^1_k)=\mathbb{Z}, P_{k*}:\mathbb{Z}\to\mathbb{Z}$, то есть P_{k*} есть суть умножение на целое ненулевое число $(k\in\mathbb{Z}, k\neq 0).$

Напомним, что по теореме при вложении образа $\exists f: S_k^1 \to S_{k'}^1$.

Упражнение 1.

Сколько существует таких отображений $f: S_k^1 \to S_{k'}^1$?

Теперь введем важное определение универсального накрытия.

Определение 4.

Накрытие $ilde{X}$ называется универсальным если $\piig(ilde{X}ig)=0$.

Следствие из определения 4.

Для любых универсальных накрытий \tilde{X} и \tilde{X}_1 \exists морфизм $f\colon \tilde{X}\to \tilde{X}_1.$

Лекция 12.

Пункт 1. Теорема о существовании накрытия.

В предыдущей лекции мы сформулировали и доказали некоторое алгебраическое утверждение. Теперь обобщим его следующим образом: пусть X – некоторое множество, G – группа, действующая на нём и действие этой группы транзитивно. $\varphi \in Aut_G(X)$ и стабилизаторы St(x) всех точек сопряжены. $\varphi: X \to X$, $\varphi(xg) = \varphi(x)g$.

Нетрудно заметить, что в $P^{-1}(x_0)$ действует $\pi_1(X)$. Тогда верно следующее утверждение:

Утверждение 1.

$$Aut_G(X) \cong NSt(x)/St(x)$$

Доказательство:

- 1) Пусть $x, y \in X$. Заметим, что если $\varphi(x) = y \Longrightarrow St(x) = St(y)$.
- 2) Если $St(x) = St(y) \Longrightarrow \exists \varphi: X \to X$, такое, что $\varphi(x) = y$

Пусть $z \in X$, $\varphi(z) = yg$ и тогда z = xg. Проверьте единственность такого z и то, что φ не зависит от выбора g.

Теперь пусть $x \in X$, $S_x = \{y \in X, St(x) = St(y)\}$. Важно заметить следующий факт: на S_x группа $Aut_G(X)$ действует транзитивно и без неподвижных точек.

Вычислим группу напрямую : пусть $g \in G$, $xg \in S_x$. Пусть St(x) = H. Тогда верно следующее выражение: $xgh = xg \Rightarrow ghg^{-1} \in St(x) = H$. Но это условие эквивалентно тому, что $Aut_G(X) \cong NH/H$, что и является условием изоморфности.

Доказано.

Теперь сформулируем и докажем важную теорему о существовании универсального накрытия. Для начала определим понятие полулокального односвязного пространства.

Определение 1.

Пространство X полулокально односвязно, если \forall x \in X существует база окрестностей, такая, что $\pi_1(U) \to \pi_1(X)$ – нулевой гомоморфизм.

Теорема 1.(о существовании накрытия)

Пусть X — линейно связно, локально связно и полулокально односвязно. Тогда существует универсальное накрытие $P: \tilde{X} \to X$, т.е. $\pi_1(\tilde{X}) = 0$.

Доказательство:

Положим $x_0 \in X$. Введем \tilde{X} как $\tilde{X} = \{ \gamma : I \to X, \gamma(0) = x_0 \}$. Напомним значение гомотопности путей:

$$\gamma \sim \gamma' \iff \exists \ f \colon I \times I \to X, f(t,0) = \gamma(t), f(t,1) = \gamma'(t), f(0,s), f(1,s) = const$$

Теперь построим отображение $P: \tilde{X} \to X$ и введем топологию на \tilde{X} следующим образом: $\alpha \in \tilde{X}, U$ — локально односвязная окрестность конца кривой. Тогда (α, U) образуют топологию в \tilde{X} .

Докажем, что отображение P непрерывно и P – накрытие. Действительно:

 $\forall x \in X$, $U_x P^{-1}(U_\alpha) = \bigcup_\alpha V_\alpha$ – дизъюнктивное объединение.

Теперь покажем, что \tilde{X} линейно связно:

Пусть $\gamma_0: I \to X, \gamma_0(t) = x_0, \forall t$ и $\gamma: I \to X, \gamma(0) = x_0$. Тогда для того, чтобы доказать, что \widetilde{X} линейно связно нужно доказать непрерывность функции $f(t,s) = \begin{cases} \gamma_0, s = 0 \\ \gamma, s = 1 \end{cases}$

Доказательство непрерывности этой функции предоставляется в виде упражнения читателю.

Осталось лишь проверить универсальность \tilde{X} , то есть, что $\pi_1(\tilde{X})=0$.

В самом деле, если рассмотреть $P_*\pi_1(\tilde{X}) \subset \pi_1(X)$, то по свойству мономорфизма получим, что $P_*\pi_1(\tilde{X})$ тривиально действует на $P^{-1}(x_0)$, что в свою очередь свидетельствует об универсальности \tilde{X} .

Доказано.

Пункт 2. Способ построения накрытия по подгруппе фундаментальной группы. Теперь обозначим концепцию построения накрытия по подгруппе фундаментальной группы.

Рассмотрим накрытие $P: \tilde{X} \to X$, $\pi_1(\tilde{X}) = 0$.

Введем отображение P_1 : \widetilde{Y} : X, $P_1\pi_1(\widetilde{Y},\widetilde{y_0})=H$, и $P_1(\widetilde{y_0})=x_0$. Тогда верно следующее предложение:

Предложение 1.

 $\pi_1(X, x_0)$ действует на \tilde{X}

Для доказательства этого факта достаточно построить его геометрическую интерпретацию.

Стоит заметить, что если $H \subset \pi_1(X, x_0)$, то \tilde{X} / H также является накрытием.

Лекция 13.

Пункт 1. Теорема Борсука-Улама.

Теорема 1. (Борсука-Улама)

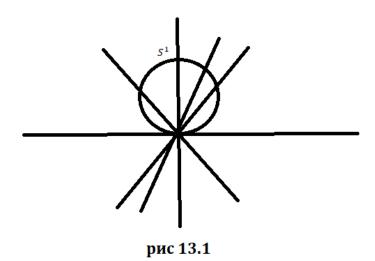
Не существует непрерывного отображения $f: S^n \to S^{n-1}$, такого, что f(-x) = -f(x).

Вообще говоря, n=2.

Доказательство:

Как мы знаем, на S^2 действует группа \mathbb{Z}_2 и $x \mapsto -x$. На S^2 также действует группа \mathbb{Z}_2 и $y \mapsto -y$. Пусть y = f(x). Заметим, что действие группы \mathbb{Z}_2 и f перестановочны.

Рассмотрим теперь следующие гомеоморфизмы: $P_1: S^2 \to \mathbb{R}P^2$ и $P_2: S^1 \to \mathbb{R}P^1$ (проективные плоскости соответствующих размерностей, которые можно интерпретировать как пространство прямых на плоскости, пересекающих начало координат). Гомеоморфизм P_2 можно проиллюстрировать следующим образом(см рис.13.1).



Теперь пусть \widetilde{f} : $\mathbb{R}P^2 \to \mathbb{R}P^1$, а γ соединяет точки x и -x на сфере. Заметим, что $[P_1(\gamma)] \neq 0 \in \pi_1(\mathbb{R}P^2) = \mathbb{Z}_2$. $\mathbb{R}P^1$ гомеоморфна S^1 , $\pi_1(S^1) = \mathbb{Z}$. Тогда $P^2f(\gamma) = 1 \in \mathbb{Z}$ и $\widetilde{f}_*(1) = 1$.

Осталось заметить, что из $\mathbb{Z}_2 \to \mathbb{Z}$ существует только нулевой гомоморфизм, что и утверждалось в условии теоремы.

Доказано.

Формулировка этой теоремы также имеет следующий вид:

Пусть
$$f: S^2 \to \mathbb{R}^2$$
, $f(-x) = f(x) \Longrightarrow \exists x_0 \in S^2$, такое, что $f(x_0) = 0$.

Доказательство:

Положим $\tilde{f}: S^2 \to S^1$, $f(x) \neq 0$, $\tilde{f}(x) \in S^1$.

Тогда $\tilde{f}(-x) = -\widetilde{f(x)}$, но далее обратимся к условию теоремы 1. Условие выполнено.

Доказано.

Пункт 2. Графы.

Теперь введем класс топологических пространств, которые называются графами. Итак,

Определение 1.

Пусть X – топологическое пространство, X – хаусдорфово. Пусть $X^0 \subset X$ – множество вершин, то есть X^0 – дискретно. В качестве множества рёбер рассмотрим множество $X \setminus X^0$, которое гомеоморфно $\bigcup_{\lambda \in \Lambda} e_{\lambda}$, где e_{λ} гомеоморфно (0, 1).

Теперь введем топологию следующим образом: будем говорить, что $U \subset X$ открыто, если $U \cap \overline{e_{\lambda}}$ открыто $\forall \lambda$. Заметим, что $\overline{e_{\lambda}} \setminus e_{\lambda}$ состоит из одной или двух точек(то есть это петля или отрезок). Будем говорить, что граф является конечным, если конечно множество его вершин или множество его ребер, или конечны оба множества. В противном случае будем говорить, что граф является бесконечным. Будем говорить, что граф является локально конечным, если в каждую его вершину входит конечное множество рёбер.

Упражнение 1.

Рассмотрим граф в полярной системе координат, такой, что множество его вершин состоит из полюса и точек, радиус-вектор которых отклонен от оси на угол $\varphi_n = \frac{1}{n}, n \in \mathbb{N}$; множество его рёбер состоит, соответственно, из радиус-векторов к этим точкам. Проверьте, что топология любого подмножества плоскости не совпадает с топологией такого графа(последняя называется слабой топологией).

В дальнейшем будем считать, что все графы являются связными.

Теорема 2. (о фундаментальной группе графа)

Пусть X – граф. Тогда $\pi_1(X)$ свободна.

Перед доказательством сформулируем важное алгебраическое следствие:

Следствие из теоремы 2:

Любая подгруппа фундаментальной группы свободна.

Доказательство теоремы 2:

Пусть G_1 и G_2 группы.

Определение 2.

Свободным произведением групп G_1 и G_2 называется группа $G=G_1*G_2$, обладающая следующим свойством: если $H \subset G$ и существуют гомоморфизмы $i_1\colon G_1 \to G$, $i_2\colon G_2 \to G$ и $G_1 \to H$, $G_2 \to H$, то тогда существует гомоморфизм $G \to H$, такой, что общая диаграмма коммутативна, и такой гомоморфизм единственен с точностью до автоморфизма

Доказательство (существования):

Рассмотрим множество "слов" $\Gamma = \{U_1U_2 \dots U_k | U_i \in G_1 \text{ или } G_2 \text{ и } U_i, U_{i+1} \notin G_k |, \emptyset\}$. На множестве Γ действуют группы G_1 и G_2 , и их действие определяется так:

$$g(U_1U_2\dots U_k) = egin{cases} (gU_1,U_2,\dots U_k), \text{если } g \text{ и } U_1\in G_1 \text{ или } G_2 \\ (gU_1,U_1,U_2\dots,U_k), \text{если } g \text{ и } U_1 \notin G_1 \text{ или } G_2 \end{cases}$$

Замечание 1.

Определены гомоморфизмы $G_1 \to$ группу перестановок Γ .

Теперь пусть $G_1 * G_2 \subset \{$ группа перестановок $\Gamma \}$.

Пусть $g_1g_2...g_k, g_i \in G_k$; $g_ig_{i+1} \notin G_k$. Таким образом мы построили группу в явном виде, то есть доказали существование свободного произведения.

Упражнение 2.

Докажите, что і1, і2 – мономорфизмы.

Таким образом гомоморфизмы $i_1: G_1 \to G_1 * G_2$ и $i_2: G_2 \to G_1 * G_2$ переводят элемент g в некоторое "слово" {g}.

Определение 3.

G и отображение $i: S \to G$ называется свободной группой на произвольном множестве S, если выполнено следующее универсальное свойство: $\forall H, \forall j: S \to H \exists !$ гомоморфизм $\pi: G \to H$ и общая диаграмма отображений коммутативна.

Замечание 2.

Из универсальности свойства следует единственность.

Пусть $s \in S$. Рассмотрим группу \mathbb{Z}_s . Тогда справедливо следующее предложение:

Предложение 1.

$$G = \prod_{s \in S} \mathbb{Z}_s$$
 с отображением $i: S \to \prod_{s \in S} \mathbb{Z}_s, i(s) = 1 \in \mathbb{Z}_s.$

Доказательство:

Пусть $G = \{s_1^{m_1}s_2^{m_2}\dots s_k^{m_k}\}, m_i \in \mathbb{Z}, m_i \neq 0$. Произведением таких "слов" определим как формальную запись первого слова и приписанного к нему справа второго. Если показатели "степеней" соседних "букв" в сумме дают ноль, то эти "буквы" можно опустить.

Действие определим аналогично действию из определения 2. Доказано.

Определение 4.

Граф называется деревом, если он не содержит циклов.

Примечание: в данном случае имеются ввиду редуцированные циклы.

Лекция 14.

Пункт 1. Теорема Зейферта-ван-Кампена

В этой лекции мы сформулируем и докажем важную теорему, которая является своего рода еще одним способом вычисления фундаментальной группы – теорему Зейфертаван-Кампена.

Рассмотрим пространство X, $X = U \cup V$, где U, V – открытые множества и их пересечение связно. Если мы фиксируем точку в их пересечении, то по теореме Зейферта-ван-Кампена мы можем построить важный гомоморфизм, который мы в явном виде зададим в формулировке самой теоремы. В частности, мы можем обобщить это на случай пересечения большого числа множеств ("букета" множеств), однако концепция будет синонимична случаю двух множеств. Итак,

Теорема 1.(Теорема Зейферта-ван-Кампена)

Пусть X — пространство, $X = \bigcup_{\alpha \in \Lambda} U_{\alpha}$, где $\forall U_{\alpha}$ связно и удовлетворяет следующим свойствам:

- 1) $U_{\alpha} \cap U_{\beta} = U_{\gamma}$ (иногда будем обозначать как $U_{\alpha\beta}$)
- 2) Каждый элемент связен.

Пусть $x_0 \in U_\alpha \ \forall \alpha, U_\alpha \subset U_\beta$ и существуют гомоморфизмы следующих групп:

$$\pi_1(U_\alpha) \to \pi_1(X)$$
,; $\pi_1(U_\beta) \to \pi_1(X)$; $\pi_1(U_\alpha) \to \pi_1(U_\beta)$; ρ_α : $\pi_1(U_\alpha) \to \pi_1(H)$, ρ_β : $\pi_1(U_\alpha) \to H$. Тогда существует и единственен гомоморфизм $j:\pi_1(X) \to H$. (Вся диаграмма является коммутативной).

Перед доказательством теоремы наглядно продемонстрируем ее действие на случае двумерной сферы S^2 :

 $\pi_1(U) = \pi_1(V) = 0, \pi_1(U \cap V) = \mathbb{Z}$. Действительно, тогда диаграмма выглядит так: $\mathbb{Z} \to \pi_1(U) = 0, \mathbb{Z} \to \pi_1(V) = 0$, аналогично построенные гомоморфизмы в $\pi_1(S^2)$ и H. Тогда мы непосредственно можем построить гомоморфизм $\pi_1(S^2) \to H$.

Доказательство теоремы 1:

1) Пусть $\psi|_{\alpha}$: $\pi_1(U_{\alpha}) \to \pi_1(X)$. Рассмотрим замкнутую кривую $\beta: I \to X$, $\beta(0) = \beta(1) = x_0$. Можем разбить β на много "маленьких" кривых β_i , i = 1, ... k. Тогда, как нам известно, $\beta \sim \psi|_{\alpha_1}(\beta_1) \cdot \psi|_{\alpha_2}(\beta_2) \cdot ... \cdot \psi|_{\alpha_k}(\beta_k)$.

Теперь представим I следующим образом: $I = \bigcup_{\alpha} \beta^{-1}(U_{\alpha})$. Пусть ε – символ Лебега для I, то есть существует такой отрезок в I, что его длина меньше ε . "Разобьем" I на N частей с условием, что $\frac{1}{N} < \varepsilon$. Тогда, как мы знаем, любую кривую можно "разбить" на произведение "маленьких"(замкнутых!) кривых.

Теперь
$$J(\beta) = \rho\left(\psi_{\alpha_1}(\beta_1)\right) \cdot \rho\left(\psi_{\alpha_2}(\beta_2)\right) \cdot ... \rho(\psi_{\alpha_k}(\beta_k)).$$

В доказательстве теоремы осталась одна тонкость: мы допустили произвольное разбиение отрезка и произвольную кривую, поэтому нам нужно доказать единственность полученного нами результата(то есть, что при другом разбиении получится тот же элемент).

Пусть $\forall [\gamma] \in \pi_1(U_\alpha), [\gamma] \in \pi_1(U_\beta)$. Из коммутативности диаграммы можем сделать следующий вывод: $\rho(\psi_\alpha[\gamma]) = \rho(\psi_\beta[\gamma])$.

Пусть $\psi_{\alpha_1}[\beta_1] \cdot \psi_{\alpha_2}[\beta_2] \cdot ... \cdot \psi_{\alpha_k}[\beta_k] = 1$, откуда незамедлительно следует, что верно и следующее равенство: $\rho[\beta_1] \cdot \rho[\beta_2] \cdot ... \rho[\beta_k] = 1$. Это можно проверить напрямую, используя "квадрат" гомотопии.

Доказано.

Пункт 2. Теорема о стягиваемости дерева.

Графы также называют одномерными CW-комплексами.

Теорема 2(о свободности группы графа).

Если X – связный граф, то $\pi_1(X)$ – свободная группа.

Доказательство:

Доказательство этой теоремы использует следующие предложения:

Предложение 1. (теорема о стягиваемости дерева)

Если X – связное дерево, то X ~ точке.(То есть X можно стянуть в точку)

Доказательство предложения 1:

Пусть $x_0 \in X$ — фиксировано. Тогда $\forall x \in X$ \exists нередуцированный путь из рёбер между х и x_0 . Иными словами, $\exists \gamma: I \to X, \gamma(0) = x_0, \gamma(1) = x$. В предыдущей лекции мы говорили о топологии графа: $\rho(x_0, x) = \#$ рёбер $+ q, q \le 1$ — эта функция задаёт метрику на графе. Однако, как мы помним, эта метрика не определяет слабую топологию на графе. Таким образом, $H(x, t) = \gamma(t) \ \forall \ x \in X$. Предложение 1 доказано.

Упражнение 1.

Проверьте, что H(x, t) – непрерывная функция.

Предложение 2.

В любом связном графе $X \ni \tilde{X} \subset X$, где \tilde{X} – максимальное дерево.

Доказательство:

Пусть $x_0 \in X, \tilde{X}$ - максимальное дерево. Нужно лишь доказать, что $\pi_1(X)$ – свободная группа на $X \setminus \tilde{X}$. Однако из предыдущего предложения любое дерево можно стянуть в точку \Longrightarrow условие выполнено. Предложение доказано.

Теорема следует напрямую из предложений.

Доказано.

Пункт 3. Свойство подгруппы свободной группы.

Следствие из теоремы 2.

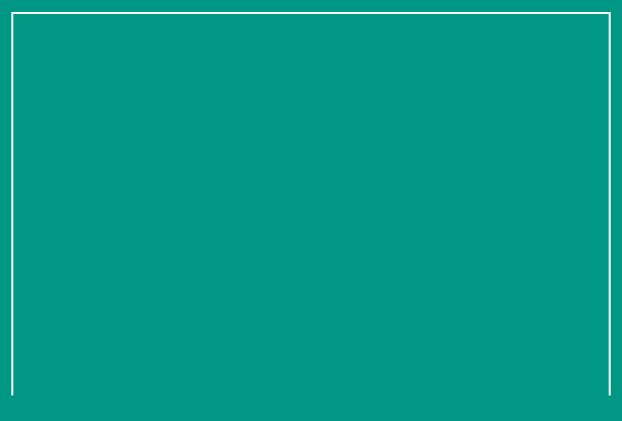
Любая подгруппа свободной группы свободна.

Доказательство:

Пусть A – некоторое произвольное множество. Рассмотрим граф X, представленный в виде "букета" окружностей: $X = V_{\alpha \in A}S^1$. Обозначим фундаментальную группу X $\pi_1(X) = F_A$.

Рассмотрим $F' \subset F_A$. Тогда существует накрытие графа $X: \exists P: \widetilde{X} \to X$, которое, в свою очередь, также является графом. Но тогда $P_*\left(\pi_1(\widetilde{X})\right) = F'$ - также свободная группа. По определению $F' \subset F_A$, по теореме 2 F_A - свободна \Longrightarrow подгруппа свободной группы свободна, что и необходимо было доказать.

Доказано.



МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ МГУ ИМЕНИ М.В. ЛОМОНОСОВА

