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Lecture 1

Classical integrable systems

In this course we will consider 2 kinds of integrable systems:
1) Many-body systems,
2) spin systems.

We will focus on the Bethe ansatz method as soon as we approach the quantum inte-
grability.

The classical mechanics involves 2 main objects:
1) Phase space, namely, some (Poisson) manifold M,
2) Hamilton function H € C*°(M).

The dynamics of the system is described by the following equation (we denote f= 3—{)
f=1{H.f},

where

~0fdg 99 0f
{f’ g} - 121 Op; 0g; 0g; apz"

We also assume that {p;, q;} = d;;.

Quantisation of a classical system implies that we introduce (for each function f) f €
End(V) an operator acting on some Hilbert space of states and we change Poisson
bracket to a commutator, where A arises. By taking limit & — 0, we arrive to a classical
system.

Theorem 1 (Liouville). The system of N particles is called integrable, if there exist N
independent integrals of motion (conservation laws) in involution:

In terms of quantum mechanics, we get

~ A
~

o Ja-af
{f,9} = ===

Lax representation

Consider n-particles system described by 2n equations of motion:

- __OH
pi = — dg;
: OH

G = op

Let us now introduce the Lax pair.

MEX) i
oAK
Mry
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Definition 1. The equation, written for L, M € Maty

i =L, M) 1)
1s called the Lax pair for L, M.

Remark 1. From (1) we derive conserved quantities

1
H, = Etr(Lk), keZ,.

Proof. Let us prove it by the induction on k: if k = 1, then tr L = tr(LM — ML) = 0.

For k = 2 we have
1d 1 . ) .
ST tr(LQ) = > tr(LL + LL) = tr(LL) = tr([L, ML) = tr(LML — ML2) = 0.

Then the induction step is evident. O

Example [Calogero-Moser model].
The model is defined by the Hamiltonian

1 2 Y 1
H:—Zp?— Z EPAVE (2)
2 & 2 vy (QZ QJ)
i 1#£j
where v is a coupling constant. Let us introduce the N x N matrix given by
v
Lij = 0i5q; + (1 — 0;;) —. 3
)=+ (1= 0) )

Then for the same size matrix M = 0;;d; — (1 — (5@@ we have
i

L =L, M|, (4)
where d; = v ) —(q,fq')i,. The main property is that we have the involution
#k‘ T J
{Hy,H,} =0. (5)

Classical r-matrix

Denote L; := L ® Iy and Ly = I, ® L. Let us recall tensor product of two matrices
first. For given A, B € Maty we have

AHB AlgB e e AlnB
A ® B = A21B AQQB el e AgnB (6)
AnB ... ... ... AuDB.

The resulting matrix has the size N2 x N2. Consider now some properties of this tensor
operation:
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1) (A® B)(C® D) = (AC® BD). This property is easily derived from the definition
of the tensor product. Indeed,

N
AnBCyD + AyBCy D+ - =Y AyCy BD. (7)
k=1

2) (A® B)(u®wv) = (Au ® Bv), where u,v € C".

Let us introduce the standard notation for the basis in Maty : (Eij)ap = iadjp, Where Ej;
is the matrix with 1 at ¢-th row and j-th column. Hence, any matrix can be decomposed
via this standard basis

N
A= E;A;. (8)
i =1

In Matj‘f’,2 we can introduce the basis F;; ® Ej;. Then we can write

N
T2 = Z Tijkili; @ By (9)
i, k=1
Equivalently,
N
ro1 = Z Tijki g @ Fij. (10)
i, kl=1

We can now define Poisson brackets {L;;, Ly}, then

{L@ L} ={L, L} = Y {Lij Lu}Ei; ® Eu. (11)

ij,kl=1

Proposition 1. Suppose there exists

N
T2 = Z Tijkii; @ By (12)
ij,kl=1
such that
{L17L2} = [L17T12] - [Lzﬂ”m]. (13)
Then
(Hy, H,\} = 0, Hy — %tr(L’“). (14)

The equation (12) defines the classical r-matrix and (13) defines classical r-matrix
structure, which is a criterion for the Liouville integrability. In the formalism of quantum
mechanics we will deal with the quantum analogues of these objects.

For the Calogero-Moser model r-matrix has the form

1
Qi_Qj.

1
Tig = Z Ei; @ Eji—— 4 Ei; @ Ej; (15)
- ¢ — 4

4
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The equation for the r-matrix follows from Jacobi identity

{{f. g}, h} + cycl = 0. (16)

So, we obtain
{{Lija Lkl}7 Lmn} + Cyd =0 (17)

and Mat%3 € B ® By ® Eyy,y,. Finally, for

L1 = L ® ]_ ® 1,
LQ = 1 ® L ® 1,
L3 = 1 ® 1 ® L
we obtain
{{L1, Lo} La} + {{La2, Ls} L1} + {{L3, L1 } L2} = 0. (18)
This Jacobi identity is a sufficient condition for the classical Yang-Baxter equation.
When r-matrix is skew-symmetric and nondynamical ({72, L3} = 0), ris = —r9; we
have
[r12,713] 4 [r12, T23] 4 [r13, 23] = 0. (19)

The Yang-Baxter equation can be inhomogeneous in some cases.
If we have the Lax equation, then

d
e (L, My], My = —try(rio L) (20)

and k corresponds to different Hamilton functions. We have to compute the trace:

tI‘g(T’lgAg), AQ =1 X A (21)
and we have
r124s = Z rijuEi; @ (EgA). (22)
ig kel

The trace of the second component has the form

tra(ripds) = Zﬁj,szijAllez = Z Tij i @ Eig. (23)
ij,kl gkl

Linear Poisson-Lie structure

Lie algebra is a vector space equipped with the commutator, which is rather similar to
the Poisson bracket. For generators Ty, Tj of the Lie algebra g we have

[Ton Tﬁ] = Z CgBT’W (24)
Y
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where C’gﬁ are called structure constants. The commutator also satisfies Jacobi identity.
On Lie coalgebra g* we have the same identity for the generators

{Za, 25} = Z CopTy- (25)

In case of su(2) for Pauli matrices we have

(01, 09] = 2i03, (26)
(09, 03] = 2i0y, (27)
[0’3, 0'1} = 2i0‘2. (28)

Generally, [0, 03] = 2ieap,0,. In spin 1/2 representation Pauli matrices have the form

o) = ((1) é) , (29)

oy — (0 jj) , (30)

03 = (é _01) | (31)

Poisson brackets for our case have the form

{x1, 22} = 23, (32)
{xg, 23} = 11, (33)
{z3, 11} = 2. (34)

Such Poisson brackets arise when we deal with the Euler system, defined by
1
H= 3 (1o + Joxy + J323) . (35)
It describes the rotation of a solid body in 3-dimensional space.

In case of gly, which contains N x N matrices we have
[Eijy Er] = 0rjEa — 0a gy, (36)

which can be easily verified taking into account the definition of Ej;. Poisson structure
is defined by

S = Z SijEij, (37)
i

{Sij, Sk} = 61Sa — 0 Sk;-
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Lecture 2

Permutation operator

Last time we dealt with the Poisson linear structure
{Sij, Sk} = 0aSkj — 0 Su- (38)

It can be rewritten as
{Sla 52} = [P127 Sl]a

where P, is a matrix permutation operator. It acts on a tensor product of 2 matrices

N
Py = Z Ei; @ Ej;, (39)

,j=1

where Ej; is the N x N matrix, where 1 stands in the i-th row and j-th column. We
also use the following notation (E;;)a = 0;a0;1. For u,v € C" we have

Pi(u®@v) =v®u.

In order to verify this, one has to introduce the standard basis e; = (0,0...,1,0,...,0)
and use the multiplication rule
Eikek - 5jk€i-

Let us now verify (39). Consider
N
<Z Ez'j & Eﬂ> (Z Uper & Z Um€m> = Z ukvm(E,-jek®Ej,;em) = Z ukvméjkéimei@)ej.
1,7=1 k m ijkm ijkm
The next property is that for A, B € Maty we have
P2(A® B) = (B® A)Pps. (40)

To prove it, consider

(Z E;® EJ) (Z By ® Aab) ® (Z B ® Bcd> = Y (EijEw)®(EjiEe) Ay Bea =
7,7 a,b

a,b ijabed
(41)
= Z FEipbaj @ EjqdiAayBeqd = Z Eoy @ EgpAapBea. (42)

ijabed abed

The next property is that PE = 1y ® 1y = 1y2. Let us do it explicitly:

N N N N
<Z Ei; ® Eji) (Z Eu® Elk) = Z (EijEw)®(Ejigg,) = Z Okj0s, Eg@Ej; =

i,j=1 k=1 i,k l=1 1,5,k 1=1
(43)
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_ z]: By ® By = (Z E) “ (ZJ: Ejj) |

In case N = 2 we have

1 000
0010
Py = FE11 @ By + E1p @ Eoy + B9y @ Byp + Eoy @ Eyy = 010 0
00 01
The next property is that
tI’z(PlgAg) = A,
where As = 1® A. To verify this, consider
<Z Ej;® Ej) (Iy®A)=> E;®E;A
1] i,J
and by taking trace we obtain
Z Eij ® tr( Z tl“ EzyEkl Ak:l Z 5k] tl" zl)Akl = AJZ

The permutation operator may also act on more than 2 vector spaces.

a,b,ce V~CV
Purla®@b®c)=b®a®c,

Py = ZEij ® Ej @ 1n.
i)j
The same can be written for Pi3:
Pz = ZEz'j ® 1y @ Ej;.
i3
When components are different, operators commute

P12P34 = P34P12-

In particular,
PiaPo3 = Pi3Pia = Pa3Py3.

For example,

Pi3Pi(a®b®c) = P3(b®@a®c)=c®@a®b= Ay

and

Pi3Pi(a®b®c)=P3(a®@c®@b) =c®@a®b=Aj.

(44)

(48)

In detail, for

(52)

(53)

(54)

(55)

Let us now discuss some applications of the permutation operator. From the previous

lecture we have

S=Y SyEy,
ij

8

(56)

uuuuuuuuu
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{Sij7 Skl} - (5kjSz'l — (SilSkj.

Then we can write

{51, 52} = [P12, S1] = P12S1 — S1Pia, (57)
where
P8 = (Z Eab®Eba> (Z Eoy @ Sea ® 1> = Y Sca(BarBea) ® By = (58)
a,b c,d a,b,c,d
= SeadseFud @ Eya = Y SpaBad ® Era = Y _ Ejj @ EjaSi;ou. (59)
a,b,c,d a,b,d

The second terms is for homework.

Spectral parameter

Consdier the Lax eequation

L =[L,M], (60)
where L, M € Maty. We also have conserved quantities
1 k
Hy = Etr(L ). (61)
Consider the eigenvalue problem
LY = WA, (62)
from which we obtain
L=UAU (63)
Using the latter equation one can easily compute powers of L:
= WARD (64)
Trace is also easily computed
N
tr(L*) = tr(A) = >\ (65)
i=1

Consider now L(z) — a matrix-valued function of z. The Lax equation is written in the
form

L(z) = [L(2), M(2)] V=. (66)
For example,
L(z) = é +B (67)
and ]
L(z) = é +B= [A;O] + B, C]. (68)
9
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This equation is equivalent to 2 equations:

A=[AQ], (69)
= [B,C). (70)
By using z (spectral parameter) we cam rewrite
{Ly1, Lo} = [Ly,m12] — [La, 721 (71)
in the following way
{L1(2), La(2)} = [L1(2), r12(2, w)] = [raa(w, 2), La(w)]. (72)
If we consider 4
L = ~ + B, (73)

for the trace we have

tr(A?) N 2tr(AB) N

2

tr L?)(z) = tr(B?). (74)

z z

All coefficients, corresponding to trace, are conserved quantities. By considering
—L’“ Z 2" Hypp =0 (75)
we have a large number of conserved quantities (integrals of motion).

Let us analyse some examples. Consider

P,
ri2(z, w) = 12 , (76)

Z—Ww

where Res,_,, 712(z,w) = Pps. Define L(z) = 2. Then
tr(Sk)

2k

tr L¥(2) =

The bracket will have the form (the left-hand side

(La() o)} = {21, 2} = (5,5}, (78)

whilst the right hand side will be

Sy P Sy, P 1 1 1
[—1, - } - {—2, - } = ——— [, Pu] + ———[%, P, (79)
z z—w w w—z zZ—wz (z —w)w
Since
[S1, Pra] = S1P12 — P1aS1 = P12Sy — SaPra = —[S, Pro] (80)
we have
1 1 1 1 1 1 1
5%, Pr2] = [S1, P12 - - — | = ——[51, Pia] = —[P1a, S1].
(z —w)w z—wz z—ww 2w 2w
(81)

10
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Quadratic r-matrix structure

Consider

{L1(2), Lo(w)} = [L1(2) L2(w), T12(2 — w)],
where Ly(z)La(w) = L(2) ® L(w). Then

{tr L*(2),tr L™(w)} = 0.

For L(z) = 1+ £ one can compute

Z—w w z—w z

{La(2), Lnfw)} = - [ Pa (1 ; S—) (1 ; S—)} - [ Po 5, %] |

Proposition 2. Suppose we have a set of {L'(2)}!, and

{L1(2) Ly(w)} = 67[L1 (2) Ly(w), 112 (2 — w)].

(82)

(83)

—~

84)

Then
T(z) = L'(2)L*(2)...L"(2) (85)
also satisfies the quadratic r-matrixz structure identity
{T1(2), Ta(w)} = [T1(2)Ta(w), r12(2 — w)]. (86)
Here T'(z) is a monodromy matriz.
11
-on

uuuuuuuuuuuuuuu
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Lecture 3
Last time we considered the quadratic r—matrix structure
{L1(2), Lao(w)} = [r12(2, w), L1 (2) La(w)], (87)
where L;(z)Lo(w) := L(2) ® L(w). It has the following properties
1) {tr L*(z),tr L™(w)} = 0,
2) {{L1, Lo}, L3} + cycl = 0, which provides the classical Yang-Baxter equation.
3) Suppose there is a set of quadratic brackets
[L3(2), L)} = 89 [ria(z,w), L (2) (). (85)
Then the monodromy matrix
T(z) = L'(2)L*(2)...L"(2) (89)
also satisfies the quadratic relation
{T1(2)Ta(w)} = [r12(z, w), Ty (2)Ta(w)]. (90)
The monodromy matrix is significant when we consider the eigenvalue problem
L' =\, (91)
U = [20? = 2L (92)

and so on. Speaking non-formally, monodromy matrix bridges the connection
between the solutions of eigenvalue problems. It is also significant since the Lax

pair _
L =[L, M| (93)
or
is a compatibility condition for the following system
O+ M)V =0
( b+ ) ’ (95)
LY = \V.

Consider an example: some double-sided model with A, B — matrices, which constitute
some integrable system on the one and another side correspondingly. Then for A; =
Iv®Aand Ay =1, ® A we have

{Al,Az} = [7”127141142]7

{Bl,Bz} = [7’1273132], (96)
{A1, B} = 0.
12
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We want to show that T = A1B; = (A® 1y)(B® 1y) =T ® 1y also satisfies the same
quadratic relation.
Consider 715(z,w) = 22 and L(z) = 1y + 2, then

P Si Si S, S
[, LA L3) = { - ,(1+71) <1+72)] =242 (97)

Z—w Z w

taking into account
[P12,8®S]:P125®S—S®SP12:O (98)

Let us consider

251 (51)2) (99)

trL%(z) =tr (1-{-7—1—7

and we notice that the coefficients inside the trace are the Casimir functions and they
provide no non-trivial dynamics.
Consider now (with the help of Leibniz rule)

{11, To} = {A1B1, Ay By} = Ai{By, A3 B} + {A1, Ay By} By = (100)

= A{By, A2} By + A1 Ao { By, Bo} + {A1, Ao} Bo By + As{ Ay, Bo} By (101)

and since A, B commute, some brackets vanish and we have

{11, Ty} = A1 As(r12B1By — B1Boria) + (r12A1 Ay — A1 Asri9) B1 By = (102)
= A1 Asr19B1By — A1 Ay By Borg + 112 A1 A3 By By — Ay Agri9 By Bo. (103)

Since
[Ah Bz] =0, (104)

we obtain that
{1\, T} = [r12, T3, To). (105)

Quantisation

The idea of quantisation is that we replace the functions with the operators f — f
acting on some Hilbert space H of states.
Consider the classical chain model

13
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satisfying
7 i
{Saba Scd} = adSCb - 5cdSad (106)
and
% i _
{Sab’ Scd} =0. (107)

We wish to quantise these Poisson brackets. Remember that the connection between the
classical and quantum cases is described by (?7). This bracket arose from Lie algebra

oly
[Ealn Ecd] = Eadébc - Ecb(sad- (108)

In order to quantise the bracket, define on H :=V @V - --- @V = V& operators
S;b:1N®1N"‘®hEba®"'®1NEEHd(H) (109)
and now the following identity holds
Sk, S24) = 0. (110)
Consider now
192y, S = R2[E},, EL] = WP E} 0a — B2 EL0he = 15500 — hS 100 (111)

ab’

and wee see that in terms of the limit

(S0 54} = lim (12)

everything is correct.

Let us now quantise the Lax matrix L(z) — L(z) = 1+ g, where

= ZEijgij' (113)

Consider the quantum R-matrix

Rl (2, w) Z i @ By Riw(h, z,w), (114)

,5,k,l=1
with the help of which one can write the quantum Yang-Baxter equation

R}y (21, 22) Rly(21, 23) Rby (22, 23) = Rby(22, 23) Ri3(21, 23) Ry (21, 22). (115)

This equation is written in Mat$§® and it is written up to a normalisation, since the

function is cancelled out, when the equation is multiplied by it.

Proposition 3. The Yang’s R-matrix

RfliQ(za ’LU) -

(116)

satisfies the quantum Yang-Bazter equation.

14
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The Lax matrix has the form

N A
S, Zl EijSZJ
L(z)=1+= =142 117
() =1+2 =14 (17)
and we have the important identity
Riy(z,w) =1® 1+ hryp + O(R?). (118)
By using the latter expansion we can compare the coefficients in front of A:
RO 1 =1, (119)
B' i 1o + 713 4 Ta3 = 112 4 113 + 1o, (120)
R? : T197r13 + T1aTa3 + T13T23 = TasT13 + Ta3tia + T13T1a. (121)
The last equation has the form
[r12,713] + [r12, T3] + [113.723] = 0, (122)
which is exactly the classical Yang-Baxter equation.
Let us get back to the quantisation
N . N ‘
gi Z Ea,bSab h Z Ea,bEga
L) =1+ =1497 g o= = R"(2). (123)
z z z

The left-hand side has some matrix structure and belongs to so called auxillary space,
whilst the right-hand side contains the permutation operator. So, we can write it as

Li(z) = Ri(2) (124)

Let us now introduce the notation 1 — 0,2 — 0/,3 — 4 , then the quadratic R-matrix
structure has the form

{Lo(2), Lo (w)} = [roo (2, w), Lo(z) Lo (w)]. (125)

Here 0,0’ belong to auxillary spaces. The components belonging to the Hilbert spaces
are denoted 1,...,n. The quantum Yang-Baxter equation has the following form

Riy (2 — w) Ry (2) Ry (w) = Ry (w) Ry (2) Ry (2 — w). (126)

Finally, let us rewrite this equation as so called RLL or RTT, or exchange relation
Riy (2 — w)Lo(2) Lo (w) = Lo (w) Lo(2) Ry (2 — w). (127)
By inserting there our expansion with respect to A we obtain
(14 hiroe ) Lo(2) Lo (w) = (1 + hroy ) Lo (w) Lo(2). (128)
15



https://vk.com/teachinmsu

reynnbl 1N The Lecture notes were prepared by students
and may contain misprints or errors

YBAPOB ®UNNTMIMN BUKTOPOBKH follow the updates by using the link VK.COM/TEACHINMSU

By comparing coefficients and dividing by A we get

A ~

L()(Z)L(]/ (w) — j—/()/ (UJ).Z-/()(Z)
h

= ([Azofioroof - TOO’EOEO’)- (129)

It is important to mention that in quantum mechanics operators do not generally com-
mute

~

AiBy = (A®1)(1®@ B) = (> _ E;A;; @ 1)(1® EyBy) = Y Ey;; ® BuAjiBy, (130)

ijkl ijkl
but in different order we get
ijkl
In terms of R-matrix o o
Ryo Ly Ly = LoLy Ry, (132)
which is equivalent to o o
RiaLyLoRyy) = LoLy (133)

what underlines non-commutativity once again.

16
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Lecture 4

Last time we discussed the quantisation procedure. To be precise, we derived
Riy (2 — w) Lo(2) Lo (w) = Loy (w) Lo(2) Riy (2 — w). (134)
This relation satisfies the Yang-Baxter equation
Riy(21 = 22) Ri3 (21 — 23) R (22 — 23) = Ri(22 — 23) Riz(21 — 23) Rip(21 — 22).  (135)
By considering the expansion
Rly(21 — 2) = 1® 1+ hria(21 — 20) + O(R?) (136)

we can get back to the classical Yang-Baxter equation, which was initially derived from
the Jacobi identity. We can also interpret it as a compatibility condition. First, consider

ﬁlfzgizg —>R23 I:lizgiz —)ng fzgleizg —>R12 igfzgle, (137)
where LiLoLs is affected by the right-hand side of the Yang-Baxter equation
RosRi3RioLiLoLy = Ry Ri3LoLy RoLy = RosRisLoLyLyRip = RosLoRi3Ly L3Ry =

(138)
= RysLoLslyRisRys = LsLoRysly RisRiy = LsLyLy RosRi3Rys. (139)

Finally, we see that o o
L1L2L3 = Ths_ngLngrhs, (140)

where rhs stands for the 'right-hand side’. In the similar way one can obtain the ex-
pression for RisRi3Re3L1L2L3 and

£1£2£3 = thillA‘/gf/QZ‘/lth, (141)

where [hs stands for the ’left-hand side’.

Consider
{Lo(2), Lo (w) } = [roor (2 — w), Lo(2) Lo (w)] (142)

and as an example, Poisson brackets on the Lie group SLs

T= (‘2 Z) : (143)

where ad — bc = 1. Then the following identity holds

{11, 15} = [r2, TV T). (144)
Here
0 0 0O
0 0 10
2710 —1 0 0 (145)
0 0 0O
17
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or, in other words,

T2 = 19 ® F91 — Eo1 @ Epa. (146)
Let us write now the set of brackets
({a,b} = ab,
{b,c} =0,
b,d} = bd
{ ) } ) (147)
{a,c} = ac,
{¢,d} = cd,
L {a, d} = 2bc,

which actually define the Poisson-Lie structure. This example corresponds to the rela-
tivistic Toda chain model. Consider the variables

a=ePvV1+ e, (148)

b=r¢e?=rc, (149)
d=ePV1+ e, (150)
{p,at =1 (151)

and let us quantise this model. The Quantum R-matrix was suggested by Infeld and it
has the form

: (152)

< O O O

where ¢ = e”*. Then we can introduce the quantum T-matrix

N :
T= 1|7 <. 153
(5 75) (153)
We simply introduced new operators acting on some Hilbert space. The operators satisty
the commutation relations

(BC = CB,

AB = ¢BA,

AC =qC4 (154)
BD = qDB,

CD =q¢DC,

kflf) — DA = (g — qil)BCA'

This set of relations defines the quantum algebra. The operators can be explicitly defined

as
A =1/1+ e2atine?, (155)

18
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B — C — 6‘17 (156)
D = e P\/1 + e2atin, (157)

where
ePed = eihielel, (158)

Let us get back to integrability. If we have the set of quadratic Poisson brackets satisfying
the identities o -
{L67L6/}: [TOO/,LB,LZ/], i:1,...,n

and -

{Li L} =0, i # . (159)
Then for T} and T3 we have

{11, T} = [r12, TV T3] (160)

Let us now consider the set of relations

{zquELBZ%ALi’LéRSO” , (161)
LyLy, = L, Ly =0, i # j.
The quantum monodromy matrix is defined as T := L™...L' and we claim that it

satisfies the quadratic relation
RSLO/T()T()I - TO’TORGLO/-

We can insert there the spectral parameter and additionally supposing that R-matrix is
invertible we can obtain

Riy (2 = w)To(2) Ty (w) = Ty (w)Ty(2) Ry (2 — w) (162)
and, hence, R R R )
To(2) Ty (1) = (Rl (2 — )Ty (w)To(2) Rl (= — ). (163)

Taking trace from both componetns we get

~

tro(To(2)) - tro (T (w)) = tro (Thy (w)) tro(Tp(2)). (164)
The trace of monodromy matrix
i(2) == Tro(T(2)). (165)

For the trace we have
()t (w) = t(w)i(z), (166)

where

i(z) =) 2H,, (167)
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which actually lies within the concept of quantum integrability
[Hy, H,) = 0. (168)
Thus, we can define the Schroedinger equation Vk

HyU =\, (169)

If 7 := Lj L then we have
RooToTy = Roo Ly L Ly, LiF (170)
and by permuting the needed terms we get

A A S N -V In] AL IR AR AL AL AL ~ii A A
RO()/T()T()/ == ROO’LE)L%)’LE)—’_ LZ)—)_ - LE)’LEROO/LE)—’_ Lg—)— - L61L6L6+1L6—}_ Rog/ = TO/TOROO’-

(171)
Let us now construct the quantum spin chain. Consider
5 h
or, in matrix form,
10 00 1000
0100 h{0o 0 1 0
h f— —
R =10 010|201 0 0 (173)
0001 0001
Define now 1
Li(z) =1+ =S. (174)
z
where . .
A S11 512>
S =" . 175
<521 S22 (175)
and Sz’j = hEJZ SO7
Ly(2) = Rg;(2). (176)
The for the monodromy matrix we have
s e s A(z) B(z
To=Lgy...Ly =R}, (2)R,,_1(2)... R 1(z) = ( 08 f?Ez;) : (177)

Operators in the latter equation act on End (H), where H = C?@C?*® - - - ® C* We can
now compute the trace and we obtain

~

tro Tp(z) = A(z) + B(2). (178)

20
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For S we have

S = Z EaSiy (179)
a,b
and by quantising
p(S) =hY_ EuwEy, = hPy;. (180)
a,b

Our main purpose is to diagonalise 2" x 2" matrix, its dimension can be enormous.

Let us now introduce the notation for the next lecture; we can redefine L#(z) — L'(z—z),
so we obtain so called homogeneous parameter definition. Then let us introduce

o (TH RSB B
K — Z—21 | zZ—21 .

z—z1 zZ—z1

or, alternatively,

(6 B
= (50 50) (182)

Consider now the Schroedinger equation for the trace of the monodromy matrix
H(2)|W(2)) = t(2)| W), (183)
where ¥ does not depend on z since
[#(2), {(w)] = 0. (184)

The same equation can be written for w and so on. Our purpose is to solve this equation
for the spin chain. We can obtain a local Hamiltonian defined by

ﬁlocal - Z Pi,i—i—l- (185)
i=1
Define vacuum vector (e; = (1,0)7)

0) =1 ®e ® -+ ® ey, (186)

hence we know how, for instance, F}, acts on vacuum vector. Next time we are going
to define the action of operators A, B, C, D on |0).

21
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Lecture 5

Bethe Ansatz method

Consider the monodromy matrix

To(z) = Li(z — 2) LY (2 — 2p_1) ... Li(z — 21) (187)
or,equivalently,
L e A(z) B(z
To=Lg...Ly= R}, (2)R,_1(2)... R, (z) = (CEZ; DEZ;) : (188)

acting on the Hilbert space H = C? ® C* ® - -- ® C%. Here

N Y
? — Z—21 . Z—z1 .
L (Z) < Z_th Eil 1+ Z_th EéQ ' <189)

We can also use (as we already know) different notation
Li(z) = (%(z) @i(z)) . (190)
7(2) 0'(2)

Then we know that by denoting #(z) = tro Ty(z) = A(z) + B(z) we have the following
relation

[t(2), t(w)] = 0. (191)

Our goal is to solve the Schroedinger equation
t(2)|T) = 7(2)| V). (192)

The vacuum vector has the form

a-()e()ere(t)

Let us consider the action of our operators:

@@m»:<1+zfz)m> (194)

7

and in the same manner

0:(2)|0) = 5(2)[0) (195)
71(2)[0) = 0. (196)
We also keep in mind that

and

Eu<é):0 (197)
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Theorem 2. The action of the operators on the vacuum is given by the following set of
equations

(w)]0) = a(u)]0), (198)
(u)]0) = d(u)[0), (199)

C(u)|0) =0 (200)
and the action of B(u) on |0) generates the whole Hilbert space H.

A
D

Let us write the Lax matrix

L'=L" 4 L, (201)
where .

Lot = (O(‘) ?) (202)
and

L = (3 8) . (203)

Then the monodromy matrix has the form

LrLr L = (L L)L L) (LM L) =T Y (204)

T+ — [t Lt L Lt (205)

and Y includes the rest (2" — 1 terms). The operator ?;j acts on vacuum by 0

Y;J|0> =0,
since it contains at least one L%~
A 0 0
k77 - A
Lo = <1 O> - (206)
Now we understand that the contribution is given by the positive part of our operators.
In case n =2 . . . o
g @2 aq @1 _ [ G2i 542ﬁ1ﬂ: B201 (207)
0 (52 0 (51 0 5251 ‘

The B operators turn the spin up or down. The multiplication of the matrices could
well be continued and we will get the matrix of the asme kind at each step. The action
of operators can be now written explicitly

a(u) = [ ] as(w), (208)

d(u) = H 8; (uw). (209)

23
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Definition 2. The substitution

0) = B(w)B(us) ... Bluar)|0)

18 called Bethe ansatz. Here uq, ... up are some variables that are to be determined. The
operators B correspond to the sector, where M spins are down and n — M spins are up.

Let us now formulate the way how we will find wq,...,uy. Consider
(A(w) + D(u)|W) = (A(w) + D(u))B(u1) B(uz) . .. B(uar)[0) (210)

and commutation relations that we will need later. Now consider

1000 f(z,w) 0 0 0
h 0010 0 1 (z,w) 0
h o o — g\z,
Riplz,w) =4 ——"Po=1+——21, | 0 glzw) 1 0
00 01 0 0 0 f(z,w)
(211)
where 5
9(zw) = — (212)
and h
Z—w
So, we have ) )
Riy(z,w)T1(2)Th(w) = To(w) Ty (2) Ris(2, w),
where X R
A(z) 0 B(z) 0
- 0 A(z) 0 B(z)
T =1 . . 214
W =tew 0 b o (214)
0 C(z2) 0 D(z)
and . R
A(w) B(w) 0 0
A C(w) Dw) 0 0
T. = n A . 21
=107 0 Aw) Blw) (215)
0 0 C(w) D(w)
One of the most significant relations is
[T35(2), Tij(w)] = 0 (216)
as we get from it that R R
[A(u), A(u')] = 0, (217)
[B(u), B(u)] =0 (218)
There are some non-trivial relations like
AW)B(u) = f(u,v)B(u)A) + g(v,u) B(v)A(u). (219)

24
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Consider the simple example M =1 (1 spin down):
A(2)B(u)[0) = f(us, 2) B(ur) A=) + g(z,u1) B(2) A(ur)|0) = (220)

— a(2)f(u1, 2)B(uy)|0) + alur)g(=, u1) B(2)[0), (221)

where B(u;)|0) = ¥ and the second term in the latter equation we call 'unwanted’ term
- we wish to cancel them out.

In case M = 2 ¥|0) = B(u1)B(us)|0) and

A(2)|) = A(2) B(u) B(uz) 0) = f(ur, 2)Bur) A(2) B(us)|0)+ (222)

(2, ) B(2)A(ur) B()|0) = f(ur, 2)Blur) ((uz, 2) Blua)A(2) + (=, us) B(z)A(uz) ) +
3

+g(Z,U1)B(2) (f(U%Ul)B(Uz)A(Ul) +9(U17U2)B(U1)A(U2)> 0) =

= flu1, 2) f(uz, 2) B(ur) B(uz) A(z) + g(z, ) f (uz, uy) B(2) B(uz) A(ur )+
+ (flur, 2)g(2, u) + (2, w)g(ur, uz)) B(2) Bur) A(us).

Here f(u1,2)g(z,u2) + g(z,u1)g(ur,us = g(z,us)f(ur,us). We see that even in case
M = 2 the computation is rather complicated. By iterations we get 2™ terms; Firstly,
we have

W) = B(ua) . .. Bluar)|0), (227)
then A
A|W) = AB ... B|0), (228)
A|W) = BA...B|0), (229)
A|W) = BBA. .. B|0) (230)

and so on. We wish to obtain the explicit expression for this procedure. Consider so
called off-shell Bethe vector

A(2)B(u) ... B(uag)|0) = a(2)A(z,uy, .. uag)[O)+ ) alur) A(z|{u}) B H B(uy)|0),
. 7 231)
then we move u,; to the right. So, we have either
B(uy) ... B(uy)A(2)]0) (232)
B(2)B(uy) . .. B(uy)A(uy)]0), (233)
B(2)B(uy)B(us) . .. B(uy)A(uy)|0) (234)

and all these 3 terms are unwanted. The coefficients have the form

z{u}) = H flug, 2 (235)
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M
Ax(z, {u}) = g(zou) [T fugo ), (236)
J#k
The action of the operator D is given by

N

D(2)B(u1) . .. B(uar)|0) = d(z)Ai(z, {u})|®) + > d(up) Aug)(z, {u}) B(z) [ [ B(w)|0).
k=1 14k
(237)

We also have the relation

A

D(2)B(u) = f(z,u)B(w)D(2) + g(u, 2) B(2) D(u). (238)
Hence, we have

Az {u}) = H S (uy,2), (239)

M
Ar(z {u}) = g(z we) [T £y, ur). (240)
J#k
Eventually, we get Bethe equations, where all unwanted terms vanish

(A(2) + D(2)|¥) = a(2)A(z, {u}) + d(2)A(z, {u})| )+ (241)

M
+Z ( a(up) A (2, {u}) + d(up) A2, {u}) x B(2) [ B(u;)0). (242)
k#k
We require for all k =1,..., M (bearing in mind the definitions of A and A
alug) Ay, + d(ug) A (z]u) = 0. (243)

Finally, we have the set of equations

a(ug) [T fug,un) = dlu) T £ (un, ) (244)

j#k J#k

or, equivalently,

a(uyg) _ H f(ukvu]')‘ (245)

d(uy) o fug,ur)

The solutions are called Bethe roots.

26
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Lecture 6

Bethe Ansatz and spin chains

Let us recall the idea discussed in the previous lecture. We had a transfer matrix

A B
T ="~ <. 246
©=(2 7) (216)
The vector ¥ had the form
U >= B(u) ... B(uy,)|0 > . (247)
We used R-matrix elements 5
— 24
ol5w) = —— >, (243)
z—w+h
fz,w) = — — d. (249)
Z—w

These functions arise in Bethe equation corresponding to M turned spins

a(u) _ S (g, uy)

flug,up)

(250)
J#k

i) = (‘3‘%("‘7 @?(Z)> | (251)

where 4'|0 >= '|0 >. The generating function for eigenvalues is given by

t(2) = a(2)A(z|u) + d(2)A(z|u). (252)

XXX spin chain

Consider the monodromy matrix

~ A

To(2) = goLi(z — 1) ... LY (2 — zn),

-62)

and elements gy, g, arise in RLL-relations

where matrix g has the form

R, LiLy = LyLi Ry, (254)

3129192 = 9291R12. (255)
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Consider the case

A . 1’, A 77
Li(z—2z)=1 Sp=1 Py, 256
o(z — ) +z—zi0 +z—zi0 (256)
where 7 = h. We are looking for
t(2) = trg (ggﬁé(z — ). LY (2 — zN)> : (257)
In general form
A a2y
i(2) = tr(g)1 + Y =i (258)

z— 2z
j=1 J

We see from this equation that residues corresponding to simple poles are exactly nﬁ] ;-
The commutation relations are

[H;, Hy] =0, (259)
which is equivalent to
[£(2), {(w)] = 0. (260)

Our goal is to study the spectrum of the Hamiltonian, i.e. solve the equation

Hp |0 >= A\ |0 > (261)
Previously the quantum spectral problem was formulated as follows

t(2)| 0 >=t(2)|¥ > . (262)

In this case
Rest(z) = A\jn

Z=Zj

(compare with the above one).
We wish to compute

f{j = Restro(goRo1(z — z1) ... Ron (2 — 2n)).

Z=Zzj

The residues are known :
Res ROZ' = UPOZ

z=z;

Then

Res f{j tro(goR()l(Zj — Zl) e RO,j—l(Zj — Zj—l)POjRO,j+1(Zj — Zj+1) e R()’N(Zj — ZN)> =

= tro(Fojgi Rji (25— 21) - - Ryj-1(2 — 25-1) X Rojy1(2j — 2j11) - .- Ron (25— 2n)) = (263)

= tro(FPoj Ry j+1(25 — 2j11) - Bin(zj — 2n) X g5 R (25— 21) - Ry j1(z — 25-1)). (264)

Taking into account that

tr(Fo;A;) = Aj, (265)
tr; (Fo;Aj) (266)
28
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we have

Res FIJ' tro(goR()l (Zj — Zl) R RO,j*l(’Zj — Zj,1>P0jR07j+1 (Zj — Zj+1> e RO’N(ZJ' — ZN>> =

z2=2z;

= Rjji1(25 — 2j11) - Bin(25 — 2n) X giRa(25 — 21) - Ry j1(z — z5-1).

The eigenvalues of t(z) are given by

t(2) = a(2)A(z|u) + d(2)A(z|u) (269)

i (#6) F)
20 = (50 50); (&m0

where 4|0 >= /|0 >, §(2)|0 >= §(2)|0 >. Here

and, as we remember,

(z)=1 0'(z) =1. 271
0'(z) = 1+ = () 211)
The complete expressions can be written as
N
. i Zz— Z; -+
a(z) =g H+z =1"a'(2) = ¢ H Tzfr]’ (272)
i=1 v
N
d(z) = ¢ [[0'(2) = ga. (273)
i=1
Then we also have
N Mo .
Aelw) = [ £ 2) = [T = (274)
m=1 m=1 m
~ M +n
Aelu) = [[ ——"— (275)
m=1 m

Now we are ready to compute the residues of ¢(z). The functions A, A are free of poles
at z;, hence, only a(z) contributes:

N M
z2=2zj kit Zj — Rk el Zj — Um
Now we have to write the Bethe equations:
M
a(Up) f (U, ue)
= s m=1,...M. 277
d(tm) 61;!; (s ) 270)
On the other hand,
N M
a(“m):&Hum_Zk"i_n:Hum_uc"i_n (278)
d(um) g2y Um =2 S Um — Ue ]

Thus, we obtained the complete set of relations for X X X-chain. For sufficiently small
1 we have so called Gaudin model.
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Gaudin model (n — 0)
Let g be of the form

g—em = (91 0) , (279)

0 g0

where v is a matrix of the same form as g. Then g = 1 + nv. In this case
Hy =1 4nr,01) . (L +nm8) 0+ nq0) 1 +0r50) .. (1 +0r551). (280)
We want to compute the linear (with respect to 1) non-trivial contribution:
Hj = 1+0(H") + O(1), (281)
where H® is a Gaudin Hamiltonian of the form
N
HJ‘.’:v—l—erk(zj —U—I—ZZ . (282)
k) i
The Gaudin Hamiltonians commute
[H}, Hy] =0, (283)

which follows from the classical r-matrix structure. The same could be obtained from
considering limit n — 0. Eigenvalues for Gaudin Hamiltonian can be written as

M

B
he = 284
1 U_’_ZZJ_Z]C ;uv_zi’ ( )

2v+z — —QHZU (285)

aFy
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Lecture 7

KZ equations and Gaudin model

The quantum Gaudin model is defined by

TG i
HE =o'+ rij(zi — ),
i
_ By

where 74(z) = —%. Let us now describe the Gaudin model at classical level. Consider

the matrix-valued function

a

L(z)zzz_za+v,

a=1

N

where S is a matrix with elements {Sf;};"._,. The Hamiltonians are generated by traces

(Casimir functions in quadratic term)

H(z) = %tr(ﬂ(z)) = % Z % + Z Mo + tr(v?), (286)

a=

where H? is a classical Gaudin Hamiltonian and

{S, Sy} = 0" (S50 — St i6a). (287)

@5

Hence, we deal with the points on Riemann sphere and assign to each point a degree of
freedom S, S? and so on. Let us write the expression for the classical Hamiltonian

H, = Y (557 + tr(S%). (288)

The equations of motion then have the form

ds* _ [S°,57]
dt, Zb—2a a 7& b’

as?® [ Z [S(:yS{L} . (289)

dt
¢ c#a

In terms of the Lax representation

dL(z)
dt,

= [L(2), Ma(2)], (290)

where M, (z) = — 2.

Z—Zq

Consider now the Hilbert space of states of the foom H = C¥ @ CV ... @ CV. The
quantisation procedure implies

2b_>§2b:1®hEba®"'®1.
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Then
n i i N
Iy tr(S*S7 Si.S)
H = § : ( ) +tI‘ Sz E § Hab~ba + E Ua,
— % Zj Zi
i#£j i#7 a,b=1 a,b=1

where v = diag(vy,...vy). We can rewrite the expression as

N

H, = Z Z EbaEab + Z v° (291)

Jj#i a,b=1 Zi

and we know that o
EzaEéb _ P’ij

: 292
Zi — Zj Zi — Zj§ ( )
The Planck’s constant can be either put or ignored, it does not matter much.
Remember that we discussed Schroedinger equation for Gaudin model
HL|U >= E;|T > . (293)
Now we are going to consider Knizhnik-Zamolodchikov (KZ) equations
9.,|0 >= HE|T > . (294)
Here we can use the covariant KZ derivative V; := 0, — HY, which satisfies
[ViV,] = 0., — HE,0., — HY] = 0,,HE — 9., H. (295)
In detail, )
HY =rag+rp+-+ri+rig+ o+ Ti,
}AIJG :le+rj2+"'+7ﬁj,j71+7ﬁj,j+1+"'+7’j,n-
Therefore, commutator can be rewritten as
{@1¢J] = azjrij — 621.73@- = (azz + (9Zj)rij =0. (296)

By replacing ¢t — z at (289) we obtain non-autonomous system or Schlesinger system.
Consider now quantum KZ equations. When discussing spin chains, we introduced

. = If[(z)
tz)=1-¢t — 297
(2) r(9)+n;Z_Zj, (297)
where R '
Hi = Ri,i*l e RiylglRi’n e Ri,iJrl' (298)
The shift operators are defined as
Tif(z1,. o 2n) = f(z1,- o zi + 0By Zig1, ooy 20)- (299)

We wish to discuss the compatible set of equations
T|¥ >= KI'NVU >, (300)
32
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where
K= R“ (zi—zi_14+nh) ... Rl (2 — 21 +nh)g* xRz —zi)...R;LlM(ziH—zi). (301)
Suppose our R-matrix is unitary, then
RijR;; = 1. (302)
Compatibility of equations implies that
T >= T,KNY >= (LK) >= (KD > . (303)
Hence, the compatibility condition can be written as
(1,K)K] = (K], (304)
Let us now consider the example n = 3:
Kh =9 R31 R21 J (305)
K3 = Rng* Ry, (306)
K! = RsyRa16°. (307)
The compatibility condition then is of the form
(K Ky = (1K) KT (308)
The left-hand side takes the form
glell(R21) Rzlg R32 =g 92R311R327 (309)
whilst the right-hand side
Rong* Ry 9' Re Ry = Rong®g' Ray Re Ry = g'g"Ron Ry Re' Ryl (310)
By multiplying both expressions by Ry;', we have
R33R31 Ro1 = Ro1 R31 R, (311)
from where, by changing 3 — 1, we obtain the Yang-Baxter equation.
Quantum Calogero-Moser model
Consider the Hamiltonian
- Z ; V_—_gj))Q (312)
33
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In classical case we had
1 — V2 1
H=- — _— 313
QZPZ 2 Z (zi — x5)? (313)
i=1 i#]

KZ equations can be written as

hoy, | >= (VZ R + gi> [ >= MZ;\SD > (314)
— X — Xy
i#£]
Here g = diag(g1, - - - gn),
W= Y0 B, 1)
i=1

such operator measures the number of spins being "up" or "down". The index 7 denotes
the component. For instance, when N = 2,

M, =EY +. B (316)
M, =EY) + .. EY, (317)
Note that o
[H}', M,] = 0. (318)
Consider the eigenvalue problems for these commuting operators
Hilp >= Hi|p >, (319)
M| >= M,|p > . (320)

The Hilbert space of states can be described as

H=(CN)" = P v({M}) (321)

My,...My
Consider
202 | >= —h Sk L — @ — @ >=
wle VZ(:vi—x-)2+ VZ(xi—m)Jrg VZ(:Ei—xz)+g v
J#i / i#] ! i#l
(322)
:_hVZ iJ ’(p>+<g(z))2+ g(i)z Pz] Z R n
— (x; — x;)? < x; — Xy T — 2,
i#] l# #
1/2P-2- P Pl
R ) [
(#z‘ T @ )@ — )
Now we define Matsuno-Cherednik projection
< Qlp >, (323)

34
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where

Q=) <J.
J

(324)

Here < J| are basis vectors in H*. The action on a permutation operator is trivial

(325)

With the help of bra- vector €2 all permutation operators can be removed from the above

expressions. Hence, we get

V2 —vh - y
<QY BRlp>=Y —0t Y < Qg Pp >, (326)
where
L N N N
g =YY < QElgle>=) " < QMglle>=T> Mg (327)
i=1 a=1 a=1 a=1
Therefore, we obtained the energy
N
E=Y Mg (328)
a=1
35
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Lecture 8

Quantum Calogero-Moser model

The Hamiltonian for the quantum model has the form
h2
TLATI Gyt Z%a (329)
Z#J T q]
where g = v(v — h). In case N = 1 we have

2 J

(330)

which can be expressed with the help of annihialation and creation operators corre-
spondingly

4= —(ha + wq), (331)

ol = — (—hd, +wq). (332)

Sl -

Now we can rewrite the Hamiltonian as
H=da+ Ey, (333)
where Fy = % is the energy of ground state and the corresponding ground state function
is )
A(q) = exp (—%) (334)

with the following property aA(q) = 0. Define

262

L+ hwqd,. (335)

H = A™Y(H — Eg)A = A 'afan =

Our goal is to find the eigenvalues (spectrum) of H’ in the space of symmetric poly-
nomials generated by ¢ {1,q,q? ...¢"}. For this basis we use the standard notation

€1, €, .... Consider
n

o, = Z crg" " =cog" + 1" 4. (336)
k=0

Here ¢y # 0.The spectral problem has the form

2 n—2 n
= _—— Z crn—k)(n—k—1)¢""? + hw Z cx(n — k)" * = E ®,. (337)
k=1
Let us reduce the task to n = 2:
Dy = coq® + c1q + o, (338)

36
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then
H'®y = —h%co + 2cohwq® + c1hiwg = Eb(cog® + c1q + ¢2). (339)

Hence, we obtain the following equations (comparing coefficients corresponding to pow-
ers):

¢ : coEy = 2cohw, B = 2hw, (340)

q: c1Ey = hwey, (341)

so ¢; = 0, otherwise we arrive to contradiction. The last equation takes the form

—h2CO = CQEQ, (342)

— lico
hence, c; = 3.

Let us return to the general case. We can see from the previous calculation that ¢, = 0,
if k£ is odd. For all even k we have a recursive formula

h(n—k+1)(n—k+2)

S . 4
Cr. 2w k‘ Cl.—2 (3 3)
Choose ¢ such that
w\n/2
o =2" (-) . (344)
T

Therefore,

Cr = <_§)k/2 n ol (345)
T w (n—k)!2!T(E +1)

Finally, we obtain the eigenfunctions, which are exactly the Hermitean polynomials

w

o, = H, ( ﬁ> q. (346)

But these eigenfunctions correspond to H'. For the original Hamiltonian we obtain

U, = Ad,, (347)

1
E,=F +FEy= (n + 5) hw. (348)

Proposition 4. The Hamiltonian can be represented as

N
1 o
_ T
H = §;AiAi+E07 (349)
where |

By = 5Nw(h+ (N = 1)), (350)
A —n2 +wq-—zn: Y (351)

Y0 T Za—g

JFi

At = —p2 +wqi—i — (352)

’ dq; i ¢ — qj
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For example, when N = 2,

AI/L = (—h81 + wqp — Y ) (h@l + wq1 — Y ) = (353)
q1 — q2 q1 — q2

h
— B2 — hw — —— — (wa Y ) 1o, + (wq1 Y ) R+
(1 — q2) @ — ¢ @ — ¢

v? —vh 2vwqy

— fw.
(1 —@)? «—q¢

2
v
+ (wq1 — > = —R?0} + Wi +
41— Q2
Consider now
v? —vh 2vwaqs
(2—q)?* @—a
By summing these results up, we obtain our Hamiltonian. The ground state is given by
the Laughlin function

— hw.

A;AQ = —h2622 + quS +

N , N
o

Alg) = TTe = [ — o). (354)

i=1 i<j

where 3 = %. From the definition it is easy to see
A;A(q) = 0. (355)

After applying the conjugation to the Hamiltonian, we get

N

- w0 9] ) 1 ( o 0 )

H = ———— 4+ hwg;— | — hv - — . 356
; ( 2 0¢? ! dq; ; ¢ —q; \9q  Og; (356)

Now let us get back to the eigenvalue problem

for the partition ¢* given by
=4 @, N € L (358)

bearing in mind that Ay > Ay > ... We also define

k
A= X, (359)
=1

where k is a length of partition. We relate the Young diagram to each partition corre-
spondingly

[ [ M
A
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So, we search for solutions in the basis formed by the symmetric polynomials. Conisder,
for simplicity, the following monomial (being symmetrised to satisfy the conditions of
our problem)

W i )\
Qg+ a7 g (360)
We have to compute
1 0 0 1 Aj—1 i \j
%—%(@zé%>@“b+%%) i—%(&# NG NG g = N
(361)

1 PVED VIV VIS VIS S VI WS Nl A1 A—A—1  A—A -1
e (Aiq/q/@i T gt >—qu/ q;’ (ql- =gt ))

J
Now, by using the obvious identity

n_yn

Jj‘——y = l‘nil + y:c”fQ + e+ ynil (362)
we get
1 (8 8) A AA/\iilz\Alk Mt a1
(qz qj3+qijq;\i> — )\iqz‘jqj'j qii_ 1= qf—l_)\jqij— qjj— g S
¢ —q; \Oq  0g; =1 : k:())
363
By simplifying the expression, we get
Ai—Aj Ai—Aj
: <8 8>(qq3+qq =\ ]q"l’“H“A JQ'kl)\Ml
o 1 43 1 d1j ? 7 J
¢ —q; \Oq  9g; p prd
N (364)
TN
)\i,I,k Aj+k—1 )\2‘71 Aj—1 Aj—1 )\i,I
=Ni=A) D T T T =N T T g .
k=1
As the basis in the space of symmetric polynomials, we may consider
N .
1) pi= 3 g
k=1
2) elementary symmetric functions e, = > ¢ ... G,
11 <i9<...lg
For the (1) we have a determinant formula
€1 1 0 0
262 €1 1 0
pr = det | 3es e e 0 (365)
e 0
kek €p—1 €Cp—2 ... €1

In case N = 2 we can easily see that p; = q; + g2, p2 = ¢} + ¢5 and py = €3 — 2e5. We
use the basis of monomial symmetric functions

mx Z qa(l)qa(Q) qa(N) (366)

cESN
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Theorem 3. Thea action of the Hamiltonian is given by

H'my, = hw|Amy + > Cyumy, (367)

p<A

where ;1 < X is a dominant partial order and pi+-. .. p; < Mi+... \j, Vj. The action of H'
on the my is given by the triangular matriz (low triangular, to be precise). Consequently,

E§ = hw|)|. (368)
In case of the original Hamiltonian,

Nhw N(N —1)rw

N
Ex=FE\+E =hw) X+ o+ 5 (369)
j=1

Eigenvectors can be found by considering the generalised Hermitean polynomials

ma+ 3wy (370)

p<A

40
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Lecture 9

Generalisations of the Quantum CM Model

In the classical formulation the Hamiltonian of the Calogero-Moser Model has the form

H = sz — ZU (371)

where the potential corresponds to different models:

% Rational CM model,
U(q) = , Calogero — Sutherland, (372)

sin? ¢ q’

vP(q), elliptic CM model.

Here P(q) is the elliptic Weierstrass function. Im quantum case the CM model is defined

by
o opd L9
= Z 8qz Z 412

where g = v(v — h) and Q); = e“%j. We can also use the Euler’s formula

.Qi_Q'_l i%_—% _l %_ Q_ _l Q’L Q
smz—lj =5 (e e ) =5 <\/; \/;> = \/QZ—QJJ (374)

Then it is easy to see that

(373)

Sln2 ‘h

28— ¢ 1Qi— Q]

in® ——— = 375
sin” —— ~1 0.0, (375)
Now let us rewrite the Hamiltonian in the following way
N
H=> AAl+ Ey, (376)
j=1

where the ground state energy is given by

V2 N(N? - 1)
Ey=—— )
T

The ground state is similar to one defined in the previous lecture

A= H HQ (V-5 (378)

1<j i=1

(377)

and the annihilation condition is satisfied
A;A = 0. (379)
41
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The explicit formulas for operators are

0 v 4% — 4j
A = - R
i=h T Z cot ==, (380)
k:i#k
0 v g — q;
Al = —p— - = e 381
: i 2 R (381)

Now let us conjugate the Hamiltonian with the ground state

. o, 202 QZ+Q] 0 0
H o H = g A7 — B = Z@’@Qz) - ( 94, QjaT?j)'
(382)

Hence, we deal with the second-order differential operator. Consider monomial symmet-
ric polynomials for the partition A = (A, Ay .., Ay)

A
ma= Y Qo @lay - @y (383)

cESN

Define Jack polynomials now

NQ.B) =ma+ Y ul)m,. (384)

p<A

Theorem 4. For the Hamiltonian (382) the ezists a set of symmetric functions Jy,
which satisfy the equation

H'Jy = exJy (385)
for
sA—Z)\QJrﬁZ)\—)\ (386)
1<J
Finally, we have X
HV\(q) = ExWa(q), (387)
where
N (N-1)8
- (H @-) [1(@: — @)@, 8) (388)
i=1 i<j
and N
¥ N(N*-1) & :
EA—l—Q'T‘Fﬁ;(AJ‘"‘B(N"’l_Q])))/\j' (389)

In other words,

1
=527 (390)
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where p; is a quasi momentum

N +1

Di = %:L()\,u—i-l—i + (i — T)B) (391)

So far, we have studied the Lax representation, but most of the time we have been
dealing with something else. Now, in the quantum case, we have

L= —haija% +(1- 5@-)%%%. (392)
The quantum Lax equation has the form
A, L] =L, M] (393)
or, equivalently,
[, L] = Z Lix My — MLy, (394)

where Mij = dzéw — (1 — 5 )

though we can write

W The problem is that we cannot compute the trace,

[H,L*) = [LF, M)]. (395)
In the quantum case we have

tr(AB) =Y AyBji # Y BjiAj; = tr(AB). (396)

Yet we have

Z - (397)

TMz

The total sum (ts)
N

tsLF = " (L%); (398)
ij=1
can be used for the representation (395) in order to compute the conserved quantities.
In the classical case we want to compute tr(L¥) and we want to consider a characteristic

polynomial
det(lw+ L) = 0. (399)

In the quantum case we need to introduce the time ordering operation (: :), where the
momenta go to the left, whilst the coordinates go to the right

:det(1A + L) Z NH. (400)
Theorem 5. ]
Al d L): A= Dw) = 4
et( ) (w) 1@ - (401)
1<)
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el TT { gv-e ve v N+L 0

Z H{ ( + l(a(z) i +m8qi :
geSN

Moreover,

D(w)J\(Q, B) = Aw)JA(Q, B), (402)

e

where A(w) = [[(w —pj).

7j=1

In some sense, we quantised the characteristic polynomial.

Trigonometric Ruisenaars-Schneider model

Consider the Hamiltonian

Eﬁ:%(&$+§%>, (403)

where difference operators S; are defined as

Sip = Z H h* (g — q;) (HT3> H h5(g; — ), (404)

Je{1,..,.N}|J|=kied, j¢J s€J ied, j¢J
where . ”
Bt <sm (1 = zy)) (105)
sin o3 (¢ — ¢;)
and shift operators are given by _
TE = elon (406)

and their action

TEF(Q1, Qs Qn) = f(Quy - Qi1 Qrd™ ™, Qiyry - Q). (407)

This is a generalisation of the CM model. In case k =1,

=Y T » (@—a)Z T] (a5 — a0)- (408)

j=1 w:i#yg IRES]

In the classical case T = e /¢ and

Z H W (g — q))hT (g — q;)eri/e (409)
J=1 wi#j

and

B B sin? (i/2lv)
w@—%MW%—M—vG S0 (g — )20

By inserting ¢ into the exponent and the sin function in the enumerator and considering
the limit ¢ — 0 we get

51:N+§Zpi+€2<%zp?+z+u>' (411)

(410)
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Lecture 10

Ruseinaars-Schneider model

Today we are going to discuss the trigonometric Ruseinaars-Schneider model defined

by the Hamiltonian
N 1 /4 N
Hj, = 3 (Sk +S—k> :

where

See=> [ »@-a) (HTli> IT »* (@ —a)

|J|=kied, j¢J leJ i€, j¢J

Here J € {1,... N} and

and

The classical analogue of (412) is defined as

S:H Z H 1— Sl;lnq( ) epjk.

J=1 i#j (9 = 4;)

One can show that

[S’ika gim] =0

Now we consider A‘ls’ikA. Denote Q; = ei%. Now for t = e~ % define

(tile Q])
Qi — Q;
The action of the shift operator can be described by

T (@1 Qn) = f(Qu, - a7 Qr - Qu).

s-3 T (9=2) (o) (—g)

|J|=k i€, j¢J

l\J\»—l

h=(g — ¢j) = t7

Then

(412)

When we conjugate the function with the ground state, we obtain an operator with
symmetric polynomials being its eigenfunctions. The ground state in our theory is given

by 1
N oo 2 [e’e)
_ Qi —¢'Q, ) T

45
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where N )
_gkO.\ 2
ZM:H(g—ﬂ%>
i#j A
As we can see, A = AgA; ... Hence, we can conjugate it by parts: first by Ag, then by
A1 and so on. After doing it, we obtain the McDonald operator

Qi
e DOl | e 1 1
|J|= kzeJ]¢J QJ leJ

The eigenfunctions of the McDonald operator are given by the symmetric polynomials.
Define a set of the symmetric polynomials Py\(Q1,...Qn,q,t), ¢ is a shift parameter,

PA(Ql) s QNa Q7t) =mx + Zu,u)\mu~
p<A
One can define a scalar product by

L(A)
< PMPM >= Z)ﬁ)\“H

=1

Here zy = 1M M 122050 .. Here M; is a multiplier of \; and

A )\
mA_ZQl N

geSN

1— g
1—th

For the McDonald polynomials we can write the spectral equation

My, Py = hy Py,
where hy = Z gtV

Consider some examples. Let N = 2 (2 particles) and the Yung diagram (A; = Ay = 0)

is empty, P = 1, then
iy tQh —QzT n tQo — Ql
= 1
Qi — Qs Q2 — Q1

The eigenvalues are hy =t + 1. Since T} -1 =1 ="T5 -1, then

Q) — Q) —
w1 @@

Q1 —Q: Q1—Q

The next example is when the Yung’s diagram consists of only one box: A\ =1,y =0

[]

Then hy = tq + 1 is the eigenvalue corresponding to m, = 1\1 5\2 + Sym. Then
Q1+ Q2 = P. Then we see that T1 P = qQQ1 + Q2 and To P = Q1 + (Q2q,
- Q1 — Q2 tQs —
M{P = + +
1 Q 0, (qQ1 + Q2) + 0y — O ————(Q1 + @29).
46
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Consider now the terms in front of the corresponding powers

L Q1 — Qo tQ2 — Q1 (Q2 Q3) .

T Y T T 1 TR
0. =@ 1Q2—CQr
q.Q1—Q2Q2 Q2_Q1Q1 Q1+ Qo

Finally, )
Mi(Qr + Q2) = qt(Q1 + Q2) + (Q1 + Q2) = (tq + 1)(Q1 + Q2).

Now we wish to see the connection between this model and KZ-equations. Let us first
recall the formula for the transfer matrix of the spin chain

t(2) = tro(Ron(z — 20) Ron1(2 — 2n_1 ... Roi (2 — zl))g(")) =1-tr(g) + UZ

z—z
The transfer matrices commute
[t(z), t(w)] = 0.
The Hamiltonian is given by
I:Ii = Ri,zel(zi - Zzel) ce Ri,l(zi - Zl)g(l)Rm cee Ri,i+1-
The quantum KZ equations are defined as
|0 >= KM |0 >, (413)

where T} = "= and K" = Rl (xi— a1+ nh)g® @ Rz, — x) ... R;rll’l-(:riﬂ — ;).
If we impose the unitarity condition

ng(fﬂ)Rgl(—l') = 1,
the expression becomes easier. We can put

Ry=——"Tu
zZ+n

Then
A= ROt
D T
Here A = Oand shifts vanish. Note that

R12<£C> =1 -+ 77P12

for the spin chain (simple pole at 0), for KZ equations the normalisation is different.

Then n
~ T
Rij = —nRU .

Now multiply the (413) by < €|. Remember that

H=(C)" = @ v({M)).

Hi.--pN
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where N is a rank of spin chain. For instance, N = 2 corresponds to GLy X X X spin
chain. Choose some basis |J > in the sector of the Hilbert space, then

<Q=) <J,
J

< Ql]jlj =< Q’
then we can consider .

> <AT|w >,

i=1
then .

T; — Xj ~
< QIENU >=< QKU >= 11 i /Ao 1) s AL
i T

After summing all the equations up, we will obtain the Hamiltonian. The result is as
follows: consider ¥ =< Q|¥ >, then

i=1 j#i i=1

N

where F = > M,g,. Now one can consider a limit & — 0. Then we have, on the one
a=1

hand, a spin chain, but, on the other, classical many-body system of the Ruseinaars

or Calogero type. The parameter 7 is relativistic, x; correspond to the positions of the
particles. There is a quantum-classical duality &; = h; (eigenvalues of the quantum
Hamiltonians). From now on we may no longer need a Bethe Ansatz — we can work
with the many body sytem. One many-body system corresponds to a set of the spin
chains (not to one) and there is a combinatorial rule to find the proper relation.
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