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Lecture 1. Basics of Functional Analysis. Metric Spaces

Metric Spaces. Examples of Metric Spaces

Definition 1.1. (X,p), where X is an arbitrary set and p : X x X — [0,+00), is called

a metric space, if p satisfies
1) plx,y) =0 iff x =y,
2) p(x,y) = p(,x),
3) p(x,y) <p(x,2) +p(z,y) (the triangle inequality).

One of the central concepts in Functional Analysis is the notion of a complete metric

space, defined as follows:

Definition 1.2. A metric space (X,p) is called complete if for any Cauchy sequence

{x,}22_ there exists limx, =xeX.
n=1 00
Now we demonstrate some fundamental examples of metric spaces.

Example 1.1. R* (or C") with coordinates x = (x1,X2,...,X,) endowed with a standard

FEuclidean metric

In further, when we mention some metric spaces, they are assumed to be endowed
with a certain (standard in some sense) metric, so we omit the explicit notation of the
given metric.

R"™ and C" above serve as examples of finite-dimensional metric spaces, while the main
objects, which are studied in Functional Analysis, are infinite-dimensional metric spaces.

Let us look at the following examples.
Example 1.2. Consider the following spaces of sequences:

a) coo, which is the space of infinite sequences x = (x1,x2,...,%,,0,0,...) with a finite
number of nonzero coordinates (this number may be different for distinct elements
of the space):

Vxecoo In=n(x): Vk>nx =0.

b) co, which is the space of infinite sequences x = (x1,Xx2,...,%p,...) such that

lim x,, = 0.
n—aoo

7
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c) ¢, which is the space of infinite sequences x = (x1,x2,...,Xy,...) such that

lim x, = a = a(x).
n—0o0

These are examples of infinite-dimensional metric spaces. The standard metric is given
by p(x,y) = sup|x; — yi|. It can be easily seen that coo < co < c.
i>1
What can we say about the completeness of these spaces in examples above? R" and
C", being finite-dimensional spaces, are obviously complete, since the convergence there is
in fact the coordinate-wise convergence. Let us define the convergence in a generic metric

space.
Definition 1.3. x, 5 x in (X,p) if p(xu,x) — 0.

In the first example, the convergence with respect to the metric is just the coordinate-
wise convergence.

What can we say about the space cog?

Exercise 1.1. Prove that coy is not complete.
An example proving that this space is incomplete can be constructed by adding

something small to further and further coordinates, for instance,
Xl = (1,0,0,0,...),

|
2= (1,— 0,0 )

{x"}°° | is a Cauchy sequence:
1
Pl ) min(n,m) + 1 s mm

(note that we have the supremum metric, and not €y-metric!). By the convergence with

respect to metric in coo, co, and c, it follows that Vk xj, — xi, so the limit sequence is

harmonic: x = (1,%,%,...,%, ...), which is not finite, therefore, it does not belong to cop.

Let us proceed to the following examples.

Example 1.3. Consider {,(n), 1 < p < ©, the space of finite-dimensional vectors x =

(X15-.-,Xn), x; €R (or C), with metric

p(x,y) = <§n: [x; _}’i|p> 1/p;

i=1

8
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if we take the limit with respect to the parameter p, as p — o0, then, for p = o, we have

p(x,y) = H;afi\xi*yﬂ-

=

It is clear that these functions p(x,y) are indeed metrics in the spaces £p(n): they are
symmetric, nonnegative, take zero values only for coinciding elements (x =y), and the

corresponding triangle inequalities are simply the Minkowski inequalities.

Example 1.4. Consider {,, 1 < p <0, the space of infinite sequences x = (X1,...,Xp,...),
xjeR (or C), such that

n
Z|x,—|p <@
i=1

for p < oo and

sup|x;| < oo
i=1

for p=o00. The metric is given by

n

pey) = (X u-n)"

i=1
for p < oo and

p(x,y) = suplx; — ;i

i=1

for p = o0.
The following example is represented by the space of functions.

Example 1.5. Consider Cla,b|, the space of continuous functions with the (uniform)

metric

p(f;8) = max|f(x) — g(x)|.

[a,b]

These metric spaces (¢,(n), £,, and C[a,b]) are complete, though this property can be

violated if we define the metric in the space of continuous functions in the following way:

Example 1.6. Consider Cpla,b], the space of continuous functions, where the parameter p

indicates that we use the integral metric

b 1/p
pr.e) = (| o -gtorax)
a
as the functions are continuous, the integral is the Riemann integral. If we take the limit
as p — 0, we immediately obtain the previous example, i.e. the space Cla,b] of continuous

functions with the uniform metric.
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For 1 < p < oo, these spaces are not complete.

Exercise 1.2. Prove that C,[0,1] is not complete.

0
n=1

x < 1/2, f, decreases to zero on [%,% + %], and f, =0 for x > %4— % This sequence s

We can construct a sequence {f,} of continuous functions such that f, =1 for

1.0

0.8

0.2

Puc. 1.1. Graphs of f,, n=13,5,7,9,11,13,15.

obviously a Cauchy sequence: p(fy, fm) is dominated by the square of the triangle with
vertices (1/2,1), (1/2+1/n,0), and (1/2+ 1/m,0), that is,

p(fmfm) = % l_l’ -0

n m

as n,m — o0. With respect to the given metric, f,, converges to an indicator function Xpo.4
of the interval |0, %], which is not continuous, so the space C1[0,1] is incomplete (since
the metric is integral, we must identify the functions that are equal almost everywhere, but
since we are in the space of continuous functions, this means that “almost everywhere” is

equivalent to “everywhere”, so the limit function is unique).
In the following example, we consider the spaces of differentiable (smooth) functions.

Example 1.7. Consider C"[a,b], the space of functions f such that ¥j = 0,1,...,n:

Fl) e Cla,b]. We can endow this space with either of metrics

pi(f.g) = Y max| V) (x) — gV (x)]
o)

10
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or

_ G () — o)
p2(f,8) Og;gnl[g%df (x) =g (x)].

These metrics are equivalent since py < p; < (n+1)p; (so when replacing one metric
with the other, we just change the geometry of our space, while the convergence properties

remain the same). These spaces are complete.
Consider more complicated examples.

Example 1.8. Consider (Q,M, ), where Q is the universal set, M is a c-algebra, and

U is a o-finite measure. We can define the space of measurable functions L,(Q,):

FeL,@u) i [Iflrdu <o, 1<p<en,
Q

and f € Ly (Q,u) if esssup|f(x)| < oo, i.e. the function is bounded almost everywhere,

meaning that

esssup| ()] = int supl /(2

1/
For 1< p <, the metric is defined by p(f,g) = <S |f—g\1’du) p; for p= oo it is defined
Q
by p(f,g) = esssup|f(x) —g(x)|. These spaces are complete.

Example 1.9 (Sobolev spaces, one-dimensional case). Consider
W'a,b] = {f such that ¥j=0,1,....,n—1 fY) e AC[a,b], f™ € L,[a,b]},

where AC|a,b] is the space of absolutely continuous functions. For 1 < p < oo, the metric

can be defined as follows:
- - - 1/p
pre) = (X [ 9w gDwpan) "
1=0ap]

and for p = oo, the integral must be replaced with the essential supremum. These spaces

are complete.

Example 1.10. Discrete metric space Xgiser. Let X be an arbitrary set, and let the metric

be defined by
L if x #y,
px,y) =

0, if x=y.

In this metric, all Cauchy sequences are simply stabilizing sequences:
X1y X2y ooy XN, Ay Gy ooy Qy .

Thus, this space is obviously complete since ac€ X. In the topology associated with the given

metric, every set 1s open.

11
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Limit and Closure Points. Closure of a Set. Separable Spaces

Let us remind the definition of open and closed subsets of the metric space.

Definition 1.4. Let (X,p) be a metric space and M < X. M is open if Yxe M Je > 0:
B(x,€) = M, where B(x,e) ={yeX: p(y,x) <ée}. M c X is closed if X\M is open.

According to this definition, a single point {a} X is an open subset of Xyjs,; any
union of open sets is open, so any subset of X is an open set in the metric space Xyjscr.
Another definition of the closed subset can be given in terms of limit points of the set.

Let us recall some definitions.

Definition 1.5. xo is called a limit point of a set M — (X,p) if Ye > 0 B(xp,€) "M

contains infinitely many points of M.

Definition 1.6. xq is called a closure point of a set M < (X,p) if Y€ > 0 B(xg,€) "M #
.

Definition 1.7. The closure of a set M = (X,p) is M = M U {all limit points} =
{all closure points of M}.

Let us recall some other definitions from Functional Analysis.
Definition 1.8. A set M = (X,p) is dense in X if M =X.

Definition 1.9. A metric space (X,p) is called separable if there exists a countable or
finite dense subset of X.

Note that the condition of finiteness of the dense subset is reserved specifically for
discrete metric such as in Xy,
Next, we shall point out which of spaces in the examples above are separable and

which are not.

1) Xyiser is separable if Xy, is finite or countable.

2) Cla,b] is separable since for every f € Cla,b] and any &€ > 0 there exists
a polynomial p with rational coefficients such that |f — plcpas < € (see the

Weierstrass approximation theorem):
n
p:Zcix’, ci€Q.
i=0

3) Lp(X,u), 1 < p < oo, are separable if the measure u is o-additive.

12
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4) Ly is not separable.

Exercise 1.3. Prove that £ is not separable.

Lemma 1.1. Let (X,p) be a metric space. If there ezists an uncountable M = X such that

d >0 Yx,ye M: p(x,y) =d, then X is not separable.

Proof by contradiction. Assume that X is separable, then
Xy < X, finite or countable, such that Xo = X.

This is equivalent to the following property. For € > 0, consider balls with centers at x of
radii €. Thus,
UxexoB(x, 8) == X.

The number of the balls in this union has the same cardinality as Xo, i.e. it is finite or
countable. But M (see the condition of the lemma) is not countable, so AB(xg,€) > {x,y},
x,yeM. Take € =d/3; then

d < p(x,y) < plx,x0) +p(x0,y) < 243,

where the first inequality is due to property of the set M, and the second one is due to the
triangle inequality, which gives us a contradiction. [
If we would like to use this lemma to prove that {y, is not separable, then we have to

find a subset of Ly with the property described. Consider the set of sequences
M = {x= (x1,x2,...,%n,...) such that Vk: x; €{0,1}}.

This set is uncountable; one can show it by employing Cantor’s diagonal method (if we
suppose that this set is countable, we can write it in the form of a table; then, we pick the
diagonal and change any symbol of the diagonal to the opposite; there is no such an element
i this table, so the set is uncountable. This method is usually used to prove that R is not
countable in Calculus) and p(x,y) =1 as x #y, so this set satisfies the conditions of the

lemma.

Maps of Metric Spaces

Let (X,p) and (Y,d) be metric spaces. Consider the map (X, p) ER (Y,d). We will focus

on the following kinds of maps:

1) f is continuous at a point xp € X,

13
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2) f is continuous on X,
3) f is uniformly continuous on X,

4) f is Lipschitz continuous on X. (Recall that it means that
d(f(x),f(y))

dr=0: sup ——F——=r<w,
x,yeX: x#y p(x,y)

and r is called a Lipschitz constant).

For instance, in the existence and uniqueness theorem for the solution of Ordinary
Differential Equation (namely, the Cauchy problem) there are Lipschitz continuous

functions considered as a right-hand side of the equation; for the Cauchy problem
Y =G(x,y),
y(x0) = yo

to be uniquely solvable, we must require that G(x,y) is Lipschitz continuous with

respect to y.

5) f is contraction:

Definition 1.10. f: (X,p) — (Y,d) is called a contraction if f is Lipschitz

continuous with re [0,1).
6) f is isometry:

a) fis a complete isometry if f is a bijection X — Y and d(f(x), f(y)) = p(x,y).

b) f is a partial isometry if f is not a bijection, while d(f(x), f(y)) = p(x,y)
holds.

These are the most important properties of maps of metric spaces.

Properties of Complete Metric Spaces

The main property is that we can take a limit and guarantee that the limit element
has the same properties as the elements of the sequence converging to it. For instance, we
know that the space of (n times) differentiable functions is complete; thus, taking a limit

of a sequence of differentiable functions we can only obtain a differentiable function.

Theorem 1.1 (fixed-point theorem). Let (X,p) be a complete metric space, and f:X — X

be a contraction mapping. Then
A eX: fx")=x"

14
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Example 1.11 (of incomplete space for which this theorem is not valid). Consider
a real azis with zero excluded, R\{0}, with a standard metric p(x,y) = |x—y|. Consider
a contraction f(x) =%5. On R, it has 0 as a fized point; when we exclude O from the
space R, it becomes incomplete, and, at the same time, it looses the fized point of the

given contraction.

Idea of the proof. Let xy be an arbitrary start point. Take

x1 = f(xo),

x = f(x1) = f(f(x0)),
Xp = f(Xn-1),
Xn+1 :f(xn)7

so we obtain a sequence {x,},~ . We can prove that this sequence is a Cauchy sequence

using the contraction properties of f, therefore, there exists

x* = lim x,,.
n—oo

We can prove that f(x*) = x*, and then prove that if there is another point y* such that
y* = f(y"), then x* = y*.

To formulate the following theorem, we have to define the system of nested closed
balls.

Definition 1.11. B, = B|xy,r,|, such that By 2By 2 --- 2 B,, © B4 is called a system
of nested closed balls.

Remark on notation. B(x,€) = {ye X : p(x,y) < €} denotes an open ball and B|x, €] =
{veX:p(x,y) <&} denotes a closed ball.

Theorem 1.2. Let (X,p) be a metric space. It is complete iff V{B,};_, (system of nested
closed balls) with radii r, — 0

¥ o0
dIx™ = ﬁnlen.

Proof. =. Let (X,p) be complete. Let {B,},"; be our system of nested closed balls

with r, — 0. Consider a sequence {x,}; of centers. This sequence is a Cauchy sequence:

P (xXn,Xm) < rp—0asn— oo,
n>m

15



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES
IGOR SHEIPAK STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

therefore, since (X,p) is complete,

Ix* = limx,.
n—o0

As it is the limit of x,, and the intersection nB,, of all balls is closed, x* is a limit point
of this set. Thus,
x* € m;.lO:an.
If there would be another point of this set, we would have y* € nB,; then the distance
p(x*,y*) between x* and y*, by the triangle inequality, is dominated by an infinitesimal
sequence:
P, y") < px",xn) + P (0, y") < 270 — 0,

so x* = y*.

<. Let any system of nested closed balls have a unique common point. Prove that our

space is complete.

Let {x,},2 | be an arbitrary Cauchy sequence. By the definition of the Cauchy sequence,
IneN: Vn=np p(xg,x,,) < 1/2.

Take the first ball By := Bx,,, 1] (twice as large as in the line above). Then, by induction,
dny >ny 1 Vn=ny pxg,xn,) < 1/4.

Take the next ball By := Blx,,, %] It can be easily verified that B, < B;: let y € By; let us
find p(xn,,¥). P(Xn,,Y) < P(Xnysy) + P (Xny, Xny) < %+ 12 < 1, so y € B;. Then we construct

by induction
1

BlDBQD---DBm, Bk:B[xnk,F],

k=1,....m,

1 > M s 0= Mgt P (X, Xny,) < 1/27,
and take By, ;1 := B[xan?zm%l] By, Thus, {x,,} is a Cauchy sequence, and

3 x =x".
m—0p,,

But x,, is a subsequence of x,. Even though,

p('x*?'xn) g p(‘x*7‘xnn1) +p(xnm7xn>7

and each of these terms approaches zero (for the second one, it is due to the fact that we

have a Cauchy sequence) as n,m — oo, therefore, x* = lim x,,. O
n—aoo0

16
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Lecture 2. Metric Spaces. Normed Spaces. Seminorms

and Polynormed Spaces. Banach Spaces.

Wrapping Up the Previous Lecture: Properties of Complete
Metric Spaces

In the previous lecture, we have completed the proof of the theorem, which provides
a criterion for completeness in terms of systems of nested closed balls. Now, we are to

give some examples.

Example 2.1. Let (X,p) be an incomplete metric space. We have a system of nested
closed balls {B,}, so that their radii r, approaching zero, and ;2 B, = &. This example
can be represented by R\{0} and the balls with centers at 1/n and the same radii: B, :=
B[L,11=(0,2]. These balls are closed in that space (according to the definition of the
closed subset), and their intersection is empty.

The following theorem is the last one in the section devoted to the general properties

of complete metric spaces.

Definition 2.1. A subset M < (X,p) is called nowhere dense if VB (ball in X) 3B < B
(another ball): M nB = (.

This definition is equivalent to interior of M = (.

Theorem 2.1 (Baire category theorem). Let (X,p) be a complete metric space, and X
be represented as a countable union of subsets X = U, | X,. Then 3Iny: Xp, has interior

points.

This means that all X;, cannot be nowhere dense all at once.

According to Baire, X is a set of I category if there is a representation of X as
a countable union X = U, | X, of nowhere dense sets X,,; X is a set of II category otherwise.

So, if (X,p) is complete metric space, then it belongs to the II category.

Proof by contradiction. Let (X,p) be complete, and suppose that there is
a representation of X as a countable union X = U’? X, of nowhere dense sets X,. Then,
by definition of nowhere dense set, there exists a ball By = B[xj,ri], rj <1: BinX| = &.

Then we take the nowhere dense X; there exists By = B[xp, 12| < By: By n Xy = ¢, and
n < 1 / 2.

If we construct nested balls By > By > --- D By, By = B[x, 1], re < 1/2571 in such
a manner, then

Xk N By =,

17
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and since X, ;1 is nowhere dense, there exists a ball B,+1 = B[xp+1,7n+1], a1 < 1/2", such
that XI’H—l ﬁBn+1 = @
We obtain a system of nested closed balls {B,}," ,, so that r, — 0 and B,nX, = &J.

According to the theorem from the previous lecture,
E“.x* = mzo=an.

Thus, x* ¢ UX,, = X, so we arrive at the contradiction. O

Let us give some remarks concerning this theorem. First of all, the Baire category
theorem tells us something only about complete metric spaces (that they belong to the
second category); incomplete metric spaces can belong to either of the categories. Consider

some examples:

Example 2.2. Let (X,p) be an incomplete metric space. For which X can we find
a representation in the form of a countable union X = U, X, of nowhere dense sets

X, ? For instance, X = Q = Uy, cqira}: each point r, € Q is nowhere dense in Q.

Example 2.3. Let (X,p) be an incomplete metric space. For which X there is no
representation in the form of a countable union X = U2 X, of nowhere dense sets X,,?
The simplest example is R\{0} (this is an incomplete metric space, but there is no such

a representation, since otherwise we would prove that R is countable).

Example 2.4. 3 countable dense in R, countable nowhere dense in R, and uncountable

nowhere dense in R: Q, N, and the Cantor set respectively.
What can we do if our metric space is incomplete?
Definition 2.2. (Y,d) is called a completion of a metric space (X,p) if
1) (Y,d) is a complete metric space,
2) Wy Y:Yy=X (full isometry),
3) Yp=Y.

Theorem 2.2 (without a proof for now). For any metric space (X,p), there ezists

a unique (up to isometry) completion.

Normed Spaces

Definition 2.3. Let X be a linear space over a field K (K =C or R). A function

||| : X —[0,00), x+— |||, is called a morm if it satisfies the following conditions:

18
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1) |Ix| =0 < x=0,
2) Vae K VxeX: |ax| = |al-|x|,
3) Vx,yeX: |x+y| <|x|+|y| (the triangle inequality).

A set X endowed with a norm ||-|| is called a normed space. Convergence in the normed

space is naturally defined by
Xn—x if |x,—x]|—>0 as n— oo

Any normed space (X,|-|) is obviously a metric space (X,p) with metric p(x,y) =
|x—yl|, so the convergence here means exactly the same as the convergence with respect
to the norm.

All the examples of metric spaces from the previous lecture, except for the space with
discrete metric, are normed spaces. Discrete metric cannot be defined by a norm since
this metric is not linear.

Question: Is every linear space X with a shift-invariant metric p (i.e. p(x+2z,y+
z) = p(x,y)) a normed space? (This property obviously holds for the metric defined by
px,y) =[x—yl.)

The answer is no!

We can construct a metric space, metric of which cannot be defined by a norm.

Consider a space of all sequences:
s3x=(x1,x2,...);

it has linear structure:

o-x=(oxy,0x2,...), aekK,

and

x+y=x1+yL,x2+y2,...,).

What about the convergence in this space? It is natural to define a point-wise convergence:
K= (x5, g ) P x = (XX, X )

if Vk: X} — x; as n — 0.

Statement 2.1. 1) There exists a metric p such that p(x",x) — 0 < x} — x; Vk,

2) there is no norm | -|| that defines convergence in s.
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Hint: if p is a metric, then p’ = % is also a metric, and it defines the same
convergence. Moreover, this metric is bounded from above by 1. Proof of these facts
is an optional exercise.

Proof of 1). Consider a metric

(it is obviously a metric, according to the exercise above). We claim that convergence

with respect to this metric is equivalent to the coordinate-wise convergence:
p(x",x) < xi — x; Vk.
To prove it in < direction, we note that the sum converges uniformly with respect to n:

[c¢]
the sum can be dominated by >; z—lk < 00. Thus, one can take a limit with respect to n
k=1

i D=0 fim,

due to the uniform convergence, as we remember from Calculus. Now recall that

under the sum sign:

assumption here is that we have a coordinate-wise convergence; then,
(3 = xt) = p(x".x) = 0.

Proof in = direction can be completed by contradiction: let p(x*,x) — 0 and Jky:
In; — o0 e >0: |xz(’) — Xy,| = ¢. Note that the function f(t) =¢/1+1¢ is a strictly monotonic

function, thus

1 ‘XZ(J) - xk()‘ 1 c
>

" = = : = Akn 0;
p(x ,.X) 2k01+|XZ]_Xk| 2k01+C7L>
0 0
which gives us a contradiction. O]
Proof of 2) can also be completed by contradiction. Let 3| -||. Consider

where 1 appears at the n-th position. The norms of these elements are some nonzero
numbers (since x" # 0, see the definition of the norm): |x"| = o,,. Now we consider

a sequence
n

X
Y= =t

n

What can we say about the distance between y" and 0, i.e. p(y",0)?

1 1oy,

S (RN oo
211+ 1/ T,

p(y",0)
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so y" converges to 0 with respect to the metric from the point 1) above; it is equivalent to
the coordinate-wise convergence. In other words, we constructed a sequence converging
to 0 with a norm equal to 1, which means that this sequence does not converge with

respect to the norm, so we have a contradiction. O

Seminorms and Polynormed Spaces

In further, we are going to refrain from the topology of the spaces we study, so that this
course would not become a topological functional analysis; our aim is to study operators.

Even though, let us now consider a little topological side note.

Definition 2.4. Let X be a linear space over a field K, K=C orR. A function p: X - R

15 called a seminorm if
1) VxeX: p(x) =0,
2) VaeK, VxeX: p(ox) = |o - p(x),
3) Vx,yeX: plx+y) < p(x)+p(y).

The difference between norms and seminorms is that the latter can be equal to zero

even for nonzero elements of our space: x # 0 and p(x) = 0.

Example 2.5 (of seminorms that are not norms). 1) For sequences

X=(X1yeeeyXny o) pr(x) = |xg].
2) For R®: p(x) = 4 /22 +x3.
3) For Cla,b]: p«(f) = |f(x)| (evaluation of the value of f at a certain point x € |a,b] ).

Definition 2.5. X is called a polynormed space (or a locally convex space) if there

is a set of seminorms defined on X: {pa}aca (A can be uncountable), and convergence is
defined by
Xp—x if VYaeA: pg(x,—x)—0,

and the set of seminorms distinguish the points, i.e.
Vx#y3da: pa(x—y)#0.

The latter assumption is required for the topology to be Hausdorff (otherwise, the

limit may be nonunique).
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The base for the topology of the polynormed space is so-called “standard” balls
Usay,..a,(X0) = {yeX: Vi=1,....n: pg(xo—y) <€}, i.e. this is an intersection of the
balls of the prebase:

Us,al,,..,an<x0) = ﬁ?:1Us,ai(xO)-

Now we can consider the following constructions:

1) Let (X,{pa}l_,) be a polynormed space with a finite number of seminorms. We

claim that this space is a normed space: (X, | - |); for instance, we can choose

x| = >} pe(x) or x| = max py(x).

1<k<n

2) (X,{px}i=,)- This space is a metric space (X,p), where the metric can be defined,

for example, in the following way:

|
)= X e Py )

ka )’)

Banach Spaces

Earlier, we considered complete metric spaces. Any normed space is a metric space.
A natural question arises about the restriction of the concept of completeness to normed

spaces.
Definition 2.6. A complete normed space (X,|-|) is called a Banach space.

The following spaces considered in the first lecture are Banach spaces: R", C", ¢y, c,
lp(n), £y, Cla,b], C"[a,b], Ly(Q, 1), Wyla,b] (and, in fact, all Sobolev spaces).

Lemma 2.1. Let (X,p) be a complete metric space, and M < X. Then
(M,p) is complete < M is closed.

Proof. <. If {x,}°, is a Cauchy sequence in (M, p), then it is Cauchy in (X,p), and
Jx :=limx,; x is a limit point, so x € M, therefore, M is complete.

=. Let x be a limit point of M; then there exists a sequence x, € M such that

x = lim x,,.
n—o0
{x,} is Cauchy, thus, x € M; therefore, M is closed. ]

Theorem 2.3. For any metric space (X,p), there exists a completion, and it is unique

up to 1sometry.
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Proof.

1) Consider a space B(X) of bounded functions on X with norm
I = suplf(x)l. - (f:X =R
xeX

2) B(X) is complete (i.e., it is a Banach space): Let {f,}.>; be a Cauchy sequence; then
Ve>03IN=N(g): Ynm=N:
Sup| fu(x) = fin (x)| < &. (2.1)
Then we immediately obtain that the sequence of values is Cauchy (at any x):
VxeX :[fulx) = fu(¥)] <€ = {fu(x)},Z, is Cauchy,
therefore,
Vx Hnlilgo fu(x) =1 f(x) (a pointwise limit).
Then we have to demonstrate that this function is bounded, and we must show that
this is a limit in the supremum sense. In order to do so, we use . This inequality

is uniform with respect to x € X and n,m > N. Take
lim - =:sup|fu(x) — f(x)| < €
m—00 x

(we can take it under the supremum due to the uniformity). Thus, f is the limit
function in B(X). Then

IFI < f = fall + 1fall < €+ [ fall;

the second term is finite, therefore, f is bounded.

3) Construct an isometric embedding X < B(X). For any x € X, we put in

correspondence a bouded function fi(¢) = p(x,1) — p(xo,t), where xo is some fixed

point. For ye X, it is fy(t) = p(y,t) — p(x0,1).
a) f. is bounded:
[(0)| = lp(x,1) = p(x0,0) < |p(x,x0) + p(x0,2) — p(x0,1)] < p(x,x0) (V7).
b) fy is an isometry:
[fe=fyl = suplp(x,1) =p (1) < p(x.),
and for t = x or t =y, we have an equality.

Let the image of X in B(X) under the embedding described be denoted by ¥y. Take
a closure: Y =Y. It is a closed subset of B(X), thus, according to the lemma above,
Y is complete. Therefore, Y is a completion of X. The uniqueness will be discussed

in the next lecture.
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Self-Study Exercises

The following exercises are for self-study.
Exercise 2.1. 1) Prove that ¢y is complete.
2) Prove that Bla,b] (bounded functions on [a,b]) with norm |f| = sup |f(x)| is not
x€[a,b]

separable.

3) Using the fized-point theorem, find the limit of the sequence

1 1
2, 24 5, 24 —,....
2 2+1

4) Give an example of a complete metric space (X,p) with system of closed nested balls
By = Blxp,ry] such that r, —r >0 and N,° B, = &.

5) 2-adic metric: let x,y € Q, x #y. Then there exists a representation x—y = %%, nez,

a and b are odd. Prove the following:

@)

1

YR x#ya
px,y) =142

07 X=Yy

is a metric, and p(x,y) < max(p(x,z),p(z,y));
b) if (B1 = B(x1,r1)) N (B2 = B(x2,1)) # &, then either By € By, or By < By;

c) let a,b,c€Q, then at least two of
p(a,b), p(b,c), pla.c)

coincide.
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Lecture 3. Euclidean and Hilbert Spaces.

Proof of Uniqueness of the Completion

In the previous lecture, we proved only the existence of the completion of the metric
space. Now, we prove the uniqueness.
Let (X,p) be a metric space and (Y,d), (Z,w) be two completions. By definition of

completeness,
WocY and ZocZ: Yo=X=Zy, Yo=Y, Zy=2Z.

Then there exists a bijection @ : Yy — Zy. So we can just extend it to the limit points. If

y is a limit point of Y, and y ¢ Y, then

Hynotnei €Yo st yno—y

We have the bijection ¢ between our spaces, so we map into a sequence z, 0 := @(y5,0)-

Since ¢ is isometry,
W(Zn,OaZm.,O) = d(yn,anm,O> —0 as n,m— o,

therefore, {z,0},2, is Cauchy, and we define

@) = lim ¢(z.0) =z

0

This construction is well-defined: consider another sequence {y! ,}*,,

Yno — ¥, and
combine both of them

YLOY1.05 -+ Yn0: Ym0 = Y
therefore,
P(r1.0), P(1,0)> @5 ¥n,0) @O 0): -
converges, so the construction of z is well-defined. m
Note that for the normed spaces this construction based on the embedding into the

bounded functions does not preserve the linear structure. Even though, for normed spaces,

there always exists a completion preserving the linear structure.

Why Banach Spaces Are not Good Enough

Recall that we call a complete normed space (X, |-|) a Banach space. Sometimes the
property of being complete is not sufficient for further constructions and applications.

There are two historical questions:
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1)

The existence of the closed complement.

Let X be a Banach space, and Xy be a closed subspace Xy < X; one can easily prove

that as it is closed, the space (Xp, | -||) is Banach itself.

Question: Is there a closed subspace X; such that
X =Xo®X,?

The common answer is, unfortunately, no. Example can be provided by ¢y < £,
which is closed, but does not have a closed complement.

Approximation. More precisely, existence of a basis.

For infinite-dimensional spaces, there are two commonly used different definitions

of a basis:

Definition 3.1 (of algebraic (or Hamel) basis). Let X be a linear space, dimX = oo.

A system {ey}vea (A may be uncountable) is called a Hamel basis if
e it is linear independent, i.e., any finite subsystem of {ey}ven is linear
independent,

o VxeX:x=D)y_,ckey,.

There is a theorem valid for any linear space claiming that there exists a Hamel
basis; this theorem is not constructive. A rare exception is cgg, where the Hamel

basis can be explicitly constructed.

Definition 3.2. Let X be a separable normed space, dimX = oo. {ex}2, is called

a Schauder basis if
e it is linear independent, i.e., any finite subsystem of {ey}ven is linear
independent,
e Vxe X: 3! representation
o0
x= chek, ct €K (R or C)
k=1
such that

n
Hx—chekH—»O as n— .
k=1
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So we can approximate any vector with a finite sum.

If Schauder basis exists, our space is forced to be separable since we have a countable
set of functions e, and if we replace the coefficients ¢; with ¢; € Q, we obtain

a countable dense subset .

{ M e, e @}.

k=1

Question: Is it true that for any separable normed space there exists a Schauder

basis?
The answer is no again.

First example was given in 1972 by Enflo; he constructed an example of separable

Banach space without a Schauder basis.

Euclidean and Hilbert Spaces

For Hilbert spaces, one can construct both the closed complement and the basis. These

spaces are also commonly used in applications, i.e., in Quantum Mechanics.

Definition 3.3. Let H be a linear space over a field K (R or C). A function (-,-): H x H —
K is called a dot product if

1) VxeH: (x,x) =20 and (x,x) =0<=x=0,

2) Va,BeK, Vx,y,ze H: (ax+ By,z) = a(x,2) + B(y,2),

3) Vx,ye H: (x,y) = (y,x).

The space (H, (-, )) 15 called a FEuclidean space, furthermore, if H is complete w.r.t. the
Euclidean norm ||x| = +/(x,x), then H is called a Hilbert space.

Properties of Dot Product

1) Cauchy—Bunyakovsky (Cauchy—Schwarz) inequality:

vxayEH: ’(X,y>| SV (x,x)- \% <y7y)
2) 4/(x,x) is the Euclidean norm in H: |x|| = 4/(x,x), so

|Ce, )< el - v
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3) x Lyif (x,y) =0.

Then we can define an orthogonal complement to M — H by M+ = {ye H: Vxe
M (x,y) = 0}.

In real spaces, we can also define an angle between vectors.

There is a simple statement:

Statement 3.1. M=+ is a closed linear subspace.

It follows from the linearity of the dot product and the fact that (-,-) is a continuous

function (by Cauchy—Bunyakovsky inequality).

4) The Pythagorean Theorem. If x Ly, then

o+ 312 = lel* + 11

5) The Parallelogram law (identity):

o+ 12 + e = 3117 = 2] + 2y

Example 3.1. Show that C[0,1] with norm ||f] = m[ax]\f(x)] is not Fuclidean. How do
xe|0,1

we show it? We can simply prove that for this kind of norm, the parallelogram law does not

hold. So we have to find a pair of functions for which it is not valid. Take, for example,

Then
Ifl=1, lgl=1, |[f+el=2, |f—gl=1,

so, according to the parallelogram law, 4+ 1 =2+ 2, which is incorrect.

Theorem 3.1. Let H be a Hilbert space, and Hy < H be a montrivial closed subspace
(Hy # {0}, Hy # H ). Suppose x ¢ Hy. Then

AxoeHy: |x—xo| =dist(x,Hy), and x—xo L Hy.
Definition 3.4. Let (X,p) be a metric space, M < X, and x€ X. Then

dist(x,M) =infp(x,y).
yeM
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V

Puc. 3.1. x, y,, ym, and the parallelogram

Proof. x¢ Hy, Hy is closed = dist(x,Hp) =:d > 0 (or else x is forced to be a limit point
of Hp). By definition of inf,

El{yn};.lo=l S Yn EHO’ ||x_yn|| _)da

50,
Ve>03IN=N(e)st.Vn>N: d<|x—y,| <d+e.

Take n,m = N, and consider the geometric interpretation (see figure 3.1 below).

Write down the parallelogram law:

e T R 2 e ] P M P

Then we rewrite it as

”2 Yn+Ym ”2

+ 2=y - 4222

”yn _ymH2 = 2||x_yn

SO
Iyn —yml* < 2(d +€)* +2(d + €)* — 4d*> = 8de + 4e*> - 0 as € — 0;

this means that {y,} 2, is Cauchy, and, therefore, there exists a limit, which we denote

by xo.

0

+2; such that |x—y,| — d is not unique. However, if we take another

The sequence {y,

sequence, {z,},~; < Hp, so that |x—z,| — d, and write down the parallelogram law for y,
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and z,,, then
R

[y = 2all* = 2l =yl + 20 — 2> — 4|x >

Y

so the same bound holds:
lyn — zu|* < 8de +4€,

therefore, the limit is unique: limy, = limz,.

Why is x — xg orthogonal to Hy? Consider a vector
x(t) =x—xo+1z
for an arbitrary z€ Hy and t € R, and a function
£(t) = |lx —x0 + 2]
We know that ¢ = 0 is a minimum of f(z). Rewrite the formula for f(z):
f(t) = (x—x0+12,x — x0 +12) = |lx — xo|* + 2Re(x — x0,2)t + | 2] *¢>.
Since t = 0 is the minimum,
f'(t)’tzo =0 = Re(x—xp,z)=0;

in real space, it means that x —xg L z (Vz€ Hp). In complex space, we can replace z with

iz, and then we obtain Im(x —xg,z) = 0. Therefore, x —xo L z. ]

Corollary 3.1. Let H be a Hilbert space and Hy < H be a closed nontrivial subspace. Then
there exists a closed subspace Hy such that H = Hy@H, (Hy :=Hy ).

Proof. If x€ Hy, then x =x+0, where xe Hy and O e HOL. If x ¢ Hy, due to the theorem
above,
dxp € Hy : |x —xo|| = dist(x,Hp),
and x —xg L Hy. So we take x1 := x—xo, and x = xo + x1, where xo € Hy and x| € Hj; this is

an orthogonal sum, and, therefore, it is a direct sum. O

Orthogonal Systems in Euclidean and Hilbert Spaces

We will consider only separable Euclidean spaces H, dimH = c0.
Definition 3.5. A system {e,},” | is orthonormal (ONS) if (e;,ej) = ;.

Given an orthonormal system, for any x € H, we can obtain x, := (x,e,) (the Fourier

coefficients); the series > {7 | (x,e,)e, is called a Fourier series.
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Theorem 3.2 (Bessel inequality). Let H be a separable Fuclidean space, dimH = o0, and
{en}, 2| be an ONS in H. Then for any xe H:

0
D bl < .
k=1

To prove this, we begin with
Lemma 3.1. Define
n
= Z Xk€f -
k=1
Then x —x" L x".

Proof of the Lemma. Write down the dot product:

n

(x—x"x") = Zx,e,,ije] Zx_j(x,ej)* Z xiXj(ei,ej),

j=1 i,j=1

where (e;,ej) = ;j, so

(x—x",x") = 2|x,|2 Z|x,y2. O

Proof of the Theorem. For

[l = e ="+ 2%,

we use the Pythagorean theorem:

n
2 2 2 2 2
Jocl® = flae = 27> 4 > = )2 = > |
j=1

for any positive integer n. Then, we take a limit
0

llm N P Z 2.
n—

Remark 3.1. The Bessel inequality tmplies that {xj};zlnftye ly.

Theorem 3.3 (Riesz, Fisher). Let H be a Hilbert space, {e,},>, be an ONS in H, and
{xn};2 1 € lo. Then there exists x€ H: x; = (x,eg).
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Proof. Consider the partial sum

n
Xt = Zxk€k~
k=1

Let n > m:
n

2" = x| = Z x> — 0 as n,m — oo,
j=m+1

therefore, {x,},~, is Cauchy, and so there is a limit x” — x. It is clear that x; = (x,e). [

Now we have to introduce some additional notions.

Definition 3.6. Let (X,||-|) be a normed space. A system {ex};2, is called closed if the
closure of its linear span is X: ({ex}7~ ) =X.

By default, if we say basis, we mean a Schauder basis.

Remark 3.2. What is the difference between a closed ONS and a basis? If {ex}2, is

a basis, then {ex}2, is closed, since, by definition of basis,

n
|x— Z crer| — 0 as n — .
k=1

The converse is false, see an example below.
Example 3.2 (The Weierstrass approximation theorem). eg(x) = x*, k e Nu {0}, in

C[0,1]. According to the Weierstrass approximation theorem, this system is closed; but

this is not a basis.

For basis, we have a priori representation

0

X = Z Ck€f.

k=1

So if |x—Yj_jckex| < € and we want to increase the accuracy, say, make it
lx =71 crex| < €/2, we just have to take ny > n; this is not true for the closed systems:

we have no representation for x as a sum.

Definition 3.7. Let H be a Euclidean space. A system {ex};~, is called complete if
VxeH: <(x,ek) =0 Vk) = (x=0).

Theorem 3.4. Let H, dimH = w©, be a separable Hilbert space and {ex};”, be an ONS

in H. Then the following statements are equivalent:
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1) {ex}iZ, is closed,

2) {ex}i, is complete,

3) {ex}i—, is basis,

4) Vxe H: Y2, = |x|? (Parseval’s identity).

Proof. The idea is to show that | =2 =3=4=1.
1 = 2) Assume that {e;}{2, is a closed system, and x L e, (Vk), x # 0. By the definition
of a closed system, there exist sequences of linear combinations

n

Z Cken, — X

k=1
(here we vary n, ¢k, and ng):

n

2 .
bl = fim, (2, cxenc:) =0

since under the limit we have ) ci(enk,x), and this dot product vanishes for any m;
therefore, x = 0.

2 = 3) Take x, then take the Fourier coefficients x; = (x,ex), and consider the sum

0
Z Xk -
k=1

If Y307 xeex # x, we define another vector

0
yi= Zxkek.
k=1

Consider the dot product

(x—yex) = (x,ex) — (vyex) = x —x; = 0,

where (x,e;) = x; by the definition of xi, and (y,ex) = x; by the construction of y. Thus,
due to the completeness of the system, x —y = 0, therefore, x = y.
3 = 4) By definition of the basis, Vx:

o0 n
X = Z xpei, and x = lim Z Xp€.
n—o0
k=1 k=1

Then we obtain that

n n
2 _ o
||XH - (X,X) nlingo(];xkekvx) lim Zxk(ekvx)a
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where (eg,x) = X, so
n o8]
)% = Tim >l = > bl
n—o0
k=1 k=1

All we have to prove by now is 4 = 1), or, more precisely, 4 = 3 = 1), where 3 = 1)
follows from definition of the basis and the closed system.

To prove 4 = 3, take x € H: x; := (x,e;). Assume that

o0
Zxkek =y F#X.
k=1

(This series converges due to the Bessel inequality.) We know that

0 o0

=yl = Y 1= ye)? = X [(re) = (e,

k=1 k=1

where (x,ex) = x; by the definition of x, and (y,e;) = x; by the construction of y, so all

the terms cross out, i.e. x =y. O]
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Lecture 4. Separable Hilbert Spaces. Bases in Hilbert

Spaces.

Further Development of the Previous Lecture: Existence of

an Orthonormal Basis in Separable Hilbert Spaces
We continue discussing Hilbert spaces and their properties.

Theorem 4.1. Let H be a separable Hilbert space, dimH = oo. Then there exists
an orthonormal basis (ONB) {ex}}2,

Proof.

1) Since H is separable, there exists a dense system {A;}7

{},=H.

This system may be quite excessive. We would like to build a system of linearly

independent vectors that would have a dense linear span. So, our next step is

2) Without loss of generality, we assume that h; # 0; then we take f :=hy, and fo = Iy,

k =2, where k is the first number so h; and h; are linearly independent.

If we construct fi, f2,..., fi to be linearly independent, then we can take f,+1 = h;j,
where j=min{i: h; 3{f1, f2,...,fm)} (i-e., we require that fy,+; does not belong to
the linear span of fi,..., fin).

Then we obtain a system {f; ;’;1 of linearly independent vectors such that

S5 f- ) =1}, =H.

3) Finally, we use the Gram—Schmidt process to generate an orthogonal (moreover,

orthonormal) system from {f;}72,:

_ Nt
Mk

where ¢ = (f,e1), as follows from the relation &, | e; that we desire, and then

(e1)={f1) é = fr—ce;, ceK,

e

€2
€ = 1= <€17€2> = <f17f2>
)
If we construct an orthonormal system ey, e, ..., e, such that

ler,e2,...,ex) = {fi.fo,-- . fiy (Vk<m),
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then, by induction,

m
nit = fumt1— D Cjej,
j=1
where cj, as before, can be found from (€,41,¢j), j=1,2,...,m, i.e., ¢; = (fut1,€)),
and ~
emsl = €m+1
m+1 = 77~ :
[&m+1]

Following this way, we obtain an ONS {e,,};~_; that is closed: {e,},_, = H. Then,

by the last theorem from the previous lecture, {e,}, _; is an orthonormal basis. [

This is one of two main approaches to find an orthonormal basis — find a closed system
and make it orthogonal by Gram—Schmidt process. Later, when the time comes to prove
the Hilbert—Schmidt theorem, we will discuss the other important way to obtain such

a basis.

Applications to Quantum Mechanics and Isometric Isomorphisms

of Separable Hilbert Spaces

In Quantum Mechanics, there are different models for describing the states of systems:

e Heisenberg’s model, or so-called matrix model (a.k.a. matriz mechanics), where
observables are operators (infinite matrices) acting on ¢,, and the states are vectors

from /5.

e The Schrodinger model, or the model of wave mechanics. In this model, observables

are symmetric operators on L,(R?), and the states are wavefunctions f e Ly(R?).

Physicists argued a lot about whose model was more precise. In fact, both are correct,

since there is an isometric isomorphism between ¢, and Lj:

Theorem 4.2. All infinite-dimensional separable Hilbert spaces over the same field are

wsometrically isomorphic.

Proof. Let H; and H, be infinite-dimensional separable Hilbert spaces over K. Let
{ex} 2 and {fi};2, be ONBs in H; and H, respectively.

We can construct an isomorphism
¢©:H — H

in the following way:

olex) = fi-
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Then

o0
VxeH|:x= Zxkek
k=1
maps to

y=0(x) = Y xfi
k=1

One can easily check that the dot product is preserved by this mapping; indeed, take
X =3 e and y = @(x') := D77 x].fi, then

(0 ), = . g = (9(x), (),
k=1

where the formula in the middle is in fact the dot product of the sequences {x;};>, and
{x;}72, in 4. In other words, the theorem can be reformulated as all separable infinite-

dimensional Hilbert spaces are isometrically isomorphic to £;. O

Discussion of Self-Study Problems

Now we will discuss some self-study problems from previous lectures.
Problem no. 2 from Lecture 2: Bla,b| (the space of bounded functions) with norm

|fIl= sup |f(x)| is not separable.
xe[a,b]
We will use the lemma from the first lecture: if there is an uncountable set M < X such

that 3d > 0 Vx,y € M: p(x,y) > d, then X is not separable, which we reformulate as

d>0|f—gl=d (Vf,geM).

Take the following set: M = {fi(x) = X[a,)(x), t € (a,b]}, where x[,,) is the characteristic

1, xe W,
Aw (x) =
0, xaW.

function of [a,t):

This set is uncountable: we can parametrize M by the parameter ¢ € (a,b], and (a,b] is

uncountable. One can also see that

”ftl _ftzH =1, 1 #n,

so we have found an uncountable set with unit distance between any elements, therefore,
by the lemma above, B[a,b] is not separable.
Problem no. 2 from Lecture 2: give an example of (X,p), a complete space, with the

system of closed nested balls B, = B[x,,r,] such that r, - r>0and n)° B, = .
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An example is a little tricky. One can take X = N with metric

0, m=n,

p(m,n) = 11
I+—+—-, m#n.

m n
The triangle equality for this metric can be verified in a straightforward way:

9

p(m,n) < p(m,k)+p(k,n), n+#k#m,

where the left-hand side is at most 1+ % + % and the right-hand side is at least 2 +....
Convergence in this space is similar to one in the discrete metric space, i.e. all

converging sequences stabilize:
Xnp =X = X1,X2,. . Xy X, X, X, ..y

so X is complete.

Now we take balls B, = B[n, 1+ %] ={meN: I+L+1<1+ %}, which is the same as

%é%asm?n. Thus,

B,=[nn+1,n+2,...),

and, therefore, n)° B, = .

Typical Examples of Hilbert Spaces
1) C" with dot product (x,y) = X7 x;y; is a (finite-dimensional) Hilbert space.

2) £a, which consists of infinite sequences x = (x1,...,%,...) such that 377 |x;]> < oo,

with dot product
n
(X,y) = inyi
i=1
is a Hilbert space.

3) Ly(, ), the space of square-integrable functions on Q with respect to the measure

u, with dot product
(F9) = | fEtoan.
Q

4) Sobolev spaces Wii[a,b] = {f: ¥Vj=0,1,....n—1 f) e AC[a,b], f™ € L,[a,b]} with
dot product

(f,8) = D (9,89,

j=0

O 0T d.
;ofw] g 0)
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Exercises

Now we will discuss and solve some problems:

1) Consider £», and its subspace H, = {x€ {2 : >}j_ox; = 0}. What is the distance
between e} = (1,0,0,...) and H,?
By the theorem from the previous lecture, as H, is a nontrivial closed supspace,
there exists a unique x* € H,

Jer =] = inf e |

and e —x* L H,.
Here is a way to find such x*. Consider x* = (x1,x2,...,%:,Xn+1,--.), and minimize
the norm of the difference

e —x" = (1—x1,—x2,...,—Xp,...).

In H,, we have information only about the coordinates with numbers less than n,
and we want to minimize the norm. To minimize the norm, we should set all the

“tail” coordinates to zero:

Xpt1 =Xpy2 =+ =0,

so x* € £3(n), i.e. we now consider Hn‘gz(n). Now it is easy to find x*, as it is now
required that e; —x* is orthogonal to a finite-dimensional set Hn‘ t(n)’ dimHn‘ ) =

n— 1. Take some basis in this space, for instance,
f1=(1,-1,0,...,0),
f=(1,0,—1,...,0),

o1 =(1,0,...,0,—1).

In ¢5(n), for x* = (x1,x2,...,x,), frome; —x* L fi, k=1,2,...,n—1, we get the system

of equations

1 —x1+x=0,

I —x1+x3 =0,

1 —x1+x,=0,
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therefore, x, =x3 =--- =x, =a, where 1 —x; +a =0, or x; = 1+a; a can be found

from the condition x* € H,;: for

x*=(1+aa,...,a),

*H: 1

Tﬁ.

we have 1 +na =0, or a = —1, which gives dist(er,H,) = |e; —x

Exercises: Typical Examples of Bases in Hilbert Spaces

1) Prove that the system {ex}2,, ex = (0,0,...,k hl1 ,0,...), is a basis in ¢y and
-th place
not a basis in ¢ (recall that c¢o is the space of zero-limit sequences with norm

x| = mai(]xk], and c is the space of converging sequences with norm |x| = sup|xx|).
=

= =

It is clear that {ex},2, is a system of linearly independent vectors. For any x € co,

0 n

X = Zxkek, and |x— ZxkekH = max |x;| — 0 as n — o,
=l =l k=n+1

since x € c¢y.

What becomes wrong, if we consider this system in the space of converging
sequences? We cannot represent some elements of this space by the sum ZZO:IXkek,
e.g., take eg = (1,1,1,...,1,...); if we put x; = 1, then, for any n,

n

leo— ) ex]l = supla| = 1.
k=1 k=1
Nevertheless, if we add this element to the system, i.e., consider {ex};Z, (from k=0
instead of k = 1), then we obtain a basis in c¢: take

x € ¢ such that limx; = a.
k—00

Consider X = x—a- ep; this element, obviously, belongs to cq, and, therefore, x —a-ey =

Yoie (xx — a)ex, or simply x = aeg > 1 (xx — a)ex.

2) Basis in Ly[a,b|. Consider, for simplicity, L,[0,1], L»[0,2x], or Ly[—n,x]. Classical
construction of bases in these spaces is given by either exponential function with
complex exponents or sine and cosine, depending on what functions we consider,

complex- or real-valued. In L,[0,27] or Lp|—=, 7|, one can take

1 1 1 1
V2T

e, nel, or ——,—=cosnx,—sinnx, ne N.

V2n'Vm VT
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It can be extended to Ly[a,b]:

1 2inx

\/b—feb*a, HEZ,

Q

for L,[0,1], the normalizing factor is simply equal to 1.

For real-valued functions on a half-interval, i.e., L[0, 7], one can take only sine or
cosine (with a constant included, for n = 0) as a basis, since these functions can
be extended in either odd or even way to the complete interval [—m, 7], so there is
a basis {sinnx},” , or {cosnx},” , respectively (with normalizing factor omitted): if
we extend f € L]0, 7] to Ly[—7, 7] as an odd function, then § f(x)cosnxdx =0, or,

for even extension, §f(x)sinnxdx = 0.

Bases have a lot of applications. For instance, it allows one to reduce differential
or integral equations to finite-dimensional matrix problems, if we consider partial
sums.

Basis is also a powerful instrument to compute the sums of series. Consider, for
example, Zlen—lz, which is equal to %2. To compute this sum, one can use
Parseval’s identity; in order to do so, we have to choose the space, take a basis,

and find an appropriate element. Take L,[—m, x|, the sine-cosine basis ﬁ,

\/Licosnx, \/LE sinnx, and the identity function f(x) =x. It is an odd function, so the
Fourier coefficients in the cosine series of f are equal to 0. Thus, we have to find
only coefficients in sine:

T T
xsinnxdx = — xd(

1
\/_Efn NEN n \/771

where the integral vanishes, since cosine is 27-periodic function. Therefore,

cosnx 1 COSNX 1 ‘

T
) = f cosnxdx,

—7T

xsinnxdx =

1
\/_E - Vrn

T 271'3
= | Par=T

-7

g : 2n (_1)n+1 _ %E(_l)n—i-l‘

Then,

and, according to Parseval’s identity,

213

1
3 2

n

Y

|

N

b |
D8

which gives the required.
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3) Consider W21 [—7,7]. Prove that the system {e"},c7 is orthogonal but not a basis.

To prove the orthogonality, we just calculate the dot product in a straightforward

way:

T T
(einx7eikx)W1 _ f ei(”_k)xdx+nkf ei(n—k)xdx _ 0, n#k,
2 - . 27[(1+n2), n=k,
so this system is orthogonal (we can even make this system an ONS by multiplying
it by normalizing factor: oo

inx)

To prove that this is not a basis, it is sufficient to show that either this system is
incomplete (so it is necessary to find a nonzero element which is orthogonal to this
system) or that Parseval’s identity for this system is violated (in order to do so, one
can find an element of the space for which it does not hold).

Thus, our options are

1. to find fe W21 such that f L e™, f#0,

2. to find f e W, such that I£]1? # D ck|?, where ¢ is a k-th Fourier coefficient of
f.

We will follow the first way. The idea is to find a function that has more than 1

derivative, and take
. ﬂ . n .
™y = | s@e™axt [ ) (-ime ™ ax
—T —7T
then, using the integration by parts, obtain
T T
(fre™hyg = | f)e™dx+ fx)e™™ [T — | f"(x)e"dx,
—7T —7T

and equate it to zero:

T
-7

’ f(x)e ™ dx+ f(x)e ™"~ ’ 1" (x)e""™dx = 0.

This leads to
f (f(x) = f"(x))e ™ dx+ (f'(m) = f'(=7)) (=1)" = 0.

—T

If we assume that f satisfies the differential equation
f=f"=0
with boundary condition
f(m)=f(-m),
then f is orthogonal to our system. The solution of this boundary value problem is

the hyperbolic sine: f(x) = a-sinhx, and f(x) L ™ for any n.
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Self-Study Exercises

1) Prove that {ex};~ , ex = (0,0,...,0

not a basis in .

, ,0,...), is a basis in ¢, 1 < p <, but
k-th place

2) Let H be a Hilbert space, and M < H be an arbitrary subspace. Prove that
(M1)L = (M). (Obviously, by the duality property, the double orthogonal

complement contains M, and orthogonal complement of any subspace is closed.)

3) Find an example of a closed Euclidean H such that H # Hj (—DHOL (for Hilbert space,
this property holds, so this example must be an incomplete space).

4) Compute > 17, ki‘*

5) Compute >/, ﬁ

6) H=W,[-m,x], Hy={feW)[-m,x]: f(x) =0 for x <0}. Find Hy".
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Lecture 5. Compact and Precompact Sets in Metric

Spaces

Compact Sets. Precompact Sets. Compactness Criteria

We begin by defining the notion of a compact set in a metric space, which plays a

fundamental role in functional analysis.

Definition 5.1. Set M c (X,p) is compact if for any sequence {x,},° | © M there exists
a subsequence {x,, }{2, such that

p
Xy, > XEM.

Remark 5.1. In topological spaces, this kind of compactness is called a sequential
compactness. In metric spaces, these two notions coincide, so we will use it as equivalent
definitions, while we do not intend to prove it in this course.

To recall, in the general topological sense, compactness means the following: for any
open covering {Uq} of M, M < UqUy, there ezists a finite subcovering, that is 3ay,. ..,y
such that

M c U Ug,.

Let us emphasize the importance of compactness in finite-dimensional versus infinite-
dimensional spaces. Recall that in finite-dimensional spaces, compact sets are just bounded
and closed. This result simplifies the verification of compactness significantly. However, in
infinite-dimensional spaces, which are of interest in functional analysis, this equivalence
does not hold. Therefore, we must develop and rely on alternative criteria to determine
compactness in metric and normed spaces.

To introduce related concepts, we now provide a useful definition of €&-nets, which form

the foundation of other compactness-related notions.

Definition 5.2. Let (X,p) be a metric space, and Y,M < X. We say that Y is an €-net
for M if for any x € M there exists y€Y such that x € B(y,€).

In other words, M can be covered by balls of radius € with centers ye Y:
M c UyeyB(y, €).
A notion, which is closely related to the previous one, is following:

Definition 5.3. A set M  (X,p) is called totally bounded if for any € there ezists
a finite €-net for M.
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This is a generalization of compactness for circumstances in which a set is not
necessarily closed; the compactness itself is a very strong notion, so a slightly weaker one

is useful in functional analysis, as it is preserved for subsets.
Definition 5.4. A set M = (X,p) is called precompact if its closure M is a compact set.

Notice the subtle difference: precompact sets may not be closed themselves, but their
closures must satisfy the compactness criteria. This makes precompactness a slightly

weaker property than compactness, yet a highly useful one in many areas of analysis.

Remark 5.2. Note that the definition of the precompact set is not based on sequences.
But the sequences represent a powerful tool, considered in metric spaces.

Indeed, let us apply it to the notion of precompact set. In metric space (X,p), for
the set M to be compact, it is necessary that for any {x,},~, = M there exists a Cauchy

subsequence. In a complete metric space (X,p), it is also sufficient.

Example: Closed Unit Ball in ¢, is Not Compact

Example 5.1. Consider the closed unit ball in €. This set is obviously bounded and
closed. At first glance, these properties might suggest compactness, but we will show this

18 not the case. .

Now consider the standard basis elements of £r: {ex};- |, where e = (0,...,0,1,0,...)
(the 1 is at the k-th position). It is clear that

plecie)) =llex—ejl =v2, k#j
so there s no Cauchy subsequence.

This example can be generalized, that is, a unit ball in an infinite-dimensional case is

a typical example of a noncompact set. We will prove it a little later.

Riesz’s Lemma Corollary: Unit Closed Ball is Not Compact in

Infinite-Dimensional Space

Theorem 5.1 (Riesz’s Lemma). Let X be a normed space, and Xy be a nontrivial closed

subspace of X. Then for any € € (0,1) there exists xg, x¢ ¢ Xo, such that |x¢| =1 and

dist(x¢,Xp) = xig}f{ |xe —xol| = 1—¢.
0€Xo
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Proof. First, take some element x ¢ Xy (such x exists since Xj is nontrivial closed

subspace, therefore, it does not coincide with X). Define
dist(x,Xp) =:d >0

(it is positive since x ¢ Xy and Xp is closed). Then exists y € Xy such that

d
d<lh-yl < (5.1)
(by the definition of inf). Let us define x¢ by
_*7y
eyl
Then |xe¢| = 1. Now let us see what happens to the distance: for any xg € Xp, find the

Xe

distance between x¢ and xo:

1
2=l
where y+ xg|x—y|| € Xo. Now find the bound for the expression above. The factor 1/|x—y|

Y

X—y
ol = [ = ey e
o=yl

is bounded from below:
1 1—¢

= )
lx=y[— d
see (5.1]). The norm is also bounded from below:

=y —xolx—y| > a.
Therefore,
1—¢
| xe —xol > T'd: 1—¢,

and this bound is valid for arbitrary xo € Xp, thus, the same bound holds for the infimum,

which completes the proof. O

Corollary 5.1. Let X be a normed space, dimX = 0. Then a unit closed ball B[0,1] is

not compact in X.

Proof. First, take some element x; € X such that |x;| = 1. Construct a linear span
X1 :={xp) (it is a one-dimensional subspace). X| closed since it is finite-dimensional. By

Riesz’s Lemma, there exists xp, |x2| = 1, such that
diSt(XQ,Xl) =>1—¢.

Now define X, = (x1,x2), where |x; —xz|| = 1 —¢, and so on: we find x1,xz,...,x, such that
|xj| =1 and |x;—x;| > 1—¢,i+# j, and then construct a finite-dimensional (and, therefore,

closed) space X, = (x1,x2,...,X,). By the same reasoning, there exists x, such that

dist(xp+1,X,) = 1 —€;
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this inequality implies that

||xn+l_-xk||>1_£a k=1,2,....n.

By induction, we construct an infinite sequence {x;};°; < B[0,1] such that

Ixi—xj|=1-¢, i#}],

so there is no Cauchy subsequence, which completes the proof. O

Now we proceed to criteria that allow one to establish whether a set is precompact or

not.

Hausdorff Criterion for Precompactness

Theorem 5.2 (Hausdorff criterion). Let (X,p) be a complete metric space. A set M < X

is precompact if and only if M is totally bounded.

Remark 5.3. It can also be shown that in an incomplete space, this condition s a

necessary but not sufficient criterion for precompactness.

Proof.

)

=. We will prove the statement by contradiction. Suppose that M is precompact
and is not totally bounded. This means that there exists € > 0 for which there does

not exist a finite €-net.

Let us begin by taking an arbitrary point x; € M; it does not form an &-net, therefore,
there exists x, € M: p(x1,x2) = €. The set {x;,xp} is not an €-net as well, therefore,

there exists x3 € M with the same property: p(x3,x;) > €, i=1,2.

Now, suppose we have already chosen points x1,x2,...,x, € M such that p(x;,x;) > €,
i # j. The set {x;}?_, still cannot be an e-net, and therefore, there exists x,.1 € M

such that p(x,4+1,x), i=1,...,n.

By induction, we construct a sequence {xi}2, with property p(x;,x;) > €, i # j,
leading to the conclusion that M is not precompact, which gives a contradiction.
<. Now, assume that M is totally bounded. This part of the proof is also based on

the mathematical induction.

We begin with an arbitrary sequence {x;};; = M. We would like to prove that the
set is precompact, so we must show that there exists a Cauchy subsequence
of {x¢},. Take & = 1/2. For M, there exists an g-net {y{,...,yy} (here the
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superscript numerates the step of induction and the subscript numerates the

elements of corresponding net).
Thus,

(e =M< Ul By, &),

where we have a countable sequence on the left-hand side and a finite covering on the
right-hand side. We can say that there exists a ball B(yl-ll,sl) containing an infinite

subsequence of {x;}? ;; Denote this sequence by {x}}? .

At the second step, take & = 1/4. For M, there exists an &-net

2 .2 2
{y17y27"'7yn2}‘

The sequence {x;}°, belongs to a finite union U2 B(y?,&). Therefore, exists
a ball B(yizz,ez) containing an infinite subsequence of {x}}{ ; denote this sequence
by {x2} .

By induction, one can construct a countable set of subsequences

1 2
{xk}zO:1 > {xk}}il - {xk}iil 22 {ka}l(?zl 2.

such that
p(xi,x})

< 2m72’

since the entire subsequence {x]'}}2 lies in the ball

1
~1
B<y?:1—1 ! 2m—1>'

We then take the diagonal subsequence, that is, {x}}>°_,; it is a Cauchy

m=1>

subsequence, therefore, M is precompact. Note that in this part of the proof we
used the fact that our space is complete. If the space is incomplete, the property of
precompactness is not equivalent to the possibility to choose a Cauchy

subsequence of any sequence. O

Criteria for Precompactness in Specific Normed Spaces

Building on the Hausdorff criterion, we now provide criteria for precompactness in
specific spaces.

Now we see that in a complete space, precompactness and total boundedness, which
is close to a topological property (while it is not exactly topological).

We will need an additional tool:

48



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES
IGOR SHEIPAK STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

Theorem 5.3 (Dini’s Lemma). Let K be a compact set, {fn},-, be a continuous function
on K, and for any x€ K fu(x) \, f(x) be a continuous function as well. Then f, ? f.

Remark 5.4. f,(x) \, f(x) means that f,(x) approaches f(x) nonincreasingly: f,(x) =
Sfatr1(x) for allneN and xe K.

In calculus, this lemma is usually used to prove that a pointwise limit of a functional
series s uniform.

The direction of monotonicity is not important: one could multiply the sequence by

(—1) to change it.

Proof. Take € > 0. For any x € K there exists N = N(x,€) such that Vn > N: 0 <
Jalx) = f(x) <e.

The function f,, — f is continuous, therefore, there exists a neighborhood U, of x such
that for any x’ € U,:

0< fuld)—f() <e.

K = UxegU, is a covering of K. By assumption of the lemma, it is compact, therefore,
there exist x;, i = 1,...,m, such that K = U | Uj,.

Now take M = max;N(x;,€). Thus, for any n > M and xe K: 0 < f,,(x) — f(x) <e. O

Now we are ready to formulate and prove the criteria for precompactness.

Theorem 5.4. Let 1 < p <oo. Set M < £, is precompact < M satisfies the following

conditions:

a) M is bounded,

b) Ve In=n(e): VxeM

0

( Z |x,~\p> 1/p e

i=n+1
The second condition means that tails are uniformly small, or, in other words, the
principal parts of our series lie in a finite-dimensional subspace.
Proof. We will use Dini’s Lemma to prove the statement in one direction and the

HausdorfI criterion for the other one.

1) =. Consider the closure of M: M is a compact set. The norm || : M — Ry is

a continuous function, therefore, there exists

max x| =: C =0,
xeM
that is, for any x e M:

x| <€,
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which is exactly the item a).

Now consider the functions f,, on M:

= (3 )

i=n+1

it is clear that f,(x) \, 0 as n — oo since it is tail of a converging series, and f;, is

continuous since
fn(x) = H(0,0, tee 707xn+17xn+27 o )H

and |- | is continuous. By Dini’s Lemma, we conclude that f, =3 0, and, therefore,
M

fa %/1; 0, which is the item b).

<. By b), there exists n = n(€) such that for any x € M:

0

1/
(> ) s
i=n+1
Define
X" = (x1,%2,...,%,,0,0,...) € £p(n)
and

2 =(0,0,...,0,%051,...), |7'] <e.

We can say that x" € M n £,(n): it is bounded by a) and lies in a finite-dimensional
subspace, s0 {x"}reu is a precompact set. Thus, there exists a finite e-net y!,... ,y" e
¢p(n) of the form

=008 ), k=1,...m.
Any yk can be embedded into £,: yi —>)“;’< such that

F = Ok 0.0, ) ety

Let us take an arbitrary x € M. How can we prove that the norm ||x — | is small?

Decompose x into x* + 7" and use the triangle inequality:
e =30 = " =7 + 2" < = F ]+ 112

We can make the second term small, || < €, by choosing an appropriate n; the
first one is small for an appropriate k: 3k such that [x" —y*|| < . Thus, {F*}7 | is
a finite 2e-net of M, therefore, M is precompact by the Hausdorff criterion. n

To formulate the theorem on precompact sets in Cla,b], we will need the following

definition.
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Definition 5.5. A set M < Cla,b] is called an equicontinuous family of functions if
for any € > 0 there exists & > 0: Yx,y € [a,b] such that |x—y| < & and for all f € M:

[f(x)—F)l <e.

Example 5.2. Suppose the set consists of a single function: M = {f}, f € Cla,b]. It is
equicontinuous since in this case the property of equicontinuity is equivalent to the uniform
continuity.

The same is true if M contains a finite number of functions: M = {f;}'_,, so it is more

interesting to consider an infinite set of functions.

Remark 5.5. One can define an equicontinuous family M < C(K) for a compact metric

space (K,p) with replacing |x —y| by p(x,y).

Now we formulate the Arzela—Ascoli theorem on precompact sets in C|a,b], and prove

it on the next lecture.

Theorem 5.5 (Arzela—Ascoli). A set M < Cla,b] is precompact < the following conditions
hold:

a) M is bounded,

b) M is an equicontinuous family.
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Lecture 6. Compact and Precompact Sets in Metric

Spaces: Exercises

Proof of the Arzela—Ascoli Theorem
1) =. Suppose M < Cla,b] is precompact and try to prove that M is bounded and
forms an equicontinuous family.
As before, the proof in this direction will be based on Dini’s lemma.

First, to prove a), consider the closure of M: M is compact; norm is a continuous

function on M, so there exists max = C, therefore, Vfe M = | f| < C.
feM

To prove b), consider a function F, on M:

Fa(f) = sup |f(x) = f(y)]-

lx—y|<i

It is clear that we just replaced a continuous parameter & in the definition of

equicontinuity with a discrete parameter 1/n.

One can see that the sequence of functions F,(f) approaches 0 from above as n — o
since f € Cla,b].

Consider also the functions F;, for different functions, say, f,g € Cla,b]:

F(f) = Fa(g)| = sup

lx—y|<i

@) = £0)| = sup [g()—g0)]

lx—y|<i

Now add —g(x) + g(x) —g(y) + g(y) to the first supremum and use the triangle

inequality:

sup f(X)—f(y)—g(X)+g(X)—g(y)+g(y)‘— sup ‘g(X)—g(y)‘é

‘x*)’|<% lx—y|<5

<‘ sup |f(x)—g(x)|+ sup |g(x)—g(y)|+ sup |g(y)—f(¥)|— sup }g<X)—g(y)\‘-

—y|<i Jx—y|<1 e—yl<1 —y|<i

The second and the fourth terms here are equal, so they cancel out. The first and the

third ones are equal up to the replacement x < y, which is legal since the expression

sup |g(y) — f ()]

x—y|<1i

is symmetric with respect to this replacement. Hence we obtain

Fa(f) = Falg)| < 2 max 1) — ()] = 21 ~ glegar

xEla,b
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and, recalling that the norm is a continuous function, we conclude that F, are

continuous.

Then, by Dini’s lemma, F, = 0, therefore, F, ﬁ 0, which is the very condition b)
M

with parameter 0 being replaced by 1/n.

<. Suppose that M is bounded and forms an equicontinuous family, and prove that

M is precompact. The idea is to construct a finite €-net for an arbitrary €, and then

use the Hausdorff criterion.

Without loss of generality, we consider only real-valued functions. To generalize our

proof, one can use the decomposition f(x) = u(x) +iv(x) and apply our proof for u(x)
and v(x).

By a), there exists C > 0 such that Vf e M: r[na}j)](|f(x)| < C. By b),
a,
Ve>036>0: Yayelabl, x—y| <S=YfeM: [f(x)—f) <§.
Take a subdivision of [a,b]:

T={ti}ly, a=ty<ti<tr<---<ty_| <t,=b,

such that
Vi |ti*li,1| <o, i=12,...,n.

Construct a lattice with #;, i = 1,...,n, in x-axis and the distance €/3 from —C to C

in y-axis, see Fig. 6.1.

So we have a set with a finite number of nodes. Consider the set Y = {g(x) piecewise
linear functions passing through the nodes}, see an example in Fig. 6.2. The set Y

is finite.

Let us take t € [t;,t;11], g€ Y, and f € Cla,b]. Then

() —g@)| < |F(0) = f@)| + | (1) — ()| + |8 (&) — g(2)]-

The first summand here is < €/3 by equicontinuity; the second one is < €/3 by
choosing the function g, and the third one is < €/3 by the property of the set Y.
Thus,

(1) —g()] <,

therefore, Y is a finite €-net for M. Hence, by the Hausdorff criterion, M is

precompact. 0
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Theorem on Precompact Sets in L),

In this section, we formulate a theorem on criteria of precompactness in L,[a,b]

without a proof.

Theorem 6.1. A set M  Lyla,b], 1 < p <0, is precompact < the following conditions
hold:

a) M is bounded,

b) Ve =038 >0:Vh, |h| <8 = VfeM:
b 1/
(f }f(x+h)—f<x)\Pdu) "<e.

Remark 6.1. The second condition is called equicontinuity in mean. Note also that if

x+h¢|a,b], then f(x+h):=0.

Discussion of Self-Study Exercises from the Previous Lecture

Now we discuss the homework from Lecture 4.
k
1) Show that {ex};, ex = (0,...,0,1,0,...) is a basis in £, 1 < p < o0 and is not a basis
in £q.

The second part is quite simple: £y, is not separable, so it cannot have a countable

basis.

But ¢, with finite p can have one. Take x€ £),, x = (x1,X2,...,Xn,Xp41,...) and consider

the representation
Q0
X = Z Xk -
k=1

One can see that this representation is unique since we have fixed coordinates.

Consider the remainder for an approximation with a finite number of e;:

u & 1/p
Hx—ZxkekH=< Z \xk\p> —-0 as n— o
k=1

k=n+1

by definition of x € £,. Therefore, {e;};°, is a basis in £,.

2) M < H with H being a Hilbert space. Prove that (ML)l = (M).
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4)

We know that M* is a closed linear subspace. By duality, it is clear that (M L)l D
(M), so we now have to prove the inverse inclusion. Let us try to obtain two different

representations for H:
H=My&((My)" and H= (M) @M’ (6.1)

— — —

Here, M+ = (M)"; let us prove it. M — (M), and therefore, M+ > (M) "; if xe M*,

which means that (x,y) =0 Vy e M, then (x,ay; + Byz) = a(x,y1) + B(x,y2) =0

—1

Vy1,y2€ M = xe (M) . We also know that the orthogonal complement is closed, so
—1L

xelM)y .

Therefore, the second terms of decomposition (6.1) coincide. Since this

decomposition is unique, we immediately obtain that the first terms coincide as

well, that is, (M) = (ML)L.

Find an example of a closed Euclidean space H such that H # HO@HOL.

Consider the space H = C;[—1,1] (a real-valued one) with

1
(f.8) = Jlf(x)g(x) dx.

The norm here is given by

12

sl = ([ 1509 sPa)

The incompleteness of Ci[0,1] was discussed on the first lecture. Cy[—1,1] is

incomplete as well.

Take
Hy={feC[-1,1]: f(x) =0 for xe [-1,0)}.

In Go[—1,1], it is a closed subspace. One can see that
Hy = {feCy[-1,1]: f(x) =0 for xe[0,1]}.
Now consider a sum of these spaces:
Hy@Hy = {f € C[~1,1]: f(0) = 0} # H,
since the sum consists only of functions vanishing at x = 0.

Calculate >~ | ki4.
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Take Ly[—m, ] along with a basis

1 1 . N
— cosnx, —=sinnx, ne
Tﬂ ) \/E \/E ) )
and f(x) = x*. This function is even, so its Fourier series consists only of cosines. It

is clear that

(", 1 23 27
fo=——| xtdx=—"-| = :
V2 ) _n V2 3 10 3421

Now compute coefficients in cosines:

L™,
= — cosnxdx;
fn \/Ef—nx e

it can be integrated by parts:

1 (7 1 1 ,sinnx|®
d (sinnx) = —x?
\/> -7 VT n

where the first term vanishes, and we get
2 & 2 &

— xd(cosnx) = ——sxcosnx| ——

¢mﬂf (cosnx) = vﬁz - ¢mﬂ[%

where the last term vanishes since it is integration of a periodic function over the

2 Y4
- xsinnxdx
—n \7n J—n 7

T
cosnxdx,

period, so we finally obtain

- dr(—1)"
" w2
Let us use Parseval’s identity. First, find the squared norm:
4 20| 27
2 4
frd d = — _ .
P = | stax= T - %

Now equate this to the sum of squared Fourier coefficients:

27r5 5 167
Zm’92n;}ﬁ‘
Thus,
1 1 31
2 5(-—-)::16 —
"\579 DI
n=1
and, simplifying it, we get
0 4
Zizl
n* 90
n=1
One can calculate
1 g
200 By

using the same basis in Ly[—m, 7] and the function f = x*, where By is a sequence

somehow related to Bernoulli numbers.
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5) Calculate >, ﬁ

Take Lp|—m, ], a basis —L_¢"™ peZ, and the function f(x) = e *. Now we find

NGZ
T T
mfn = (faeinx> = f e—xe—inxdx = f e_(1+i”)xdx _ *1. e—(l—l—in)x T ,
- -z 1+in -

or, Slmphfylng lta ( 1)}’!( T 7[)(1 )
_ et —e — ll’l
1+ n?

\/ﬂfn =

Y

ie.,
(e —e ™)Sqrt1 +n*>  2sinhz
27| fu| = = € Z.
2 e Vi "

Find the norm:

/A 1 T
= | e dx= g™
-7

1
— (62” — e_zn) = 2sinhwcosh7.
-t 2

Write down Parseval’s identity:

Q0
2sinhwcosh 7w = f3 +2 Z 1l
n=1
where the coefficient 2 for sum is taken since for n’ = —n we have the same expression
under the sum. Thus,

o0

2sinh Z 1
b1 n2+1’

coshm = sinhw +
n=1

or, after simplification,

“o1 1
_ ~(rcoth —1).
;121n2+1 2(7“:0 T

Exercise 6.1. Try to calculate
o1

-, a>0.
D

6) H=W,[-1,1],
Ho={feWy[-1,1]: f(x)=0 for x<0}.

Find Hy .

For ge HOL, VfeHy: (f, g)W21 = 0. By the definition of dot product in Wzl,

1 . 1
J fx)g(x) dx+f f'(x)g'(x)dx = 0.
0 0
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The second integral can be rewritten as
1

fol P g = | FTodf = 0] - fo T W,

0

so we arrive at the equation

1 —_
[, 760 (50— ")) e+ £ (1) - F01£10) =0,

where f(0) = 0. A sufficient condition for g to satisfy this equation, for example,

can be given by

We will seek for solutions of the form
g(x) =asinh (x—1) +bcosh(x— 1),
so g'(x) = acosh(x—1) + bsinh (x— 1), and g’(1) = a = 0. Therefore,
o0 {bcosh(x— 1) for xe[0,1],

an arbitrary function for x € [—1,0]

with a condition that

5(0)
cosh1

g(—0)—bcosh(—1)=bcoshl = b=

since g must belong to Wzl. Hence,

0)
Hi = wWir—1.1]: _ &l hix—1), x>
0 {ge 2[ P ] g(X) COSthOS ()C )7 X 07 (62)

and an arbitrary g€ W [—1,0], x < O}.
The only tricky thing here is that we found the function g(x) as a solution of second-

order differential equation, therefore, we assumed that it has 2 derivatives. We have
to show that ([6.2)) is the entire orthogonal complement.

Take f € W21 [—1,1] and decompose it:

f=fo+fi, foeHo, fieHy.

One can see that
f(0)
f1 =< coshl
f(x)7 XG[—l,O]-

It is also easy to see that this function is continuous at x = 0.

cosh(x—1), xe]0,1],

For fi of this form,
fo=f—/fi, and fo[ =0,

—1,0]
SO HOL is indeed the entire orthogonal complement.
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Exercises on Precompactness

1) Consider a set

M={xely,: |x| <a}, 1<p<om,

where {a;}72, is some certain sequence. Prove that M is precompact < {ax}2, € £p.

a) <. In this direction, the proof is simple:

= () < (Nat) " <

k=1 k=1

Also, for Vx e M, the tail is small: Ve 3n such that

s o0
1
» /p< P\ 1P
hk’ < k <E€,
k=n+11 k=n+1

since ay € £).

b) =. Let {ax}{Z, ¢ £,. Note that these numbers are nonnegative: a; > 0.

Therefore,
1/p
S,,:z(Zak> — 400 as n— .
k=1
Consider x" € M:
x=(a1,a2,...,a,,0,0,...) € ).

This sequence belongs to £, but [x"| — +00, so the set M is unbounded, which

gives us a contradiction.

2) Study the equicontinuity of the system {f,(x) = x"}>°, in C[0, 1].

It is clear that | f,| = 1, so it is a bounded set. To study the precompactness of this

set, we have to find out only whether it is equicontinuous or not.

Let us take x =1 and y=1-5/2, [x—y| = 6/2 < §. Calculate

)~ h|=1-(1-3)"

where

1—g<1 —~  In: (1—§>"<1.

Whence, |
s )= )] > 5.

which gives us a contradiction with the property of equicontinuity.

60



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES
IGOR SHEIPAK STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

Self-Study Exercises

1) Consider an ellipsoid in /#;:

a;

© (L2
M = {xeﬁzz Z |xi2| < l}.
i—1
Prove that M is precompact if and only if {a;}, € co.
2) Consider {sinnx}° ;. Find out whether it is precompact in C[0,1] or not.
3) Consider {sinax}qe[ 5)- Find out whether it is precompact in C[0, 1] or not.
4) Consider
a) My = {feCllab]: [f(@) < e and 1f()|de <o),
b) My = {feC'[a,b]: |f(@)| < ey and §)|f'(x)Pdx < o,
o) Ms={feCllab]: § ()P +1f(x)P)dx < cf,
where ¢y, ¢, and ¢ are some constants. Study the compactness of these sets.

5) Prove that the unit ball B[0,1] < L,[0,1] is not precompact in Li[0,1] (note that
LQ[O, 1] = L1 [0, 1])

6) Show that

a) a unit ball B[0,1] = C'[0,1] is precompact in C[0,1],
b) a unit ball B[0,1] = W, [0, 1] is precompact in L,[0,1].
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Lecture 7. Linear Operators and Functionals in

Normed Spaces

Linear Operators in Normed Spaces. Bounded Operators
Let us begin with the following definition:

Definition 7.1. Let X, Y be linear spaces over one field K=R or C. A map A: X —Y
is called a linear operator if Va,B € K, x1,x € X: A(ax; + Bx2) = aAx; + BAx;.
If X and Y are normed spaces, a norm of an operator can be also defined:

A
|Allx—y := sup H XHY.
xax20 X[ x

It is easy to verify that this expression indeed defines a norm: it is is nonnegative,
vanishes only for an identically zero operator, it is homogeneous with respect to
multiplication on the elements of the field (up to an absolute value), and the triangle
inequality holds due to the fact that it holds for the norm in Y. Define also some spaces

of operators:

Definition 7.2. L£(X,Y) is the space of all linear operators X — Y (note that linear
operations in this space are well-defined: (A+ B)x = Ax+ Bx and Va e K: (@A) (x) = a(Ax).

Let A€ L(X,Y), where X and Y are normed spaces. A is bounded if |A|| < oo (it is
usually denoted as A€ B(X,Y)).

Consider two additional ways to find the norm: taking only the elements from a unit

sphere or from a unit ball:

|All = sup [|Ax],  JA]2 = sup [Ax].

|l[=1 <1
Proposition 7.1. ||A| = |A]; = |A2.

Proof. Note that |Al|; <||A]2 since {||x| = 1} = {|x|| < 1}, and |A||; <||A|, which follows
lax]

from sup I if we put here |x| = 1.
To prove the statement, we have to show the validity of inverse inequalities. Rewrite:
IIAXII
|All = su
o Al

including |x| into the norm in the numerator:

S |Ax] _ H
up
x#£0 ||XH xséO
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Further,
x
|All2 = sup |Ax]| =[Al2 = sup [Ax| =[Al2=sup [x][|A—],
Ix|<1 x| <1,x0 [x|<1,x#0 ]
where the norm of x/||x| is equal to 1, so |Al, < |A];. O

Remark 7.1. From the definition of the norm, we can obtain the following inequalities:

A
||A|>%<Vx¢o> ~ e JAx] < Al

Usually, the way to find the norm of an operator is following: begin with |Ax|, and use

some classical inequalities to estimate it with |x|:
|Ax] < --- < C- ],

then the norm of A is bounded from above by C. If the inequalities used on this way are
sharp, then C may be exactly the norm of A.

There are two possible ways to show that an upper bound for the norm is sharp:
1) Find x, ||x| =1, such that |Ax| =C, or
2) Find a sequence {xn};_, |xa| =1, such that |Ax,| /' C as n— oo;

n=1-

any of these allows one to conclude that |A| =C.

Examples: Finding Norms of Operators

Take some @ € C[a,b]. Consider an operator of multiplication by the function ¢:

Apf(x) = p(x)f(x).

For instance, Ay with @(x) = x, called an operator of coordinate, is one of the important
subjects of study in Quantum Mechanics.

Let us find the norm of this operator acting in the following spaces:
a) Ay :Cla,b] — Cla,b],
b) A(p ZLz[a,b] — Lz[a,b].

In case a),

Af| = max|@(x)f(x)| < max|@(x)| -max|f(x) = abl” abls
A1 = max|o(x) /()] < max|o (o) -max| ()] = 1@lefes 1 legas
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therefore, Al < [@]cpap). Take fo =1 on [a,b]. For this function, ||fo| =1 and |Afo] =
[lctas): so Al = l@lcpap-
For example, on Cla,b], the operator Ay that acts as Af = xf(x) has norm |A| = 1.

In case b),

g1 = [ o0 e < o) [ 170P s = 1912g- 111,

Thus, |A] < r[na>]<](p(x) |. In fact, this bound is sharp. While so, the proof requires to consider
a,b

a sequence of functions from L;, since the norm of a constant here is not equal to the
constant itself, but is equal to the length of the interval.
We know that the function ¢ is continuous; therefore, there exists a point xg € [a,b]

such that |@(xp)| = max|@(x)|. Without loss of generality, we can assume that this is
[a.b]
an interior point of the interval [a,b]; if it is an end of the interval, we can consider a one-

sided neighborhood. For an interior point, we consider a usual neighborhood: consider the

following functions {f,},~,

1 1
fn(x)z \/;l; XE(XO—EJO"‘%),

0, otherwise.

The limit function takes the value of @(x) at the point xp, so it is the delta function &y, (x),

see an example in Fig. 7.1.

05"

0.5 1.0 1.5 20

Puc. 7.1. Example: f5 for xg = 1.

The norm of these function is equal to 1:

Il = (Jb ) Pax) = (f+ Vi)' <1,

Xo—ﬂ
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Now we find the norm of |Af,|:

Yo+ 2 12 Yo+ 3 12
sl = (] owPnax) = (n] " o Par) (71)

X()*T X()*T

since @(x), along with |@(x)|?, is a continuous function, according to the mean value

theorem for integrals, there exists at least one point x, € [x—1/(2n),x+ 1/(2n)] such that

1
1 X0+ 5,

‘WMWZ—J () dx.

1
nJy-L

Plugging this into (7.1)), we finally obtain |Af,| = |@(x,)|. Since @ is continuous, and the
length of the interval (x—1/(2n),x+ 1/(2n)) approaches zero as n — oo,

|Afa] = |9 (x0)| = |@llctap)-

Continuous Operators. Theorem on Equivalence of Boundedness
and Continuity. B(X, Y) is Banach if Y is Banach

Recall the notation:
L(X,Y) is the space of all linear operators X — Y and B(X,Y) is the space of all bounded
linear operators X — Y. If X =Y, we simply write £(X) and B(X). Now we introduce the

following kind of linear operators:

Definition 7.3. Let A€ L(X,Y), where X and Y are normed spaces.
1) A is continuous at point xo € X, if (x, — x) = (Ax, — Ax).
2) A is continuous if A is continuous at any point x€ X .

Theorem 7.1. Let X and Y be normed spaces, and A€ L(X,Y). Then the following are

equivalent:
1) A is continuous at a point x,
2) A is continuous,

3) A is bounded.

Thus, the continuity is a synonym for the boundedness in the context of linear

operators between normed spaces.
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Proof. 2 = 1 is obvious. Let us prove 1 = 2. Let A be continuous at xo and x;,, — x.
Then x,, —x + x9 — xo. Applying A, we get
AeL(XY)
Alxp—x+x9) >Axg = Ax, —Ax+ Axy — Axp,
therefore, Ax, — Ax.

Now we prove 3 = 2. Let x,, — x;
|Axn — Ax]| = [A(xn —x) | < |A] - o, — ],

where the first term is finite since A is bounded, and the second one tends to zero.
Therefore, |Ax, —Ax| — 0, so A is continuous.

The last step of our proof is 2 = 3. We will prove it by contradiction. Let A be
unbounded. Then

Ax, ¢ |xn]| = 1 such that |Ax,| = n.

Define |
X
ywi="=" |yl =--0
n n
so y, — 0, but |Ay,|| = 1, which is contradiction to the continuity at 0. O

One can pose the question: when is the space of bounded operators complete? The

answer to this question is provided by the following theorem:
Theorem 7.2. Let X andY be normed spaces, and Y be Banach. Then B(X,Y) is Banach.

Proof. Let us consider a Cauchy sequence {4,} 2, in B(X,Y). By definition, this
means that
Ve IN=N(g): Yn,m =N |A,—An| <&,

and since the norm in the space of operators is given by supremum, the following is also
true:

Ve Xt A —Amx] < €],

Thus, {Aux};”, is a Cauchy sequence in Y. Therefore, there exists a limit; the limit
preserves linear operations, so one can define an operator
J1lim A, x =: Ax.
n—aoo
Existence of this limit means the pointwise convergence A, — A. Then, in the written
above
Vn,n =N [|Apx — Apx| < €|x]

take the limit as m — oo:

[Anx — Ax| < &]lx],
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and, taking the supremum over the unit sphere in X, we get
|4, —A| <&,

so A, — A converges uniformly:.

It is easy to see that A is a bounded operator:
|A]l = A =Ap+An] < [A—An] +]An]:
the first summand is less than € for n > N, and the second one is bounded Vn, therefore,

|A] < 0. O

Linear Functionals and Adjoint Spaces

One of the benefits of the previous theorem is that the space of operators from X to

the field is complete:

Definition 7.4. Let X be a normed space over a field K =R or C. B(X,K) =: X* is called
an adjoint space to X. An element f € X* is called a functional. The norm is X* is

given by

17 = sup 1£(e)] = sup L.
lxl<1 ixf0 1]

The corollary from the previous theorem:
Corollary 7.1. X* is Banach for any normed space X .

Now we will describe the adjoint spaces to some specific normed spaces.
Theorem 7.3. ¢ = {; (here = stands for the isometric isomorphism).

Remark 7.2. What does it mean? For any f € cj, we have a unique y € {1 corresponding

to f, and the formula for the action of the function f on x is the following:
0
fx) = Xy,
k=1

moreover, Hchg = |Iyle, -

Proof. Let y e ¢;. We will construct a functional f,(x) such that

fy(x) = Z XkYk-
k=1
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The functional is obviously linear as the sum is linear. Now let us find the bound for

()1

0 o0
A<D ellyil < suplxel - > [yl
k=1 k=1 k=1

where the first component is just the norm of x in co, i.e., |x|¢, and the second one is

[¥ley thus,

[f5llcx < I¥ley-

Consider x" := (sgny,sgnys,...,sgny,,0,0,...) € ¢p with an obvious inequality for the

norm: [x"| < 1. For such a sequence,

n 0
AE =D el = Dl as n— oo,
k=1 k=1

0 Bl = Iyl
Now we should start from the functional and provide an element of £;. Let f € c;. We

k
know that e; = (0,0,...,0,1,0,...) is a basis in ¢p. Define

vk = flex).

If we take x = (x1,x2,...,Xp,...) € o, we know that

n
2 Xi€r — X.
k=1
f is continuous, therefore,
n
f(zxkek) — f(x);
k=1
the functional is linear, so, by the definition of yy,

n n
FO xker) = > %k,
k=1 k=1

n o0
where Zk:lxkyk - Zk: 1XkYk, SO

F) = xe
k=1

Why y € ¢17 We know that |f| < oo, where

n
|71 = sup [f(x)] = £ ((sgny1,sgnya,...,s5gnya,0,0,...)) = D [yi| ¥ne N.

x| < k=1
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Taking the limit as n — oo,

0]
IF1=D Il = yeb.
i1

In the first step of the proof, we showed that || fy| = |y]. O

Consider the following example:

Example 7.1. Find the norm of the functional in cq:

0

Xk
EED Y N
k=1
Here y, = 1/2%, so0
1
IFl=> 5 =1
k=1 2

Now we formulate the theorem on the structure of the adjoint space to £,.

Theorem 7.4. Let 1 < p <oo. Then £, =~ {,, where %—I—% =1.

Remark 7.3. This means that there is a one-to-one correspondence between f € £}, and

y=1,--»Yk---) €Ly such that

o0
Vxelp: f(x)= > xve and | fles = [¥le,
k=1
Proof. The scheme is the same as in the previous theorem. Take y € £, and construct
a functional
Q0
flx) = Zxkyk for any xel,.
k=1

First, we estimate the absolute value
0 0
A0 =D mon] < 3 o
k=1 k=1

For this sum, we use the Holder inequality:

Sl < (3 hd?) 7 (2 bule)
k=1 k=1 k=1

for 1 < p < o0, and
oe]

o0
Z x| < suplyk| Z x|
k=1 k=1 =y

69



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES
IGOR SHEIPAK STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

for p = 1. In both cases, we obtain
1] < lxlle, - [¥]e,-

It is known that the Holder inequality is sharp; if 1 < p < oo, take
i = el sgnuy.

Since

11
—+-=1= g=plg-1),
P q

[xk|? = |yk|?, thus, x € £,,, and for the functional we obtain

Fyla) =D el
k=1

and, therefore,

()] Z/?:] |yil? - 1/q
= = el?)
T ) ()

which means that [ fyllzx = |¥[¢,- For p=1, g = co, the norm in ¢4 is given by
¥l = suplyl,
k=1
so there are two possibilities:
a) Jko: |yi,| = [y|l- Then we take
ko
x=(0,0,...,0,sgnyy,0,...), [x]e, =1,
and f(y) = [kl = [¥le,-
b) 3k, such that |yx,| — [[y|. Then take
kﬂ
¥ =(0,0,...,sgny,,0,...), [x"[¢, =1,
and then f(x") = |yg,| = [y[e,, as n — oo, therefore, | fy] = |y]e,-

Now we take a functional f € £; and construct an element y € £;. We know that

k
ex =(0,0,...,1,0,...), keN,
is a basis in £, 1 < p < 0. Then,

o0
Vx = (x1,x2,...) €L, x= Zxkek,
k=1
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and the partial sum converges to this element:

0
Zxkek —X as n— .
k=1

Define "
yei=fle), thus, f( Y mer) = f(),
k=1

where the left-hand side, by linearity, is a partial sum of the form

n n Q0
f(Zxkek> = Zxkykﬁf(Zxkeo as n— .

Why y e £,7 Again, there are two possibilities:

1) 1 < p < 0. The functional is bounded, i.e.,

Sl

|f] = sup~——= < o0;
w20 x|

we consider a nonzero functional f # 0, so, obviously y # 0 as well. Take
X" = (x1,X2,...,%,0,...), where xp= || 'sgnyr, k=1,2,....n.
Continue the estimation:

flx " k=1 [yel? S
sop = M S (S ) e
(Siilyel) ™ i

Taking the limit as n — o0, we obtain

1= (D7) = yet,

k=1

2) p=1. In this case, we must show that the sequence y is bounded, i.e., belongs to .
Take
X" =(0,0,...,0,5g0y,,0,...), [x"[g <1,

and f(x") = |yn|. Since |f(x")] < |f],

Vo yal < I = yele.

Thus, for f = fy, from the previous step of the proof, we have nyHg; = |¥lle, - O

Corollary 7.2. All spaces £,, 1 < p <, are complete.

71



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES
IGOR SHEIPAK STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

The following theorem, a more general one, claims that the structure of the adjoint

spaces for L, is similar. We will provide it without a proof:

Theorem 7.5. Let (Q,M,u) be a measurable space, where W stands for a o-additive

measure C-finite measure, and 1 < p <o0. Then

* 1 1
L Q,,u) ~L,(Qu), —+-=1,
(@) =L@p), +o
where =~ denotes the isometric isomorphism:

(Lp(ﬂ,u))* 5G < geLy(Q,u)

such that
WfeLys G = | fwstdu, Gl =gl
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Lecture 8. Linear Operators and Functionals in Normed

Spaces: Exercises

Discussion of Self-Study Exercises from the Previous Lecture
We begin with a discussion of the homework from Lecture 6.

4) a) M) = {fe C'a,b] : |f(a)| < c; and S |f'(x)]dx < } is not precompact.
An example can be provided by f,(x) =x" in C[0,1] or

= (5=a)

in Cla,b]. Since f,(0) =0, Jcy: |f4(0)] < ¢1. These functions are monotonic, so

1 1
f filx)dx = f,(1) = £,(0)=1 = 3z J £ (x)|dx < 3.
0 0

Thus, both conditions hold, but {f,},2, is not an equicontinuous family.

b) M, = {feCl[a,b] : |f(a)] <ecp and S | (x)Pdx < cz} To find out whether
this set is precompact in Cla,b] or not, we must study its boundedness and

equicontinuity. We know that

9= [ rodsa)
therefore,

f|f (1)l dt + | f(a) f|f (0)|dt + 1,

for which one can apply the Holder or Cauchy-Bunyakovsky—Schwarz

inequality:
b / ’ / 2 1/2
J |f(t)|dt +c; < <J |f(1)] dt) Vb—a+ci < /covb—a+cy,
a a
so M, is bounded. Now check its equicontinuity. Let |x—y| < §. We know that
X
/
IO <|| el
y
to which we apply the Cauchy—Bunyakovsky—Schwarz inequality:

ny!f’(r)wt\ < ‘Lxlf'(t)\zdt‘l/z\/H< JaE,

so the functions in M, form an equicontinuous family, therefore, M; is

precompact.
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c) My = {feCl[a,b]: Ss (@) + 1/ (x)) dxgc}. One can show that M3 ¢ M,

for some ¢y, ¢;. Let us do so. By the Newton—Leibniz formula,
X
1) = [ #0ydr+ i),
a
or, rearranging it,
X X b
fa)= [ fod-s = If@l< [ IFolarirl< [ 1 olde ).
a a a
Integrating this inequality over [a,b], we obtain
b b
b-alf@l<b-a) | rOd | 1wl
a a
and then, using the Cauchy—Bunyakovsky—-Schwarz inequality,
b b b 1/2
(b—a)f f'(t)dt+f |f(x)|dx < \/b—a\/b—a<f \f’(t)|2dt> +
a a a
b 1/2
#vbal [ 17wl
a
so f(a) is bounded:

1f(a)| < Vb—avyc+ \/l\)f%a =:cy.

Now we must show that the derivative is bounded in the Ly-sense. By definition

of M3, we have .
[ (rwp+1rwp)dr<e
therefore,
[(ircopae<e
a

so M3 M, for ¢y as defined above, and ¢, = ¢, thus, M3 is precompact.

5) Prove that the unit ball B0, 1] < L;[0, 1] is not precompact in L;[0,1].

First, we show that L,[0,1] < L;[0,1]. By the Cauchy-Bunyakovsky—Schwarz
inequality,

1

[ wonac ([ yora) ([

therefore, f e L,[0,1] = f e L;[0,1].

1/2
tar) " =/l

74



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES
IGOR SHEIPAK STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

Now, for n =1, consider

see Fig. 8.1.

0.2 0.4 0.6 0.8

-1.0F

Puc. 8.1. Graph of fi.

For an arbitrary n, we divide the interval [0, 1] into pieces of length 1/2" where the

values 1 and —1 alternate for f,(x), i.e.,

e (54 I ) R R E R R
see an example in Fig. 8.2.
A —_—
0.5+
o2 o4 08 o8 -
=0.5
-1.0f _—

Puc. 8.2. Graph of f,, n =3.

What can we say about the norm of these functions in L, and in L;?

I fall o007 = 1 fulzo1 = 1,

5
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since the absolute value of f,(x) equals 1 identically. Now, consider |f, — fi[r,[0,1];

see an example in Fig. 8.3.

A

1.0 fr—— ——

0.5}

0.2 0.4 0.6 0.8

Puc. 8.3. Graphs of fy (green) and f3 (blue).

One can see that | f, — fin|lz, = 1, since half the length of the interval these functions
coincide, so the difference is 0, while in the other half, they differ by 2. Thus, there

is no Cauchy subsequence of f,.

Exercises on Bounded Operators and Functionals

Now, we discuss some examples of bounded operators and functionals and consider

some exercises.
1) Take o = (04, 0,...,Q,...) € {4, and define
Agx = ((X]Xl ,00X2,...,0hXy,, .. ) in 52.

Find the norm Ay

Since we are in £, it is convenient to write the squared norm. By definition,

[e¢]
|Aax]® = ) logou .
k=1

From this sum, one can take out the supremum of o:

0 o0

D lownl? < suplow Y bal® = e[, x[ 7.
k=1 k=1 k=1

Thus, we obtained an upper bound for the norm of the operator:
[Aal < lletlle, -

There are two possibilities:
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a) Jko: |0, = sup|oy|. Then we take
1

>
ko
x=(0,0,...,sgn0y,,0,...).

For this x,
|Ax] = ow,| = llexlle,,.

b) fko, but Ik, — oo

|0y, | — sup|o|.
k=1

In this case, we consider a sequence

ky
x"=(0,...,0,sgnk,,0,...) € ls,

SO

|Aax"|| = lo,| — llet]e.,,

therefore, |Ag| = |,

2) In C[—1,1], consider the functional F such that

0 1
VfeC[-1,1]: F(f):flf(t)dt—fo f(t)de.

Find the norm |F|.
We begin with the estimation
0 1 0 1
Fol= || oa- | soal< [ ol | o s

In Cla,b], we have a very useful inequality:

viela,b]: |f(O)] <|flcrap) = r[rala};]ilf(XN

Using this, we conclude that each of the integrals on the right-hand side is bounded
from above by | f|, so

IFO <2 flcrapy,  thus, |F|<2.

For what function can equality be achieved? If we take fy such that

B 1, xe[-1,0],
f0<x)_{—1, xe (0,1],
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then we obtain the equality F(fp) = 2. The problem here is that fj of the given form
does not belong to C[—1,1]. We can approximate it by a sequence of continuous
function taking a small neighborhood of zero for a linear function gluing the values

together, for instance, consider the sequence of functions

( 1

1 e|l—1,—
y X [ ) I’l:l’
11
fn(X):< — nx, XE[——,—],
n'n
1
- L xe[;,l],
see an example in Fig. 8.4.
A
sl
o s s -~
05l
-1.0:—

Puc. 8.4. Graphs of fy (green) and fs (red).

Obviously, f, € C[—-1,1], |fu| =1, and f, — f. The functional evaluated at this

element gives F(f,) =2—1/n— 2 as n — 0. Thus, its norm is indeed equal to 2.

3) Consider in ¢, the operators of right and left shifts:
Apx = (0,x1,x2,...), Ap=(x2,X3,X4,...).

What can be said about the norms of these operators?

These operators are closely related to the creation and annihilation operators that

arise in Quantum Mechanics; usually, these operators are considered in two-sided

05,
It is clear that

v A = el A < -
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For A,, we immediately obtain |A,| = 1. For Ay, this only guarantees the bound
|Ag| < 1. One can take the second basis vector e; = (0,1,0,0,...), and, applying the
operator, get that

Ager = ey,

therefore, |A¢| = 1.

Consider these operators in ¢,(Z):

O(Z)sx = (..., x—2,%_1,(X0),X1,%2, ... ).

By taking an element to the brackets, we point out that it is the center of the

sequence. ¢>(Z) is a Hilbert space with the norm and the dot product defined by

W= (0 mP) " wn= Y e
k=—00

k=—0o0

In this space, |A;| = ||A¢]| = 1:
Apx = (..., x_2,(x-1),x0,...), Apx = (..., x0,(x1),%2,...),
so these two are examples of the unitary operators.

Let g € Cla,b] be some certain function. Consider the functional F; in C[a,b] defined
by the formula

J f(x)g(x)dx YfeCla,b].
Evedently, it is a linear functional. What is the norm of F,?

First, we will provide a bound for Vf € Cla,b] in terms of | f|c[ap:

a’x J | f(x)g(x)|dx;

the following step is quite simple, we just take out the norm of f:

f\f 1l ds < ma f(x |J|g )l dx.

The conjecture is that |Fg| = ||g|z,. For f(x) = sgng(x S |g(x)|dx, but
f(x) ¢ Cla,b]. Even though, one can approximate it by a contlnuous family, for

example, as in the following. Let € > 0. Consider

esgng(x), if [g(x)] > ¢,
Jelx) =
) {g(X), if [gx)]<e.
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It is a continuous function, and | fec[qp) = € (if g # 0). Consider

L fe) | senst) i sl =e,
R

Y

g(x)] <&

obviously, | fe|| = 1. Now evaluate the functional F, at this function:
~ b 1 5
R = [ Rwsodr= [ lewlartg | fa
a x:|g(x)|>€ € Jx:lg(x)|<e

Since the integrand of the second integral is positive, we can bound the sum from

below by the first integral, that is,

AR I

Taking the limit as € — 0, we come to

b
F7e) = | lew)lax
a
therefore,

b
IFellclaslys = j (0l dx = g1,

Another way to find the norm of this functional is following. First, give a uniform
approximation of g with polynomials p,, using the Weierstrass approximation
theorem. Second, approximate the sign of the polynomial p, by a continuous

function f;,, and evaluate the functional F, at the function f,.

5) Consider a functional f in ¢ (recall that this is the space of converging sequences:

X = (X1,X2,...,%,...) Ec < Jlimx,=a,
n—oo

where a = a(x), and |x|| = sup|x|):
k=1

=

0 kx
f = 3 0

k=1 2

Find the norm | f||.

Once again, first we estimate the functional in terms of |x|:

o (DR < bl
@) =] Y ] < Y58 < suplxd - Y 57 = Ixde- (8.2
k=1 k=1 k=1 k=1
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We have obtained that || f|| < 1. The natural conjecture is that | f| = 1. If we analyze
the first inequality in (8.2]), that is,

|52 | b
k = k’
k=1 2 k=1 2

we see that the equality is achieved for

x=(-1,1,—-1,...,(=1)"...),
which is not an element of ¢. One can take a sequence
X'=(-1,1,-1,1,...,—1,1,0,0,...) ecocc, |[x"|=1,

which has 2n nonzero coordinates. Evaluating the functional at this sequence, we

get ,
n
f(x)zZ—Hl as n— o,
therefore, |f| = 1.

6) Consider an operator
n

ANW = [ Kewos

the function K(x,r) is called an integral kernel of the operator A.

Let K(x,t) € C[a,b]?. Consider this operator on the space C[a,b]:
A:Cla,b] — Cla,b].

Note that this is a continuous analog of the matrix operator. What does it mean?

Let A = (a;jj)] =y, x = (x1,%2,...,X). Then

n
(Ax)j = Zaijx,-.
i=1

Replacing j — ¢, a;j — K(x,t), and Y — §, we obtain K(x,7)f(r)dr.
Now, find the norm of A.
First, we would like to obtain a bound for Af in terms of | f||:

|AS] = nax

[a’

b b b
| Kt swya] < max | 1) 7)1 < maxi 0 |1

a

Our conjecture is that |A| = Ss |K (x,t)|dt.
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We know that the function K (x,t) is continuous; therefore, SZ |K(x,1)|dt is continuous.

Therefore,

b b
Txo € [a.b] J IK(xo,1)|df — max J K(x,1)|dr.
a xelab] Ja
Consider problem 4 with g(r) = K (xo,t) € C[a,b], where we have constructed fe:

- b
F(f) — f 80| dr.

Now, take the family fe from problem 4 for the function g(¢) = K (xo,?). Then

b
A = K dt.
Mltast-ctor = max | K(eoldr

Self-Study Exercises

1) Show that ¢* = ¢; ®C (= ¢;). The symbol = stands for the isometric isomorphism
c*9f<—>(y,oc), 7ye£17 aE(C7

and

o0 o0
fo) = axo+ Y xvk, | f] =1l + ] Il
k=1 k=1

2) Consider in /3 the functional
o0
Xk
fx) =) EYEE
k=1
Find the norm ||f].

3) In C[—1,1], consider the functional

P = [ wrwar2r(-3) ()

Find the norm |F|.

4) Consider
b

(Af)(x) = f K(x.0)f(0)dr,

a
a) K(x,t) € Cla,b]?, A: L[a,b] — Li[a,b]. Find the norm |A].
b) K(x,t) € Cla,b]?, A: Li[a,b] — C[a,b]. Find the norm |A].
¢) K(x,t)€ly[a,b]?, A: Ly[a,b] — Ly[a,b]. Find the bound C for the norm: |A| <C.
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5) Consider an operator

(AF)(x) = fo () di

a) in C[0,1]: find the norm |A].
b) in L,[0,1]: find a sharp bound C, ||A| <C.
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Lecture 9. The Hahn—Banach Theorem and the

Corollaries

The Hahn—Banach Theorem

Theorem 9.1 (Hahn-Banach). Let X be a linear space over a field K (R or C), and
p:X — [0,+0) be a seminorm. Let Xo be a nontrivial subspace, and fo be a linear

functional on Xo such that
VxeXo: |folx)] < p(x).

Then there exists a linear functional f on X such that

= fo xeX: f] <o)

It is a general formulation of this theorem. For us, it will be convenient to use

a particular case, formulating the theorem for a normed space.

Theorem 9.2 (The Hahn—Banach Theorem for normed space). Let X be a normed space
over a field K (R or C), Xo be a nontrivial subspace, and fo€ X;. Then there exists a linear
functional f e X* such that

Fly, = 100 I£1 = 15oll-

Remark 9.1. This theorem is an obvious corollary of the previous one, as one plugs
p(x) = [ fol - |lx]-

Why do we need Xy to be nontrivial? A trivial subspace is either {0} or the entire X.
In the first case, fy =0, so its extension is zero functional. In the second one, we already

have a functional on the entire space, so its extension is f = fo.

For simplicity, we will prove the theorem for a separable space, while it is valid
otherwise as well.
Proof.

1) Suppose K = R. There exists x| ¢ Xp. Consider a subspace
X = <Xo,x1> = {x =Xx0+1tx1, xoeXp, t € R}.
We are going to construct an extension of fy to this subspace: fj € X{* such that

f1(x) = folxo) +1f1(x1) = folxo) +1- 0,
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where f1(x;) = a € R. We need to verify that |f| = | fo//; to obtain the same norm,

one must choose a appropriately. Let x’,x” € Xy. Consider
Fo) + o) = ol +) < plo +.2) = pla — 1+ 1),
and use the triangle inequality for p:
p(xX —x1 +x"+x1) < p(x —x1) + p(& +x1),

so we have
fold) + fo(x") < p(x —x1) + p(x" +x1).

Now we rearrange this inequality in such a way that x’ is on the left-hand side and

x” is on the right-hand side:
folX) = p(x —x1) < —fo(X") + p(x" +x1) VX', x" € Xp. (9.1)

Now, take the supremum on the left-hand side and the infimum om the right-hand

side:

A := sup <f0(x')—p(x/—x1)), B:= inf (—fo(x/')—l—p(x//—i—xl)).

"
x! EXO x"eXo

As (9.1)) holds for any x', X", for A and B we have A < B. Take A < a < B. We have
to verify that |f(x)| < p(x). Consider fj(x) = fo(xo) +te; let ¢ > 0:

f()()C()) +to < f()(xO) +1tB;

B is an infimum, so, taking the expression under the inf, we will increase the bound;

take a specific element: x” = xo/t. Then

f()(X()) +1tB <f0(X0)+t(—f0<)%> —l—p()% +x1>);

fo is a linear functional on Xy, so one can take out 1/, which cancels out fy(xp):

fo(xo) —|—t<—tf0(xo) +p<)% +x1)) =tp<)% —i—xl).

p is a seminorm, so one can take out a positive number; ¢ is positive, therefore,
X0
tp(T —i—x]) = p(x),

which means
filx) < p(x) YxeXp;
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the same bound can be obtained by taking a minus inside the functional:

—fil) = fil=x) < p(=x) = | =1[-p(x) = p(x) = fi(x) = —p),

and, finally,
i)l < plx) < [Al =il
For negative ¢, the proof is similar with o being replaced by A.

By definition of separability, we have a countable dense subset {xx};° |, {x¢}2, =X.

Thus, one can construct a chain of subspaces
XcXicgXoc--<2 X, < ...
by extension with one element each. Without loss of generality, assume that
{x1,%0,...,x,} < Xp,.
Then, by definition of set operations,
Xy = uzolen.
This set may not coincide with X, but, since {x;};2, is dense in X, we have
X =X.
By induction, one can construct functionals
heXy, freXy, ..., fneX),

such that Vn: | f,| = | fol; on X, define

foo(x) = lim f,,(x);

n—0o0
this functional is well-defined since Vx € X Ing: x € Xy, 50 foo(x) = fuy (x).

For further developments, we need the following auxiliary statement:

Statement 9.1. Let X, Y be normed spaces, and Y be a Banach space. Let Xo < X,
Xo =X, be a nontrivial subspace, and Ay € B(Xo,Y). Then

JAeB(X,Y):  [Ao] = |A].
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Proof. The difference between extensions of operators and functionals is that to
define an extension of an operator, one must require that it is defined on a dense

subset.

Now, take x € X\Xp; it is a limit point of Xp, therefore,
Ix,eXo: x, —x.
Estimate the norm
|Aoxa — Aoxim| < [Ao|xn —xm| =0 as n,m— o,
i.e., the sequence Agx, is Cauchy along with x,; Y is a complete space, thus,

3 lim Agx,,.
n—o0

What can we say about this operator? Ag is linear, lim preserves linear operations,

so this expression depends linearly on x, and one can define

Ax = lim Agx,,.

n—aoo

It is clear that this construction is well-defined: the sequence x;,, — x is not unique,

but if we take x/, — x, then, by combining the elements of the sequences like

/ / /
X1y X1y X2y X9y oovy Xpy Xy vnny

we see that
/ / /
Apxy, Aoxy, Aoxz, Aoxy, ..., Aoxn, Aoxy,, -,

is a Cauchy sequence, so the limit is unique. The norm is preserved due to the fact

that it is continuous, so

|Ax] = | Ao < || Aol lxall = Aol - Xl

n—o0 n—aoo
and since A’ X = Ap, the norm is the same. O]

Now, let us return to the proof of the Hahn—Banach theorem. We have f,, on X,

Xo =X, and | foo| = | fo||. Using the auxiliary statement, we conclude that 3!f € X*
with || f]| = [ fool = [lfol -
Thus, we completed the proof for real separable Hilbert spaces. What if it is

complex?
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2) Suppose K = C. In this case, we proof is based on Linear Algebra. We have fj € X,
with complex Xy. Consider a realification of Xp: X(])R, i.e., the space where only
multiplication by real numbers is allowed. As for the functional, we decompose
it into

fo(x) =Re fo(x) +iIm fo(x) = @o(x) + ilm fo (x).
Thus, we have a real functional ¢g(x) on a real subspace X(I)R, so one can construct

an extension @(x) by step 1 on the space XX:

Plyx =% and [go(x)| <[folx)] < plx).

0

The imaginary part can be in fact recovered from the real one. Why? We would like

to construct a functional
f(x) =@(x)+ilm f(x). (9.2)
Recall that in X(]%%, there are all the elements of X, but we allow multiplication only

by real numbers; this means that ix belongs to X(I)R along with x, so, for

fix) = @(ix) + iIm f(ix),

by linearity, one can take the right-hand side of (9.2) with a factor i, that is,

if (x) = ig(x) —Im f(x),

therefore, Im f(x) = @(ix), and the entire functional takes the form

f(x) = o(x) —ip(x).

Now, for f, we must check the preserving of the bound. Let f(x) = re®. Then
e 0 f(x) = f(e7%x) is real. Therefore, for non-real f(x), the same bound as for
fle™®x) is valid, where f(e™®x) = r e R; for this, we obtain

Fl=1lef0)] = 1f(e™x)] = lp(x)| < plx),

which means that | f]| = | fo]- O

Corollaries of the Hahn—Banach Theorem

Why is the Hahn-Banach theorem so important? In fact, for the space L, with
0 < p < 1, which is a quasi-Banach space (but not a Banach space due to the lack of
subadditivity in its quasi-norm), the Hahn-Banach theorem does not apply in its usual

form. Here, only the zero functional exists as a continuous linear functional, since L,, p <1,
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fails the norm structure required for the extension theorem, highlighting the theorem’s
necessity for Banach spaces.
The Hahn—Banach theorem is fundamental in Functional Analysis due to its important

corollaries as well. We will consider some of them.

Corollary 9.1. Let X, X # {0}, be a normed space. Then
Ve£03fieX™: [fil =1, fulx)=|x].

Proof. Consider Xp = (x) = {y = ax, a € C}, and Xp 3 fo = oflx|. It is obvious that
fo(x) = ||x|. The Hahn—Banach theorem allows one to construct an extension of a bounded

functional, so we have to check the boundedness of fy:

0 _ Jedlx]
M Jall]

By the Hahn—Banach theorem, construct an extension f; of fy. O]

Corollary 9.2. Let X, X # {0}, be a normed space. Then
Vx.yeX, x#y, =3feX”, [fl=1 fx)# ()

This means that weak topology on the normed space is Hausdorft.

Proof. Consider z=x—y # 0. By the previous corollary,

e X% =1, fu(2) =z] #0.

By the linearity, 0 # f;(z) = f.(x) — fz(y). O
So we have enough functionals to distinguish the elements of X.
Before formulation of the next corollary, let us look what we have. We have X, a normed
space, and
X - X* — X**,

In the case dimX < oo, we know that there is a canonical isomorphism
X ~ X**

If dimX = oo, we are only able to construct a canonical embedding X <— X**. This means
the following. Let xe X, fe X*, and F € X**. We can take x and associate to it a functional
F. € X** such that

F x(f ) =f (x)
In the finite-dimensional case, it is a bijection; in the infinite-dimensional one, this is not

the case.
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Corollary 9.3. The canonical embedding X — X** is an isometry.

Proof. By the definition of the canonical embedding,

|Fx| = sup |[Fx(f)| = sup |f(x)| < sup |f]-[x] = |x].
I71=1 Ifl=1 I7l=1

We have an inequality only at a single step; at the other steps, there are equalities. Recall
that, by the first corollary, there exists fy, | fi|| = 1, such that fi(x) = ||x|. Therefore, due
to this property, this inequality is sharp, and equality can be achieved for f;. O

Reflexive Spaces
Definition 9.1. A normed space X is called reflexive if the canonical embedding X — X**
15 bijection.

Note that it is sufficient to require that the embedding be a surjection. As we have

already learned, it is obviously is injection since it preserves the norm.
Example 9.1. Consider the following examples:
1) All finite-dimensional spaces are reflexive.

*%

2) cg=ty, €y =Ly for 1 <p<oo, 1/p+1/qg=1. In particular, £ = {y, so cg* = Ly,

therefore, cq is not reflexive.
3) If1<p<o, thenl <g<oo, and {, = U since €y, is dual to £y, and vice versa.
Corollary 9.4. Let X be reflexive. Then
VieX* IxeX: |x|=1 and f(x)=]f|.
Proof. The proof requires only corollary it claims that
VfeX* f#03FeX™: |F|=1 and F(f)=]|f|-

By the definition of reflexive space, to F = F, € X**, there corresponds x € X, which is in
fact the same: x = Fy; therefore, F(f) = f(x), which completes the proof. H

Now, we have description for £, = £y, Ly,(Q, 1) = Ly(, ), and cj = £;. We have also
the space of continuous functions; it would be nice to describe the adjoint space to Cla,b]

as well.
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Adjoint Space to Cla,b]
First, we state the result, and then provide all the necessary constructions.

Theorem 9.3.
<C[a,b]> ~ BV[a,b).

Let f be defined on [a,b]. Let T = {t}}_, be a partition of [a,b]:
a=ty<t <--<t,=b.

By definition, a variation of f(x) on T is

n
Vrf o= Y 1f ) = fter)|-
k=1
A total variation is the supremum with respect to 7'

fo = supy Vrf.
We say that f e BV (f is a function of bounded variation) on [a,b] if V2 f < 0.
For instance, if function f is monotonic, than V2 f = |f(b) — f(a)|; if f € C'[a,b], one
can rewrite

n n _ b
Vif = 1) = fltn)l = ) 7400) = 71 (tk —tk—1) _’J ' (®)]dt,
=1 “

=1 e — k-1

so feC'a,b] = feBV]a,b].

BV|a,b] is a normed and complete space; the norm can be given by

Ifl =VEZf+1f(a)l.

What is BVy? It is an additional normalization of functions from BV, which we are to

point out:
BWyla,b] := {ge€ BV]a,b], gla) =0 and Vxe (a,b): g(x—0)=g(x)}.

Now, we are ready to discuss Theorem H To any G € (C [a,b]) , there corresponds
g € BVy[a,b] such that the action of G is a Riemann—Stieltjes integral of f of the form

b
Wﬂ=ff@@.

The Riemann-Stieltjes integral can be represented as
b
| 700ds = 3 e (etw) - st-0):
a k
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a function of bounded variation can be represented as a difference of two increasing
functions; any increasing function continuous from the left generates a c-additive measure.

To construct a functional G, it is sufficient to consider a regular BV, not BVj, but in that
case there is no isomorphism of the spaces. For example, take t, € (a,b) and G(f) = f(t.).

It is a linear functional. Then the function g € BVy[a,b] is

see Fig. 9.1, while one could include #, to the right interval with g(z.) = 1 and g(z. —
0) = 0, and both functions would be fine. To exclude these extra options and establish
an isomorphism, one should require the functions from BV} to be continuous either from
the left or from the right.

0.8

0.6

0.4

0.2

! o 1 L L L 1 L L L 1 L L L -

L 0.2 0.4 0.6 0.3

Puc. 9.1. Graphs of g(x).

It is also clear that

HGH(C[aJ)])* =Vig= HgHBVO[a,b]'
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Lecture 10. (C[a,b])". Norms of Functionals

Discussion of Self-Study Problems from the Previous Lecture
We begin with discussion of the homework from Lecture 8.

1) ¢* =41 ®C such that
c*afeo o), y=1,y,...)el;, aeC.

It is clear that £, ®C = /;, and one could redefine a to be yyp, so
e8] o8]
xX) = > xye+x0a =Y xve |F1=15le + el = ol (10.1)

in fact, ¢* distinguishes from cjj by a one-dimensional space, so it is convenient to

write it with o as well.

Take x € ¢; then
Jlimx, =a, andfor ey=(1,1,1,...): x—aepe cop.

n—00

For this element, 3y = (y1,y2,...) € {1 =¢j:

o0
f(x—ae) Zxk— a)yi, = 1yle;-

Expanding f(x—aeg) by linearity, one can rewrite it as

f(x)—af(eo) Zxk)’k_aZyka
so we obtain
o0 o0
x) = Zkak+a<f(€o)— Zyk);
k=1 k=1

comparing it with ([10.1]), we see that xo := a. Note that the sum of y; here converges
since y € /1. With a of the form

o
- Zykv
k=1

we obtain ((10.1]); one can easily see that |f| = |yll¢, + |@|. First, we will provide

an upper bound:

o0 0
0| = | 3w +-x00] < suphl D el + ol o] < e Iyl + o).
k=1 k=1

=
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To demonstrate that this upper bound is, in fact, sharp, we will evaluate the

functional at the elements of the sequence
X = (Sgy1, SNy, ., SNV, SEN 0L, SEN QL SENCL, ), ] <
For f(x"), we have

n o0
") = Z |yk|+Sgna'Zyk+\a\>
k=1 k=1

where
n 0 0
2 vkl — Z |Vl SgIlOC‘Zyk—>O as n— o0,
k=1 k=1 k=1
where the second one holds since the left-hand side is a tail of a converging series.
Thus,

SO =yl + o

2) Find the norm of the functional
oo} X
flx)= ; a5 © 0.
=1

By the theorem on isometric isomorphism, Z; ~/{,, 1/p+1/q =1, and since p = 3,
q =3/2. The norm of f is

s =l = (2 () ) = (S 2) - (5)"
k=1 k=1

3) Find the norm of the functional

F(f) :fl |x]f(x)dx+2f<—%) —f(%) e (C[-1,1])".

It is more interesting to consider the functional with x instead of |x|:

1 1

F(f)—Jlle(x)dx+2f(—§>—f<z> e (C[-1,1])".

The answer would be the same since at the first step, one takes the integrand under

the absolute value. Now, obtain an upper bound:

< [ wsnaes2l (- D) (D] <ir( [ axes) =i

since in C[—1, 1], the norm is the maximum, and, therefore, the value at any specific

point is bounded by the maximum from above.
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The next step is to analyze the formula of the functional in order to determine for
which element the equality in the upper bound can hold. It is convenient to take fy

such that || fy| = 1. One can take

-

11
9 _171 9 {__7_}7
sgnx xe[ ] x¢ >
1
=<1 S
fo 9 X 27
1
—1 - _
L ) X 47
see Fig. 10.1.
. A
0.5-
g0 T Las I T s >
-0.5 -
80 [

Puc. 10.1. Graphs of fy(x).

This function is not continuous on [—1, 1]. It is not a problem, since we can construct
a sequence of continuous functions f, that approximate the given discontinuous
function by connecting the discontinuities in small neighborhoods of the points of

discontinuity, for instance, like this:

( I 1 1 1 11 1 11 1
(e HE M)
bent xe[ ]\ 2 n 2+nU wn) S \d wa
1 1 1 1 1
—2n’x+—’+1, xe(————,———i——),
fo= 1 2 2 2
" 11
nx, xe(——,—),
nn
1 I 11 1
w1 ae (G- )
G 4 xe 4 n4+n

see Fig. 10.2. It is clear that F(f,) — 4, since f, — f as n — 0.
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1.00 O
0.5
1 1 # 1 I
-1.0 0 | 0.5 1.0
-05

Puc. 10.2. Graphs of fy(x).

4) Consider
b

(Af)(x) = f K(e,0) () dr,

a
a) K(x,t) € Cla,b)?, A: L[a,b] — Li[a,b]. Find the norm |A].
b) K(x,t) € Cla,b]?, A: Li[a,b] — C[a,b]. Find the norm |A].
¢) K(x,t)€Ly[a,b]?, A:Ly[a,b] — Ly[a,b]. Find the bound C for the norm: |A| <C.

Now, begin with the item a).

a) First, as usual, we obtain an upper bound:

b b b rb
IAf] = f | f K (x,0) () di|dx < J f K(x,0)| - £ ()| dedx.

The functions f(¢), K(x,7) are integrable. To continue the estimation, we use

Fubini’s theorem

LbLb|K(x,t)| | £(2)| dt dx <Lb|f(t)| LbK(x,t)dx‘dt <

< mas ([ K dv): | o) = max (| " K d2) 71

t€la,b]

where the first factor is a candidate for being the norm of A:

b
Al < max ([ Kl a).
tela,b] \ Jgq
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Is this bound sharp? Is there a function for which the equalilty can be achieved?

K(x,t) is a continuous function, so, after the integration with respect to x, we

obtain a continuous function in variable ¢; therefore,

Jtp € [a,b]:  max f K (x,1) |dx J |K(x,0)| dx.

t€(a,b]

Suppose that g is an interior point of [a,b] to consider two-sided neighborhoods

of it (otherwise, neighborhoods are one-sided). We will integrate it with f,(z)
of the form f,(¢) = nx[,—1/(2n) 1+1/(2n)]> Se€ Fig. 10.3.

Puc. 10.3. Graphs of f7(x).

One can see that || f,|| =1 in Li[a,b] (it is so-called delta-sequence since it tends
to the delta-function). Substitute it to |Af,|:

b, rtot+o
Afn=f f | nK(x,t)dt‘dx
fo=2,

a

It looks like one could use the mean value theorem for integrals:

1 1
IIAfn||—J K (x,1,)|dx, 1, € [t0—2—t0+2n]

Asn— o, t, — 1y, and

b b
J |K(x,tn)\dx—>f K (x,19)]| dx,
a a
SO

A] = f|1<xt0|dx—max J|th|dx

tela,b
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b) In this item, we use the similar approach:

b
Af] = max fK( 0f(0)di| < maxf K(e.0)|-|F(0)] di <

x€la,b]l J,4 x€la,b

< max [K(x) j 0)dr = max (K Gx)l1fl

x,t€[a,b)

where the the first factor is a candidate for being the norm of |A|. Since
K(x,t) € Cla,b]?,

H(XQ,I()) : |K()C(),l‘0)| = max |K(x l)|
x,t€la,b]

where we take the maximum with respect to x due to the fact that the image
space, C[a,b], has such a norm, while the maximum in 7 can be achieved using
a delta-sequence, so example for which the upper bound gives the equality, is
the same as in the previous item. Therefore,
Al = max |K(x,t)|.
Al = max K1)
¢) In this item, the problem was stated as follows: find an upper bound for |A|,
A : Ly[a,b] — Ly[a,b] with K(x,t) € Ly[a,b]?, instead of the exact value. To

eliminate the square roots, we will work with the squared norm:

s - | b | K ) dif v < | ( | k)| o) ar)

a a

We have to transform this integral to take out the squared norm of f. Let us

use the Cauchy—Bunyakovsky—Schwarz inequality:

J J|th||f()|dt dx<f J|th|2dtfj|f |2dt

— K ()2, A1

Thus,
JAT < 1K £, 14,672

X) = fo(t)dt

sl = max || o)ar] < max | 10)1ar < 171

For the function f=1, Af = x and max|Af| = 1, therefore, |A| = 1.

5) Consider

a) in C[0,1]:
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b) in L»[0,1]. First, it is convenient to transform the operator to the integration
with fixed limits: |
X
f f(t)de =J K(x,1)f(t)dt.
0 0
What can we say about the function K(x,7)? In fact,
I, 0<r<x<l,
K(xat) = Xx=t =
0, O0<x<r<l,

and this is an example of so-called triangle kernels, see Fig. 10.4.

xXp
1.0

0.8

06

K(x,t)=1

04

0.2
K(x,t)=0

-~y

0.2 0.4 0.6 0.8 1.0

Puc. 10.4. Regions where K(x,7) takes the values 0 and 1.

Using the results of 4c), we see that

1
lAl < 1K (0,12 = NG

(Spoiler: In fact, the norm is less than this.)
Adjoint Space to C|a,b]
Theorem 10.1.
(C[a,b])* ~ BVpla,b] = {g€ BV[a,b], g(a) =0, Vxe (a,b): glx—0) = g(x)},
such that

% b
(Clab)) 26 geBlabl: ()= [ fids), and [G] = lelav,
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Let us comment on a minor issue. Why does g need to be continuous from the left
only on the interval (a,b) , and why is it not required to be continuous at the endpoints?
At the point a, there is no left-sided neighborhood in [a,b]. For the point b, the answer
will appear later.

Note also that for the spaces ¢,, L,, co, and c, the theorems on the isometric
isomorphism of the adjoint space to some nice space make it more simple to find the
norm of the functional in practice. Unfortunately, this is not true for (Cl[a,b])*; in this

space, it is easier to find the norm of the functional by definition.
Proof.

1) <. Let g € BVp|a,b]. Construct

b
G(f) = f £(1)dg()

and try to estimate it:

b b
G(f) < f £(0)]1dg(0)] < |£] j dg(0)] = | £]VPs.

since by definition of the Riemann—Stieltjes integral, it is the limit of the sum with

respect to all partitions of [a,b]:

> l8(t) — g,

k

therefore, |G| < |g||. At this step, we will not try to obtain the equalilty of the
norms, since one can do it at the second step, where we are to construct a function
from BVj starting from a functional. As for now, it is sufficient to understand that

to each function g from BVj, there corresponds a functional G € (Cla,b])*.

2) Suppose that G € (Cla,b])*. Let us use the Hahn-Banach theorem. Recall that
Cla,b] c Ly|a,b], with the same norm: in L, we have a supremum-norm, which

coincides with the maximum for continuous functions. In L,

= inf su x)|.
1z u(nf |, sup |f(x)]

=Y[a,b|\E

Then, by the Hahn—Banach theorem, G can be extended to G in the entire Lo,. We

can apply G to discontinuous functions, for instance,

~

G(%M;)), where x[w):{
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This is a function of r. We claim that this is the function we need:

~

G (%an)) = 8.
Further,
é(%[n,@) = é(%[a,tz) - X[a7zl)> =g(t) —g(t).

Let T ={tx}}_y. a=1to <t; <--- <t,_1 <t, = b be some partition of [a,b]. Construct

the function

Frx) = { sgn (g(tk) _g(tk—l)))qtk_l,tk), k <n,
sgn (g(b) —g(ta—1)), X€[ta_1,b].

One can write this function in the following way:
Z Sgn tk 1))%[tk_1,lk)7 HfTHLOO < 17

where for k = n, the last interval (in the subscript of y) is closed: [t,—1,b]. The

functional G is linear, so

Z 8(tk—1)!;

and |G| = |G(fr)| = Vrg (VT). Taking the supremum over all partitions, we obtain
1G] = Vs,

where, by the Hahn-Banach theorem, |G| = |G|, so we obtain the inverse inequality
for the norms.

It is clear that g(a) = 0.

We must also show that the action of G is integration with dg. Consider the integral

Tk
J Jrdg = ZJ sgn (g(n) —g(tx-1)) dg = ESgﬂ ) — 8(fk—1))J dg,
T—1 k=1 l—1

where

ftk dg = g(tx) —g(tk—1),

Tk—1
SO

b
f frdg="Vrg.
a
Thus, one can see that

R b
3(fr) = f frde,
1
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since we obtain the same result on the left- and right-hand sides. Since both sides
are linear in their arguments fr, one can evaluate the functional at the linear

combination of the functions of this kind
5<chka> = ché(ka) = chfka dg = J (chka> dg
k k k

for some number of partitions T;. One can see that any continuous function can be

approximated in terms of step functions with any given accuracy, for instance,

xn
)
n
see Fig. 10.5.
A yd
yd
yd
yd

L //

08+ /
z
yd
4
//

0.6 /

F yd

y4
y

L //

04+ Y
yd
yd
yd

L //
0.2 /

F yd

I y4

Z
yd

0.0 0.2 0.4 0.6 0.8

Puc. 10.5. Approximation of f(x) =x with @, n = 30.

For any f € Cla,b], define f, := f([xn]/n). It is obvious that f, — f (pointwise).
Then,

Gt = | fude,

where the left-hand side converges to G(f) and the right-hand side converges to
§fdg. O

Consider an example from the homework:

F(f) = f_ll x| (x) dX+2f(71) -£(3)- (10.2)
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If we are to find the norm of the functional F, then we can rewrite it as

1
F) = | sde
and then find the total variation of g. Recall that

o f(1o) = deg

with g as depicted in Fig. 10.6.

.......................... @
0.8
06
0.4
0.2
fo
| L O 1 -
L 05 1.0 15

Puc. 10.6. Graphs of g(x).

Further, rewrrite as
0 ! ~1 1
F(f)= f_l —xf(x)dx+f0 xf(x)dx+2f(7> _f(4_1)'

The function g that corresponds to F is as in Fig. 10.6.
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s

Puc. 10.7. Graphs of g(x).

Computing the total variation of this function is not very convenient, so it is easier to
find the norm of F by definition.

Self-Study Problems

1) Let X be a normed space and Xy < X be a nontrivial closed subspace. Let x ¢ X,
and
dist(x,Xp) := inf [x—xo| =d > 0.
x0€Xo

Show that
Yex'fl-1: f0-d f] -0

2) Let X be a Banach space. Prove that if X* is separable, then X is separable as well.
3) f(x) =x%sini. For which & does f belong to BV[0,1]?

4) Consider l
M= {fec[o, 1] JO F(x)dx = o}.

Find dist(1,M).

5) Let X be a normed space, Xo = Ker f, f € X*. Prove that dist(x,Ker f) = |]‘C|§§CH)|.
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Lecture 11. To be recorded
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Lecture 12. Reproducing Kernels and Weak

Convergence: Exercises

Discussion of Self-Study Problems from the Previous Lecture

We begin with discussion of the homework from Lecture 10.

1) Let X be a normed space and Xy < X be a nontrivial closed subspace. Let x ¢ X,
and

dist(x,Xp) := inf |x—xo| =d > 0.
x0€Xo
Show that
EleX*v HfH:l f(x):d7 fX():O.

f(x) =d is a hint for constructing a functional. We will construct an extension of

this functional to the space X; = (x,Xp) = {y = xo + ox, xo € Xp, & € C} such that

Si(y) = filxo+ ox) = fi(xo) + afi(x) = ad,
as f1(xo) = f(xo) = 0. For the norm of that functional, if o # 0, we have

e sl O g lald o d d
X* — T . - . -
TR T WAoo T AT A nf[ g d

=1.

Then, f is an extension of f; obtained by the Hahn-Banach theorem.

2) Let X be a Banach space. Prove that if X* is separable, then X is separable as well.
By the definition of a separable space,

HANZ s A, =X"
Then one can claim that

VeeN: IneX, ful =1 |filw)l= L

(Since the norm is the supremum over the unit sphere, there exists elements that
gives at least half the norm.)
Consider

N

Xo = {x= chxk, neN, ¢, € Q for R, or oy +if, oy, B € Q for C}.
k=1
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It is a countable set. Let us show that Xy = X by contradiction.

Let X # X; then it is a closed nontrivial subspace. By the previous problem,
Xt Ifl=1: g =o.
Xo
Since {fi};~, = X*, there exists a subsequence {fj,},~; such that
S, = -
Further,

il
2

1 = fro | = 1(f = i) Cer) | = [ S, (e, )| =

and, since the norm is a continuous function,

)

| =

Jo = F = ful =1

We showed that the distance between f and fi, tends to 1/2 and f;, — f, which is
incompatible. Therefore, X = X.

3) flx)=x% sin)—lc. For which a does f belong to BV|[0,1]?

The idea is simple if one depicts these functions. For o« > 1, there is a pair of

parabolas that bound the function from above and below, see Fig. 12.1.

Puc. 12.1. f(x) (green) is bounded by a pair of parabolas (red).
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If @ <0, the function is not bounded, and, therefore, have an infinite total variation.
If oc € (0, 1], then there are two parabolas that bound the function and have reverse

convexity, see Fig. 12.2.

Puc. 12.2. f(x) (green) is bounded by a pair of parabolas (red).

In this case, the oscillation is larger, and the total variation is infinite. We will show

it now.

Take | .
/ "
X, == X, =———"-- n=1,2,...
" Z42mn’ " =24 2mn’ e

and calculate the variation for these points (it is less than the total variation).

Denote the partition in these points by T; then

1
V; o+ = 00
rf= Z T+ 27m (=% +27n)*

For the case a > 1, unfortunately, these points do not represent the maximums and
minimums of f. Let us find them. Solve f’(x) = 0:

1 1 1 1
ax® !sin (—) —x%2cos (—) =0 < tan (—) = —.
X x x ox

Substituting r = 1/x, we arrive at tant =/ct. In Fig. 12.3, one can see that t, = 5 + n
for large n, and, therefore, for x,, we have a similar series (although in this case, it

is a series of asymptotic values).
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Puc. 12.3. Graphs of tanz (blue) and /o (orange).

For these values, the series converges, so the function has finite variation.
4) In CJ[0,1], consider
Xo = {feC[o,l] : Jolf(t)dt - o}.
Find dist(fo,Xp), fo(x) = 1.

The next problem provides a way to an solve this one. Take a functional

1
nﬁsz@m,Femmuﬁ

Then Xy = Ker f, so
[F(fo)]

=1.
|F]

diSt(f(),X()) =

Let us show it: ] ]
| roa|< | 1rwlar <1
0 0

For fo(x) =1, F(f) = 1. Therefore, our previous calculation is confirmed, and the
answer is 1. In the derivations, we used the results of the next problem, so now we

must solve it as well.

5) Let X be a normed space, Xo = Ker f, f € X*. Prove that dist(x,Ker f) = Fl

/1
Consider x* ¢ Xp; then
o SO
dist(x*,Xo) = :
If1
Now, write out two inequalities. First, |f(x*)| = | f(x* —x0)| Yxo € Xp. Then
O =x) < - =x = ¥ —xf = T

109



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES
IGOR SHEIPAK STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

Now we must obtain the inverse inequality. Take € > 0; dz:

|f]
=z —.
7@ = 2
From this, we construct another element: 3w such that f(w) = I:
Z lI+¢&
w=—— |l <7
f2) I £

Consider y = x —wf(x), and evaluate the functional f at this element:

fO) = fla—wfx) = flx) = fWw)f(x) = fx) = f(x) =0 = yeXo.
Now find the distance between y and x:

S
171

ly =l = Iwl-[f()] <1+e

Taking the infimum with respect to y, we obtain

dist(x,X0) < Jy—] = [l |£@)] < (1 + )7

i

In the limit as € — 0, we obtain the inverse inequality, so

diSt(X,Xo) = M

11

Exercises on Reproducing Kernels and Weak Convergence
1) In W)[—1,1] = {f € AC[-1,1], f" € Ly[—1,1]}, consider the functional
F(f)=fla), ae[-1,1].
Find
a) ga: F(f) = (f 8a)w;

b) Reproducing kernel K(a,b) = (g4, 85),
c) |F].

For simplicity, consider the problem for the Sobolev space over K = R, since here
one can omit the annoying conjugation that does not affect the core idea of the

solution, although complicates the calculations.

Consider

1 1
FUN = (fga) = (F0) = | f0glder | g s
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(we will omit the index a keeping it in mind). Let us assume that g has the second
derivative. The whole idea of evaluation the function at some point through the

integration is based on th integration by parts. So, we decompose the second integral

J_llf ()8’ (x)dx = L f(x)g' (x)dx + J 1 f(x)g (x) dx

and integrate by parts, assigning the derivatives to g instead of f:
a 1
| e - j F)g"(3)dx =
= fla)g'(a)(a—0)— f(-1)g'(—1) + f(1)g'(1) — f(a)g'(a+0)—

ff i [ g

Here, we write the left and right limits for g’(a £0), since no one guaranties that

into two

this function is continuous: g’ € Ly, so there may be points of discontinuity. On the

interval (—1,a), one must take the left limit, while on (a, 1) we take the right one.

From all this calculation, we should obtain just f(a). What is the condition for
the function g7 The integral part must disappear; at the points +1, it must have

vanishing derivative, for the nonintegral terms to disappear as well. Thus,
gx)—g"(x)=0 for xe[-1,a] and [a,1],
and also
g(1)=0, ¢(-1)=0, g(a+0)-g'(a—0)=1.
For this differential equation, exponential functions are often taken as a basis. It is
more convenient to take the hyperbolic sine and cosine in this case (for the boundary

conditions that we have here). The hyperbolic sine vanishes at 0; so one could take

the hyperbolic cosine with the shifted argument:
—Acosh(x+1), Bcosh(x—1).

For these functions, the boundary condition at +1 are automatically met. Additional
condition, for the function g to belong to Wy)[—1,1] (and, therefore, to AC[—1,1]),
is g(a—0) = g(a+0). Thus,
—Acosh(a+1)= Bcosh(a—1)=Bcosh(l —a), —1<a<l.
For instance, we can take
_ Acosh(a+1)
~ cosh(l—a)
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Now, plug it into the condition for the jump of the derivative:

Acosh(a+1)

Asinh(a+1)—Bsinh(a—1)=1 < Asinh(a+1)— msinh(a— 1)=1,
or, equivalently,
A(sinh (a+ 1)cosh (1 —a) +cosh(a+ 1)sinh (1 —a)) 1
cosh(1 —a) -
therefore, after applying the formulas of sum for hyperbolic functions, we obtain
cosh (1 —a) cosh(a+1)
=— d B=——F"—".
simhz sinh2
Finally, we have the complete data:
h(l— h 1
cosh ( c.z)cos (x+ )7 ve[-1.a),
g(x> _ sinh 2
cosh(a+ 1)cosh(x—1) e [a1]
x€la,l].
sinh2 ’ ’

To write down the reproducing kernel, take g, and g, (recall that we have omitted
the index a in g = g, that denotes the point at which we take the value of f), and
then

K(a,b) = (21:80).

We know that, by Riesz representation theorem,

cosh(a+1)cosh(a—1)

IF]l = l18all = v/(8a:8a) = V/8a(a) = \/ Sinh2

Now, put here a = 0. Then

cosh?1 cosh? 1
_ _ = th12.
| gol \/ sinh2 \/2 Sinh Teosh1 — ¥ c0 12

Consider in C[0,1] the set of functions f,(t) = ¢*. What can we say about the

convergence?

Consider the functional 1
Folf) = £lt0) = JO f(r)dg

for the step function with a step of height 1 at t =179. Let us evaluate it at the

sequence fy:

0, e [O, 1),
1, t=1.
For weak convergence, we should have F;(f) as the right-hand side, if f,, — f. But the

function on the right-hand side is discontinuous, so f, # f, and, therefore, f, - f.

Ffo(fn>:t(r)l—’0:{
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3) Consider the same set of functions, but now in (L,[0,1])* = L,[0,1] for 1 < p < 0.

a)

First, suppose that 1 < p < co. Then, working with f, as with functions
from L,[0,1], we get

! 1/q 1 \1/a
I fallz, = <f0 t"th> = (nq+ 1) —0 as n— .

Thus, we have weak and =weak convergence.

Now suppose that p = 1. In this case, |f,|r, =1 since the supremum is 1. It
is not obvious if f, converges to any function from Ly [0, 1]. Let us begin with

the weakest convergence — #-weak convergence. It means that

fn € (Ll)*.

How to evaluate this at some function? Like that:
1
7o) = | st)an (12.1)
0

The integrand t"g(t) converges to zero: t"g(t) — 0 (almost everywhere). Further,

provide an upper bound

"¢ (t)| < |g(t)] € Li.
By Lebesgue’s dominated convergence theorem, for f,, — f a.e. with a bound
dgelLy: |ful <g, feL; and

tim [ fudp = | tim fudn = | au.

Therefore, we have weak convergence to zero: f, — 0. Note that f, s f means
that 3A, u(A) = 0 such that Yxe Q\A: f,(x) — f(x). Taking the limit inside the
integral in (12.1)), we obtain

1
Tn(g) = f lim f,g(t)dt — 0.

0 n—aoo

Thus, we have #-weak convergence to the zero functional: f, = 0.

To study the weak convergence, one must take the functionals from the second
dual space F € L{* = L3, and this problem is nontrivial since the structure of
this space is quite complicated. Although, to prove that the weak convergence
is violated, one can take a single functional.

All f,(t) =" are continuous. Note that we are considering f, as an element

of Ly. So, it is convenient to take the functional of evaluating at a point, that
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is, Fyy(fa) = fulto) in C[0,1], and construct its extension to the entire Ly using
the Hahn-Banach theorem:

0, o € [0,1),

E()(fn)—’ﬁto(fn):tg_){l -
’ 0o=454

and the limit is not equal to F(0).

Self-Study Exercises

ol
1) Consider the space W,[0,1] = {f € W, [0,1]: f(0) = f(1) = 0} (the Sobolev space

with Dirichlet boundary conditions). Due to the boundary conditions, it is possible

f.s =01Jf 2

For a€ (0,1), consider F,(f) = f(a

to prove that

a) Find g = g, such that f(a) = (f,ga)-
b) Find the norm ||F,|.

2) In the Bergman space

AL;(D) = {feA lz] < 1): ff ?dxdy < oo, z—x+zy},

x2+yr<l1

” f(2)g(z)dxdy.

el<1

dot product is given by

a) Check that {z5}{°, is an ONS. Note that the power series for AL,-functions

uniformly converge on any compact set:

0
Z) = Z akzk.
k=0

From the uniform convergence, one can derive the convergence in the integral

sense, so it is the way to see that this space is complete.

b) Consider the functional F;,(f) = f(zo). Find the norm |F;,|. Note that near the
boundary, the behavior of an analytic function may be quite bad, and one can

see it through this functional.
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c¢) Try to find the reproducing kernel.

Consider f,(t) = sin(znt) in C[0,1]. Study the convergence with respect to norm

and weak convergence.

Consider f,(r) = sin(znt) in (Ly[0,1])*. Study the convergence with respect to norm

and weak convergence.
Consider A,, Ay, and Ay in £5. Find the adjoint operators.

Consider
b

Mﬁw=fK®Qth

a

in L[a,b]. Find the adjoint operator.

Consider
Mﬁw=Lfmm

in L,[0,1]. Find the adjoint operator.
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Lecture 13. Adjoint, Self-Adjoint, and Normal
Operators. Hellinger—Toeplitz Theorem

Banach Adjoint Operators

Linear Algebra usually deals with Hilbert adjoint operators, which we are to discuss

a little later. Now we begin with the definition of the Banach adjoint operator.

Definition 13.1. Let X, Y be Banach spaces, and A € B(X,Y). An adjoint operator

A" Y* — X* is an operator such that
VieY* vxeX (A'f)x):=f(x).
Remark 13.1. Banach adjoint satisfies the following properties:
1) Ale L(Y*,X™).

2) A'e B(Y*,X*). Moreover, norm of the operator coincides with the norm of its adjoint.

We will prove that.
Statement 13.1. |A'| = |A].

Proof. By definition:

|A") = sup [A"f];
I£1=1

(A'f) is a functional, so we use the norm of the adjoint space:

sup [A"f| = sup sup [(A"f)(x)],
If=1 Il=1l=1

which can be rewritten as

sup sup |(A'f)(x)| = sup sup |f(Ax)|
I£1=1=1 I£1=1=1

by definition of A’. Then, one can write the upper bound:

sup sup |f(Ax)| < sup sup [[f]-[|Ax] = [A]. (13.1)
I£I=1e] =1 I£l=1lld]=1

There is only one place where we have an inequality. To prove the equality, we will use

the first corollary of the Hahn-Banach theorem:
Vx#0 JfeXx®: [fl=1, fx)=x.
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For A # 0 (note that A = 0 is trivial to consider), there exists x such that Ax # 0. For this
x, there exists a functional f € Y* with unit norm such that f(Ax) = |Ax|. Then, for this
functional, we obtain an equality in (13.1), so [A’[ = ||A]. O

Consider an example of finding the adjoint operator. Typical examples of Banach

adjoint operators arise in such spaces as ¢,, p # 2, and Cla, b].

Example 13.1. Consider

fx), x€[0,1],

A:Cl0,2] > C[0,2], (Af)(x) =
[0,2] — C[0,2] (Af)(x) {f(l), e (1]

and see Fig. 13.1.

0.5 1.0 1.5 2.0

Puc. 13.1. f(x) (green) and (Af)(x) (red).

What is the adjoint operator? To answer this question, it is important to choose
an appropriate language for description of action of the adjoint operator. It acts in the

dual space, so we must construct an operator
A’ (C[0,2])* — (C[0,2])*, (C[0,2])* 2 G — W € (C[0,2])*.
By Riesz’s theorem, these spaces are isometrically isomorphic BVy[0,2]:
2
Glf) = | s0ds. (0.2 26 o geBI0.2]
2
W(h) = J h(t)dw, (C[0,2])* 2 W < w e BV)[0,2].

0
Thus, we can describe the action of A” on functions from BVy[0,2]. We start with A'G =W :

2
wmm=wm=Lf@mw,
7
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where, by the definition of the adjoint operator,

1
(A'G)(f) = GAf) = f( £ jf Vdg(r) + £(1 >f0 $(0),
which gives 1
(A'G)(f) = jo F)dg(e) + F(1) (8(2) — g(1+0)).

Now we must obtain the image of g under A’. It is clear that w(t) = g(t) fort€[0,1], since
we have the integration from O to 1. Then, we have an evaluation at the point 1: f(1); so,
the second term can be represented in terms of the step function with step g(2) —g(1+0).
Further, betweent =1 andt =2, the function must be constant since there is no integration

term over this interval. Thus, we obtain

o {g<r>, reo.1]
8(2)—g(1+0)+g(1), 1e(1,2],

see Fig. 13.2.

 5(2)-g(1+0)

08
06
04+

02-

I I I I
0.5 1.0 1.5 2.0

Puc. 13.2. g(t) (green) and w(z) (red).

This is the complete description of A’.

Hilbert Adjoint Operators
Definition 13.2. Let H be a Hilbert space, A€ B(H). Define A*: H — H by
(Ax,y) = (x,A%y).
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A* is called an adjoint operator of the operator A.

Why does this equality define an operator? It is quite simple to explain in Linear
Algebra, where one can introduce a basis, write the operator A in the matrix form, then
write down this equality and see that it defines an operator A* with a matrix, which
is obtained from A by conjugate transpose. Unfortunately, this cannot be generalized to
infinite-dimensional spaces. For separable spaces, one can try to describe this construction
using infinite-dimensional matrices, though it cannot be applied to nonseparable spaces.

To prove that the adjoint operator is well-defined, one should use Riesz’s theorem. For
given A and fixed y, consider the left-hand side as a functional: f(x) = (Ax,y). It is linear,
and

[f )| < [Ax] -yl < Al lx] - ¥,
therefore, f is bounded. Thus, due to Riesz’s theorem, there exists z € H such that
f(x) = (x,z2), so we see that
(Ax,y) = (x,2).
The dot product is sesquilinear with respect to the second argument, but y and z are both
second arguments, so z depends on y linearly; let us substitute a linear combination of y;

to the second argument:

(Ax, ay1 + By2) = A(Ax,y1) + B(Ax,y2) = U(x,21) + B(x,22) = (x, 021 + Bz2).
Therefore, this construction defines a linear operator, and we put, by definition, z:= A*y.

Lemma 13.1. Let A€ B(H), where H is a Hilbert space. Then

|l = sup [(Ax,)].
ll=Iy1=1

Proof.

1) In one direction, we simply write the upper bound
|(Ax, y)| < [Ax]- [y < |A] -] - iyl
from which, taking the supremum over two unit spheres, we obtain

sup  |(Ax,y)| < |A].
el =lyl=1
2) In the other direction, we can consider the supremum over a part of the unit

sphere |ly| = 1:
Ax

sup  |(Ax,y)| = sup <Ax,A—>= sup ||Ax|| = |A],
Il =l =1 =1, Axv20,y=ax/jax| * IAX[7 =1 axz0
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where the last equality is indeed an equality since the vectors x such that Ax =0 do

not contribute to the supremum. O]

One can see that the order of arguments in the dot product have no influence on the

value of |(Ax,y)|, therefore,

Theorem 13.1 (Corollary). |A| = |A*].

Self-Adjoint Operators

Definition 13.3. An operator A is called self-adjoint if A =A*.

This notion is quite important, especially in Quantum Mechanics, where observables
are some self-adjoint operators, and the values of the observable are points of the spectrum
of the corresponding self-adjoint operator.

One can see that self-adjoint operators can be defined only in Hilbert spaces, since
the Banach adjoint acts in the dual space. There is also a minor difference between the
Banach and Hilbert adjoint operators. Let us multiply the original operator by a constant.
Then

(aA) = aA’, (0A)* = aA*.

It is similar to substitution of variables for the tensor field, where the vector and functional

components change with respect to different laws.

Example 13.2. 1) In ¢, consider the operators Ay, A,. It is clear that A} = Ay,

A} = A,. Moreover, for a bounded operator A,
A=A
which is not exactly true in the case of unbounded A.

2) In ly, consider Agx = (QX],...,0Xy,...), Q€ Ly. The adjoint operator is A} = Ag

since

0 [e¢]
(Agx,y) = Z OUXicyy = 2 X0y = (x,A%y).
k=1 k=1

One can see that Ay is self-adjoint iff the sequence @ is real-valued.
Definition 13.4. Let U: H — H. U is called a unitary operator if
1) U is bijection,

2) Vx,ye H: (Ux,Uy) = (x,y).
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For example, A, is not unitary since it is not a bijection. Although, in two-sided /3,
that is ¢3(Z), both A, and A, are unitary.

Jumping ahead, a bijective bounded operator has a bounded inverse. One can see that
(Ux,Uy) = (x,U*Uy) = (x,y),

where the equality holds for any x and y. so U*U = I; therefore, U~ = U*.

The inverse operator for Ag, o # 0 Vk, is Ay /q. Therefore, for Ag to be unitary, it is
necessary that o = 1/, which means |og| = 1: o = e'%.

Now, let us move on to projections. Let X be a Banach space and Xy < X be a closed
subspace. Suppose that there exists X; (note that it is not unique) such that X = Xo®X)
(note that X; is closed as well). Then, any x € X can be decomposed into x = xo + x1,

Xj € Xj.
Definition 13.5. P is a projection operator onto Xy along X if Px = xg.

This is a geometric definition of the projection. One can also give an algebraic one in
the following way:
PP=P

Y

so the projection is an idempotent operator.

Let us provide an example where X; is not unique. Consider X = R?, Xo = ((1,0)).
Then one can see that X; = ((0,1)) and X{ = {(1,1)) are both closed, and, for both of
them, the sums are direct: X = Xy ®X; = X @Xl’.

We can consider this construction in a Hilbert space as well. A Hilbert space has
an additional geometric structure, represented by orthogonality. So, it is possible to

consider orthogonal projections.

Theorem 13.2. Let H be a Hilbert space, and H = Hy@® Hy, where H; are closed. Let P
be a projection onto Xo along X;. Then

Hy | H = P=P*

Proof. Note that P? = P since P is a projection. Note also that I — P is a projection
onto H; along Hy:
x=x0+ (x—x0) = Px+ (I — P)x.

We will first prove the theorem in < direction. Let Px =xg € Hy, (I —P)y =y; € H;. We
have to prove that (xp,y;) = 0. (xp,y1) can be rewritten as (Px, (I —P)y), and then we use
that P is self-adjoint:

(Px,(I—P)y) = (x,P(I-P)y) = (x,(P—P*)y) =0,
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since P—P? = 0. In = direction, the proof is also simple. We must verify that P can be

taken from the first argument to the second one in (Px,y). By the definition of P,

(Px>y) = (X(),y) = (Xo,y() +YI)

and, since (xp,y1) =0, (x1,y0) =0,

(x0,y0 +y1) = (x0,y0) = (x0 +x1,¥0) = (x,Py). O

Normal Operators

Definition 13.6. Let H be a Hilbert space, A€ B(H). A is normal if A*A = AA*.
Example 13.3. 1) A=A" = A is normal.
2) U*=U"! = U is normal.

3) Ag in ly is normal:
A:;Aa = AaAZ = A|(X|2'

4) Ay, Ay are not normal:
A:Ar:AﬁAr:I, 147‘14;I= :ArA(:Pe%,
where Pux= (0,x2,x3,...).

Properties of normal operators are quite close to ones for self-adjoint operators. There
is an analogy of some sort: a self-adjoint operator is similar to multiplication by a real-
valued function, while a normal operator is similar to multiplication by a complex-valued

one.

Theorem 13.3 (Properties of Normal Operators). 1) If A is normal, then YA € C:

A — Al is normal.
2) If A is normal, then Vxe H: ||Ax|| = |A*x].
Proof. Property 1 is obvious. Let us prove property 2:

|Ax|? = (Ax,Ax) = (A*Ax,x) = (AA*x,x) = (A*x,A*x) = |A*x|2. O
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Quadratic Form Associated to an Operator

Definition 13.7. Let A € B(H), where H is a Hilbert space. The form (Ax,x) is called

a quadratic form associated to an operator A.

For an arbitrary operator, this form is quite useless, though it has a lot of applications

in case the operator is self-adjoint. It is clear that for A = A* the form (Ax,x) is real-valued

Vx € H since (Ax,x) = (x,Ax) = (Ax,x).
Recall that the norm of an operator can be represented in the form of supremum of
|(Ax,y)| over two unit spheres. For self-adjoint operators, one can find the norm via taking

supremum of the quadratic over a single sphere:

Theorem 13.4. Let A =A* in a Hilbert space H. Then

|Al = sup |(Ax,x)|.
=1

Proof. Denote the right-hand side by C:

C := sup |(Ax,x)|.

x| =1
1) For any bounded operator A,
2
|(Ax,x)| < [Ax] - x| < [A] - x]*,
therefore, C < |A].

2) For A = A*, consider two quadratic forms, with x +y:

(A(Hy),xw) - (A(x—y),x—y> = (Ax,x)+(Ax,y) + (Ay,x) + (Ay,y)—
Ax,y

—(Ax,x)+(Ax,y) + (Ay,x) — (Ay,y) =
=2(Ax,y) +2(Ay,y) = 4Re(Ax,y),

thus,
1
Re(4x,y) = 7 { (AGx+9),0+3) = (Al =)0 -y) }.
Let us try to estimate an absolute value of this expression:

|Re(Ax,y)| < %{‘(A(x—ky),x—i—y)‘+‘<A(x—y),x—y)’}.

It is clear that |(Ax,x)| < C|x|?, where C is the supremum of the left-hand side over

the unit sphere. Therefore,

|Re(Ax,y)| < 7 (Jx+y]? + [x—y[?),

&~ 0
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and, due to the parallelogram law for the dot product, this implies
C
|Re(Ax,y)| < E(Mz +y[?)- (13.2)

Now we must choose y in an appropriate way. First, its norm must be equal to the
norm of x, for the right-hand side to be equal to C|x|?. Second, we want (Ax,y) to

be real. Taking
ol
Y= o Xl
| Ax]
we see that [y|| = |||, and inequality (13.2)) becomes
2
[ Ax][lx] < Cllx]7,
therefore, |[Ax| < C|x|. Taking the supremum over the unit sphere, we obtain

|A| = sup |Ax| <C. O
=1

Boundedness and Weak Boundedness of Sets in Normed Spaces

Consider the so-called wuniform boundedness principle, which will be necessary in

further developments.

Theorem 13.5 (Banach-Steinhaus). Let X be a Banach space and Y be a normed space.
Let {Aa}aen be a family of bounded operators, Aq € B(X,Y), and Yxe X : |Agx| < c(x) with
c(x) independent of a. Then

sup||Aq | < 0.
aeA

Although the proof of this theorem is not very difficult, we will omit it.

A bounded set M c X, where X is a normed space, can be defined as follows:
1C>0: YxeM |x]|<C.
A set M is called a weakly bounded set, if
VieX*: VxeM: |f(x)|<C(f).

Note that the bound on the right-hand side depends only on f and is independent of x € M.

A surprising fact is that there is no difference between these two concepts:
1) It is obvious that a bounded set is weakly bounded:
FOI< A Xl < C-[fl =€)
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2) In the opposite direction,

Statement 13.2. A weakly bounded set is bounded.

Proof. Consider a family of functionals F, : X* — C, xe M, F, € X**. The action of

these functionals is defined by the canonical embedding:
VieX*: E(f)=f(x).
By Corollary 3 of the Hahn—Banach theorem,
[E =

therefore, Vx € M F; is bounded. By weak boundedness of M, one can write

where the right-hand side is independent of x. By the Banach—Steinhaus theorem,
we conclude

sup||Fy| < oo,
xeM

where the left-hand side is equal to ||x|, so M is bounded. O

Hellinger—Toeplitz Theorem

Consider typical operators from Quantum Mechanics, more precisely, the position and
momentum operators. An interesting fact is that these operators are unbounded in L,.
In further lectures, we will see that symmetric unbounded operators must have some
domain (a subset of the entire Hilbert space where it is well-defined). For now, consider

the position operator
A:L(R) = Ly(R), (Af)(x) =xf(x).

For f e L,(R), the function xf(x) may not belong to L,(R), so one must define domain of
the operator A:

D(A) = {felr(R): xfeLy(R)}.

Now, it is time to formulate the following theorem:

Theorem 13.6 (Hellinger—Toeplitz). Let H be a Hilbert space, A€ L(H), and Vx,y€ H:
(Ax,y) = (x,Ay).
Then A is bounded.
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Note that in example above, A is symmetric since x is a real-valued function:

(Af.g) = JRxﬂxmdx - JRf(X)ngX) dx = (f,Ag).

This operator is also unbounded. Therefore, due to the Hellinger—Toeplitz theorem, it
cannot be defined on the entire space L,(R), so it has some domain.

Proof (of the Hellinger-Toeplitz Theorem) by contradiction. Let A be unbounded.
Then

W ] =1, [|Ax| = n

Consider functionals
fn(x) = (Ax,x,).
One can see that |f,(x)] = |(x,Ax,)| < ||x] - |[Axn|, therefore, f, is bounded: | f,| < [Ax,|

(while the bound depends on n). Using the symmetry of A, we can obtain another bound:
[fa ()| = 1(Ax,x0) | < [Ax] - |xa]| = [ Ax]

with a bound independent of n. Then, by the Banach—Steinhaus theorem, this family is

uniformly bounded:

sup| fa| < 0.
n

At the same time,

fn( Ay > = ( Ay A ) = |Ax,|| = n.

Jax, [/~ \Jax, [ ™
Therefore, the family is not bounded, which gives us a contradiction. m
In further, when we will proceed to studying unbounded operators with more depth,
we will consider the operator
Af = —if,
f € L,[0,1]. This operator is unbounded since, being applied to sinznx, |sinnx| = /2, it
gives ||Asinznx| = mny/2. What is the domain of this operator? The most natural one is
the Sobolev space:
D(A) = {feW,[0,1], f(0) = f(1) = 0}.
Consider the following dot product:
1 - S 1 -
(AF8) = || —if (sTds = ~if 0], + | i WG = (1.Ag)

0

In fact, this operator is not self-adjoint since the condition f(0) = f(1) =0 is very

restrictive, and the domain of the self-adjoint operator must be broader.
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Lecture 14. Adjoint Operators: Exercises

Discussion of Self-Study Problems from the Previous Lecture

We will begin with discussion of the self-study problems from Lecture 12.

1) Consider the space W, [0,1] = {f € W,[0,1]: f(0) = f(1) = 0} (the Sobolev space
with Dirichlet boundary conditions). Consider a functional F,(f) = f(a), a€ (0,1).
By Riesz’s theorem, f(a) = (f,g4). The aim is to find the function g,, to find the

norm of F,, and to find the reproducing kernel.
Note that 1
(Frg0) = | P

The idea is to use the integration by parts. The catch is that, in this case, the
existence of higher derivatives of the function g, is required. Nevertheless, it is the
only simple way to find g,, so we will try it anyway. First, decompose the integral
into the sum of two, and then integrate by parts, taking the boundary conditions

into account:

a 1
- @gh(a=0) | FWERds— fla)g'(a+0)~ | foeilax
Thus, we must impose the following conditions for g,:
" 0, xe][0,a), , ,
ga(x) = ga(a_0>_ga<a+0> =1, ga<a_0> :ga(a+0)'
0, xe(a,l],

where the conditions for the second derivative are considered independently on given

intervals (g, is expected to be piecewise linear). Let us substitute g, of the form
Ax, x€[0,a),
8al(x) =
B(1—x), xe€(a,l].
This function automatically satisfies the boundary conditions. The conditions for g,

and g/, allows one to find A and B. Substituting the continuity condition, we get

Aa
Aa=B(1—- B = .
a (l1—a) = a

The condition for the first derivative, with g’(a —0) = A and g} (a+0) = —B, gives

A
A+B=1, = A+-22% _q,
1—a

127



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES
IGOR SHEIPAK STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

so A =1—a, B=a. Whence, we finally obtain

where the value x = a is included into the second interval (note that g, is continuous,

so, in fact, it does not matter where to include it).

By Riesz’s theorem, |F,|| = |ga|. So,

|Fall = Igall = /(8a:84) = V/8ala) = v/a(1 ~a).

The greatest possible value of this norm is 1/2.

By definition,
K(a,b) = (8»,84) = gp(a).
For convenience, we write out the formula for g;:
x(1=0b), xel0,b),
8h(x) =
b(l—x), xe][b,1],
and, using this, write K(a,b):
a(l—b), a<b,
K(a,b) =
b(l1—a),a>b.
This is exactly the reproducing kernel of this space. With this kernel, one can

consider another Hilbert space, where dot product has the kernel function as weight.

2) In the Bergman space

ALz(D):{feA(|z]<1): ” ]f(z)|2dxdy<oo,z=x+iy},

x2+y?r<l

dot product is given by

(f.8) = f f (s dxdy.
lz]<1

It is a Hilbert space.

a) Consider {z5}?°,.

) 1 r2m
(2" = fj zkz_"dxdyzzéeupjf Al =me grd .
0 Jo
x2+yr<l1
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The integral of k=M@ with respect to @ over the period is equal to O for k # n.
Thus,
0, k#n,
(=1 =
n+1’
where, for k = n, we have the squared norm of 7, so

:n7

n+1z”
T

én =

is an orthonormal basis: it is a closed system with (e;,e;) = §;;, and Taylor
series for any analytic function converges uniformly to this function on any

compact subset of the given domain.

Consider the expansion
o0

f(Z) = Z akzk.

k=0
Multiplying and dividing each term by the norm of zX, we obtain the Fourier

series with respect to the system {ex}2 ;:

Zak\/k_’_ €

and then, write out the Fourier series for g:

o0
= Z bkek.
k=0

Consider the point evaluation functional:

F(f) = f(z0)-

By Riesz’s theorem,

F(f) = f(z0) = (f.8) = wa«/iz?;
20 8 ]g;)k k+1k

one can see that, due to the convergence of series for f,

o0 e}
3 - S
k=0 k=0

From this, we can obtain that
[k+1_
by =1\ —72p.
k p 20
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By Parseval’s identity,
2 2
IF1° = el

SO

[e¢]
|F] = Z (k + 1)lzo[**.

s

We will calculate the sum using the substitution |z9|> =¢ < 1 (note that the

series converges uniformly in the unit ball):

i e Dlzof - (Ztm) (=) -

Therefore,

IFl = Tl

One can see that as we are approaching the boundary, the norm of F tends
to infinity. This is exactly why, in complex analysis, it is often necessary for
a function to be not only analytic within a circle but also continuous all the

way to the boundary.

Let us try to find the reproducing kernel K(z,w) = (gy,g;). Let

Q0 o0
W= ek, 8= ), brer.
k=0 k=0

Then " "
— k+1
K(Z,W) = (nggz) = 2 Ckbk = 2 —<Zw)ka
T
k=0 k=0
since
[k+1_ \/le_
=A| —Zk, Cr = A ——Wy.
T Zk k T k
Further,

D k+1 1 &
—— (W) = = (k+ 1) (zw)~.
/é) T £ 7[1;) ¢

Then, using the same trick with zw =¢, ¢t < 1, we obtain

(Zf“') e
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Exercises on Adjoint Operators

Let us find the adjoint operator for a multiplication operator:

Exercise 14.1. Ay: Ly[a,b] — Ly[a,b], where @ € Ly[a,b] is a certain function, and

(Agf)(x) = @(x)f(x).
1) Find Aj,.
2) When is it a self-adjoint operator?

3) When is it unitary?

1) To find Ag, we will use the definition:

b L b
@%ﬁ@:jwuvwmmm=ff@wwamw,

a

thus,

Apg = 9(x)g(x) = Ag.

2) It is clear that this operator is self-adjoint iff the function ¢ is real-valued almost

everywhere: (Ap =AG =Ag) < (9 =0 ae.).
3) Similarly, Ay is unitary iff |@(x)| =1 a.e.

Note also that the multiplication operator is normal in L, for any ¢ € L.

Consider a slightly more difficult problem:

Exercise 14.2. Ay: C[0,1] — C[0,1], (Apf)(x) = f(0)-x+ §, f(t)dt.
Find the Banach adjoint operator A’.

Recall that A’ : (C[0,1])* — (C[0,1])*. As before, we will describe the action of this
operator on the space BVy[0,1] instead of (C[0,1])*, since there is a one-to-one
correspondence between the functions from these spaces.

For convenience, decompose A into A; + Aj, where

(ALf)(x) = £(0) x, (Mﬁ@=fﬂmn

It is clear that (A+ B)' = A"+ B/, and similarly, for Hilbert adjoint operators, (A + B)* =

A* + B*. For the composition of operators, we have

(A1Az.. A" = AZAE | AT.(A1Ay. . A)* = AXA* | AT (A1Ay.. . Ay)* = AFAF .. AL

n‘*n—1- n‘*n—1-
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First, we will find A}:

1
AGLe W, (ALG() = Wi(f) = fo Fdw.

By definition,
1
Gi(Aif) = | S(Onds,
0

Comparing the right-hand sides of these equalities, we can guess the action of the operator.

Let us first equate the right-hand sides:

£(0) thdgl = Llfdwl.

One can see that w; is a step function, see Fig. 14.1.

2.0
1.9+
1.0~

05F

AI | | | 02 | | | 04 | | | 0.6 | | | 0.8 | | | 1.0
Puc. 14.1. Graph of wy(r).

The value of this jump is equal to f(0).

Now let us find out how A, acts. One can see that

1
%%Wh%m=LNMm

and, on the other hand,

W62) (1) = Galtaf) = | (| fi0)dr) o

0
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Comparing these two formulas, we can see what is the action of A;. Integrating the last

equality by parts, we get
Jol (fo(t)dt) dgr = fol f(e)dt- gz(x)’(l) - Ll f(x)g2(x)dx =
1 1
:f f)di-g2(1) = f f(x)g2(x) dx,
0 0

where ¢ can be replaced with x inside the integral:
1 1 1 1
| swar=| swax = [ rwdren)- | e
0 0 0 0
1 1
= | rdvgm - | fwnma,
0 0

S0 one can rewrite it as a single integral

Jolf(x)dx-gz(l)_Llf(x)gz(x)dx: Llf(x)d<g2(1)x_Jlg(t)dt)

0

This implies that

X

wy(x) = gz(l)x—JO g (t)dt.

Thus, finally,
1

g(t)dH—fO tdg- X(0,1]-

X

Alg=wi+wy =g(1)x—f0

Self-Study Exercises

1) In L,0,1], consider

X

(Af)(x) = j K1) f(t)dr.

0
Find A*. The answer must be written as (A*g)(x).

2) Apply the results of the previous problem to the following operator in L;[0, 1]
ane = | fwr
to find A*.
3) In CJ0,1], consider
a9 =) x| s s
Find A’.

133



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES
IGOR SHEIPAK STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

4) Let AB—BA =1 in a Banach space X. (Consider, e.g., A = d/dx, Bf = xf, then
AB—BA =1.) Prove that at least one of operators A, B is unbounded.

The results of this exercise demonstrate that Quantum Mechanics is a complicated
field of study, as it inevitably deals with unbounded operators. For example,
a relation of this kind, up to a constant factor, holds for the position and
momentum operators. This relation is known as the Heisenberg uncertainty

principle in Quantum Mechanics.
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Lecture 15. Compact Operators. Inverse Operator

Compact operators. Set of Compact Operators C(X,Y).

Properties of Compact Operators

Definition 15.1. Let X, Y be Banach spaces, and A € B(X,Y). A is called compact if,
for any bounded set M < X, the image AM = {Ax, x€ M} is precompact in Y.

Recall that in infinite-dimensional spaces, there exist bounded sets that are not
precompact; the unit ball is the standard example of such a set. Compact operators,
in contrast, have the remarkable property of “compressing” bounded sets, transforming
them in a way that resembles the behavior of sets in finite-dimensional spaces, even though
the setting remains infinite-dimensional.

Note that in finite-dimensional spaces, all operators are compact. This is one of the

examples below:
Example 15.1. 1) dimX, dimY < o0; given some norm, all operators become compact.

2) If dimY < and A € B(X,Y), then A is compact.

Before considering the next example, recall the definitions of range and rank of

an operator:

RnA:={yeY: dxeXs.t.y=Ax}, rkA:=dimRnA.

3) Let Ae B(X,Y) and tkA < . Then A is compact.

The condition that A is bounded is necessary; there are examples of unbounded

operators of rank 1.

Sometimes, the definition of a compact operator given above is not convenient, since,
to establish that A is compact, one must show that it makes any bounded set compact.

To resolve this issue, the following theorem can be employed.

Theorem 15.1. Let X, Y be Banach spaces, A € B(X,Y). Then A is compact iff the set
ABx|0,1], B[0,1] = {xe X : |x| <1}, is precompact in Y.

Proof. In direction =, the proof is obvious: claims that A is compact, we see that
Bx|[0,1] is a particular compact set.

Thus, our aim is to prove the inverse. Let M be a bounded set in X. This means that
JR>0: VYxeM |x|<R (McBx|[O,R]).
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As ABx|0, 1] is precompact, due to the Hausdorff criterion, Ve > 0 there exists a finite e-net
Y1,Y2,---,ym for ABx[0,1]. The idea of the proof is to construct an e-net for the image of
an arbitrary bounded set M. This set lies inside the ball of radius R; then Ry{,Ry>,...,Ry,
is an €R-net for AM:

VxeM i HAx—RyiH:RHA%—w <Re,

since |x/R| < 1. O
Definition 15.2. C(X,Y) is the space of all compact operators from X toY.
Now let us discuss the properties of compact operators.

Theorem 15.2. Let X, Y be Banach spaces, and A, Be C(X,Y). Then
0A+BBeC(X,Y).

This means that the space of compact operators is a linear supspace of the space of
bounded operators.

Proof. Let yi,y2,...,ym be an €-net for ABx|[0,1] and z;,22,...,2, be an &-net for
BBx[0,1]. The idea is to prove that {ayi—i—ﬁzj}?jj’.n:l is a net for (oA + BB)Bx|[0,1].
Vx € Bx[0,1],

|(aA + BB)x — (ayi + Bzj)| < el Ax =il + [B]|Bx - z],
and 3i: [|[Ax—y;| <€, 3j: |Bx—zj| < €; therefore,
|af[Ax =il + [Bl|Bx — zj]| < (|| +[B])e,
SO {ayi—FﬁZj}T}nZI is an (|| + |B|)e-net for (xA + BB)Bx|0,1]. O

Theorem 15.3. Let X, Y, Z, and W be Banach spaces, and A€ C(X,Y), Be B(Y,Z),
CeB(W,X). Then
BAeC(X,Z), ACeC(W,Y).

In other words, this means that the composition of a bounded and a compact operator
(in any order) is compact.

From the Algebra course, it is known that the space of bounded operators forms
an algebra. Naturally, the space of compact operators is a subalgebra of it, as established
in the previous theorem. Moreover, this theorem implies that the space of compact
operators forms a two-sided ideal within the algebra of bounded operators, provided that

the operators act in the same space.
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Proof. Consider the set ABx[0,1]; by the property of compact operators, it is
a precompact set in Y. Thus, Ve > 0 there exists a finite e-net yj,y2,...,y, for ABx[0,1].
Then, one can claim that Byj,Byy,...,By, is |B|le-net for (BA)(Bx[0,1]). Why so? Let
|x|| <1, xe X. Consider
BAx— Byl < B - Ax i,

and there exists i € {1,2,...,m} such that |Ax—y|| < &; therefore,
BAx— Bz < |B] -&.

The proof for AC is simpler. CBy[0,1] is a bounded set, since C is bounded. Then
A(CBw|0,1]) is a precompact set in Y. O

Theorem 15.4. Let X, Y be Banach spaces, {A,}," |, An € C(X,Y) Vn, and A, — A with
respect to norm. Then A € C(X,Y).

Proof. Take € > 0. We know that AN = N(g): Vn > N |A, —A| < €. Now, take some
n=N. Then A,Bx[0,1] is precompact in Y, so there exists a finite e-net yj,y2,...,y,. Let

us find out where A maps the elements yi,...,y,. Take x€ X, |x|| < I; then
JAx =y = Ax— Ayt + Anx — | < [Ax— Ayt + A — il < A — Al -] + A — v,
where x| <1, s0 [A—A,| - |x]| <€, and Ji: |A,x—yi| <&, so
|Ax —yil| < 2e. O

The following is a concise formulation of these theorems, provided the operators act

in a single space.
Theorem 15.5. C(X) is a closed two-sided ideal in B(X).

Let us give an example of an ideal in the space of n x n-matrices. Let

ayl ... Qaip
M,3A =
anl Ann
and B € M,, such that

bll bln

bij—na Dty
B = 0 0

bij+1a ¢ b

bnl bnn;
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i.e., bjx =0 (Vk). One can see that the space of the matrices of that form is a left ideal:
in BA, the j-th row vanishes as well.

Now, recall what a bounded operator does to a weakly convergent sequence.

Remark 15.1. Let X, Y be Banach spaces, A€ B(X,Y), and x, — x in X. Then Ax, — Ax
mY.

To demonstrate this, one can take an arbitrary f€Y* and prove that f(Ax,) — f(Ax).
The left-hand side s

flAxy) = (A f)(xn), where A'f=geX*, A :Y*—>X*
Thus, since g(x,) — g(x), where g =A'f, we get (A'f)(x) = f(Ax) on the right-hand side.

That is, a bounded operator preserves the weak convergence. In fact, a compact

operator makes the convergence stronger:

Theorem 15.6. Let X, Y be Banach spaces, A€ C(X,Y), and x, — x in X. Then
Axy, M Ax.
Proof by contradiction. Let Ax, / Ax. Then
de>0 Iy —> oo |Ax, —Ax]| =c.

We know that x,, — x (and also Ax,, — Ax, since A is bounded); therefore, {x,, } is weakly
bounded. Due to the Banach-Steinhaus theorem, the set {x,,} is bounded, thus, {Ax,,} is
precompact, that is,

dng; >0 Axy —yey,
J

and, simultaneously,
Axy, — Ax.
J

Additionally, we have
Axnkj -

since the convergence with respect to norm implies the weak convergence. If y # Ax, then,

due to the corollary of the Hahn—Banach theorem,
dfeY*:  fy) # f(Ax).
This gives us a contradiction, since
Axnkj —y and Ax,lkj — Ax.
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Therefore, y = Ax. This is the final contradiction between the condition |Ax,, —Ax| > ¢
and Axnkj — Ax, since ny; is a subsequence of ny. O

There are examples of bounded operators that turn weak convergence into norm
convergence, but are not compact; so this theorem is not a criterion for the compactness

of an operator. However, if the space if reflexive, this becomes a criterion.

Example: Integral Operators in Cla,b| and Ly[a,b|

Why compact operators are important? They arise in many applications, including
Mathematical Physics, where they appear as inverse to differential operators.

Now, we consider the following integral operator

b
(Af)(x) = f K(x,y)f(y)dy.

a

Theorem 15.7. If K(x,y) € C[a,b]?, then A e C(C[a,b]).

Note that this is a sufficient condition, but not a criterion. However, it is quite close
to necessary condition: K(x,y) must be continuous on [a,b]? except for a finite number of
continuous curves that are graphs of continuous functions.

Proof. We have to prove that the image of the unit ball is a precompact set. Consider
ABcpapila,b] = A{f € Cla,b] : |f] < 1}. Due to the Arzela—Ascoli theorem, this set must
be bounded and uniformly equicontinuous.

First, we show that A is bounded:

b
max|(A X)| = max
[a,b] ’( f)( )‘ [a,b]

where |f(1)] < /] <1, so

f K xt) Fo)di] < r[%f

a a

K|l (1) dr,

b b
max J K ()| ()] dr < max J K(xe.0)|

[a>b] a [avb] a

therefore, the image of the ball is bounded as well.
Now, prove the equicontinuity. Take € > 0. Note that any continuous function on

a compact set is uniformly continuous, so is K(x,t) on [a,b]?:
30 >0 V(xl,tl),(xz,tz)E[a,b]z, |X1*X2|+’t1*t2|<6 = |K(X1,t1)*K()C2,Z‘2)|<€.

Let us consider |(Af)(x1) — (Af)(x2)| and try to estimate it, given |x; —x3| < &:

(Af) (1) = (Af) (x2)| =

b b
f K(xl,t)f(t)dt—J K(xg,t)f(t)dt’ <

a a

b
< j K(xt,1) ~ K (o, )] (1),

a
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where |K(x1,t) — K(x2,7)| < € and |f(¢)| < | f]|, so

|(Af)(x1) = (Af) (x2)| < €(b —a),

therefore, ABcyp)[a,b] forms an equicontinuous family. Thus, due to the Arzela-Ascoli

theorem, ABc[ap) [a,b] is precompact, so A is a compact operator. ]
Theorem 15.8. If K(x,y) € Ly[a,b]?, then A € C(L[a,b]).

This time, the sufficient condition is far from being the necessary one.
I A, such that A, € C(Lo]a,b]).

The construction is simple: let {¢;};2, be an orthonormal basis in L[a,b], then

Proof. The idea is to construct operators A,, A,

{wij(x,1) = @i(x) @ (1)}

is an orthonormal basis in Ly[a,b]?. The function K(x,t) can be expanded into the Fourier

series
0

K(x,t) = > cijwi(x,1).
i,j=1

Consider a partial sum
n

Ky(x,t) = Z cijWij(x),

i,j=1

and the corresponding operator A,:

b
(Anf) (x) = f Ko(x,0) f(1) dr.

a

One can see that each of A, is of finite rank:

(A, f Z CijPi(x) @5t Z it Z J @;(t ,

7] 1 7] 1

so the image consists of linear combinations of ¢;, therefore, rkA, < n. Further,
[An]l < [KnlLypape = An€ CL2]a,b]).
Now, let us try to estimate |A, —A|:

b
(Au-a)f = | (Kaor) = Klx)) st

SO
An—A] < |Ku—Klpypapp — 0 as n— o,

therefore, A € C(Ly|a,b)). O
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Inverse Operator

Let X, Y be linear spaces, A € £L(X,Y).

Definition 15.3. An opemtorAg_1 :Y — X such that AZ_IA = Ix 1s called a left inverse of

an operator A. A,V 1Y — X such that AA;! = Iy is called a right inverse of an operator A.

Note that, e.g., a left inverse is not unique, and, moreover, it may be nonlinear; we
will provide some examples of nonlinear inverse operators a bit later.

One can see that if there exists a left inverse, then the operator A is injective (KerA =
{0}); if there exists a right inverse, then A is surjective (RnA =Y). Thus, if there are left
and right inverse, the operator is a bijection; moreover, left and right inverse coincide
(Ag_1 = A1), Let us show it: consider A;lAAfl. The compositions of operators are
associative, so, inserting brackets in different ways, we get

A'AA T =AY A AA ) =4

;
It HAZI, A7! then it is denoted as A~'and is unique.

Example 15.2. In {5, consider
Agx = ()CQ,X3, S )

One can see that the image of (1,0,0,...) vanishes, so Ay has a nontrivial kernel, and,
therefore, the operator is not injective. However, the image of Ay is the entire space (one
can reconstruct the preimage of any y € €y by shifting it to the right), so Ay is surjective.
The right inverse is A,:
AA, =1
It is not a left inverse:
AA; =P, L

since the first coordinate in the image is always zero (so the composition is a projection
onto elL). Obuviously, for the operator Ay, an operator Ay is a left inverse.

For Ay, there are other options of the right inverse operator. Consider, for instance,
the following one:

Bux = (a,x1,x2,...),

which is not even linear. Then AyB, =1 for any a. We will show that a two-sided inverse

cannot be nonlinear.

Theorem 15.9. Let Ae L(X,Y), where X, Y are linear spaces. IfIA™", then A= e £L(Y,X).
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Proof. Let us apply the inverse to a linear combination:

A"y + By2) =A™ (aAx; + BAxy),

where y; = Ax;, dlx;, since A is bijective. A is linear, so one can rewrite it as
A_1<OCAX1 + BAxy) = A_IA(chl + Bx2),

and then, collapsing A7'A = I, we get

A’IA(chl +Bxy) = axi + Bxy = aA "y + ATy,

so, by writing the beginning and the end of the chain of equalities, we obtain

A™ a1+ By2) = ¢A ™y + ATy,

which confirms the linearity of A~ m
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Lecture 16. Exercises on Compact and Inverse

Operators

Discussion of Self-Study Problems form the Previous Lecture
We begin with considering some of the self-study problems from Lecture 14.

3) In C[0,1], consider

1
(Af)(x) = 2(0) + x fo Feyde+ (1),
Find A’.
We know that A" : (C[0,1])* — (C[0,1])*:
(€[0,1])* 3G — W e (C[0,1])*, A'G=W.

For the functionals G, W from the dual space to C[0, 1], there are functions g,w €
BVy[0,1] that are in one-to-one correspondence with G and W respectively. Thus, to
describe the action of A’, it is sufficient to construct a function w that corresponds

to a given function g.
By definition,

worn =win = [ s
and, on the other hand, (A’G)(f) = G(Af), so

(AG)(f) = fo (2r0)+x jo o) (1) dg).

Let us first simplify it:
1 1
| (Froves| f(t)dt+f(1))dg(x)= |
- £(0) | st ff () di- jxdg<>+f< )| st

The integral of x with respect to dg(x) is independent of ¢; thus, one can include it

as a constant factor to dt:

f(O)J]x dg(x f nar- |

1

1
dg(a) +1(1) | det) -
=50 [ 2t f s [ xagto) 1) + 1) (s(1)-£00),
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where g(0) = 0.

Now, we must establish the behavior of w(t). It is equal to 0 at ¢ = 0; further, as

we have f(0) in the expression, it must have a step at t = 0+ 0 of height Sé x*dg(x).

Next, the function w(t) is linear until # = 1 —0. As we have the evaluation of f(¢) at

t =1 in the expression, there is a jump of height g(1). See Figure 16.1.

2.0

0.5

1
/ x? dg
0

Puc. 16.1. Graph of w(z).

Here is a complete description of w(z):

-

0,

1 1
2
wit) = 4 Lx dg+tJ0xdg,

0

\

g(1)

0.8 1.0

t=0,

te(0,1),

1 1
J xzdg—i—tj xdg+g(1), r=1.
0

4) Let AB—BA =1 in a Banach space X. (Consider, e.g., A = d/dx, Bf = xf, then
AB—BA =1.) Prove that at least one of operators A, B is unbounded.

First, consider AB" —B" = nB"~!. For n = 1, it is the given relation AB—BA = I. Let

us try to derive the formula for n = 2:

AB*>~B’A=AB-B—B-BA = (I+BA)B—B-BA = B+ B(AB— BA) = 2B.
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Now, we will prove it by induction. Suppose the equality holds for k = n:
AB" =nB""' + B"A.

Consider it for k =n+1:

ABI’Z+1 _Bl’l+1A :AB}’ZB_BI’!+1A _

—(nB" ' + B"A)B—B""'A = nB" + B'(AB—BA) = (n+1)B",
which completes the proof.

Due to this relation,
|nB"~!|| = |AB" —B"A| < |AB| - |B"~"| + [B"~"| - |BA],
and, dividing by |B"~!|, we obtain
n < |AB| +[BA| < 2|A] - | B]

for any n e N, so at least one of these operators is unbounded.

Exercises on Compact Operators
In />, consider a multiplication operator
Aax=(a1xl,a2x2,...), aeﬁoc.

We claim that

Ag € C(fz) < 0OEecq (i.e. klim oy = 0)
—00

To solve exercises on compact operators, one should remember the criteria for
precompactness in different spaces. In #,, the criterion is the following: M < ¢ is

precompact iff

a) M is bounded,
b) Ve >0 3n Vxe M:

0

(2 ) e

k=n+1
The second condition means that the tails are uniformly small, or, in other words,
the set is “almost finite-dimensional”.
=. For the operator to be compact, we must require that the image of the unit ball
is compact. Consider the basis elements
k
ex = (0,...,0,1,0,...) € By, [0,1].
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Their images {Aex};2, must form a precompact set. One can see that
Aer = (0,...,0,04,0,...).

There must exist n € N such that for k >n+1: || < €, so oy — 0.
<. Let o — 0. We must check that the image of AB(,[0,1] under the action of

corresponding operator is precompact.

Take x € ¢5 with |x| < 1. Then

© 1/2 © 1/2
Jax] = (3 lowen ) < suplal (Y bel)
k=1 k=1 k=1

and, since o € £, ABy,[0,1] is bounded.

Now, let us verify that the tails of the elements of the image are uniformly small.

Consider a partial sum
o0

(3]t

k=n+1
Since a € ¢,

Ve>0 dn: Vkz=n+1 |og| <e.

Then
© 1/2 © 1/2

< Z ]ockxk\> <8< Z \xk\> <€,

k=n+1 k=n+1

since ||x| < 1.

2) Consider
ane = [ rea
a) in C[0,1],
b) in L,[0,1] (later).

The operator can be written as

X 1
m>m=ffmw:ijaWMu

0

where

1, t<ux,
K(x,t) = { e L,[0,1]%
0, t>x
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We will prove that A € C(L,[0,1]) using a theorem from the previous lecture. For
C[0,1], we cannot use the corresponding theorem, since K(x,t) is discontinuous.

However, one can show it in a straightforward way.

Let feC[0,1], | f] < 1:

X X 1
Af| = 1) dt| < 1)|dr < di =1,
sl = max | [ ryar| < max | 170)1ar< | 11

so the image of the unit ball is bounded. Now, we will check the equicontinuity:
X X
ane - an) = | [ o] <| [ e <p-x,
y y

since |f(1)] < | f]. So, for [y —x| < €, it is sufficient to take § = €.

3) Consider Ay, A, in ¢5. Are these operators compact?

These operators are not compact. Let us prove it. Take the standard basis {ex};~ ;.
Then A, {ex} | = {ex}5, and |ex — em|| = V2, k # m; therefore, there is no Cauchy
subsequence. For Ay, the situation is similar: A, {ex};2; = {ex}2,. Recall that these
operators are adjoint to each other. In the next section, we will consider the relation

between the notions of compactness and adjointness.

Relation Between Notions of Compact and Adjoint Operators

Theorem 16.1 (without a proof). Let X, Y be Banach Spaces. Then
AeC(X,Y) < AecC(y*Xx".

The idea of the proof is to use the Arzela—Ascoli theorem.
The following theorem on Hilbert adjoint operators is not as difficult to prove as the

previous one:

Theorem 16.2. Let A€ B(H), where H is a Hilbert space.
If A*A is compact, then A is compact.
If AA* is compact, then A* is compact.

Proof. Since the statements of the theorem are symmetric, we will prove only the first
one. We must show that ABg|[0, 1] is precompact.
Take a sequence {yx};2, in ABy[0,1]. By the definition of ABy[0, 1],

Vk ka, ||ka <l: Vi =Axk.
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Consider the set {A*Ax;};° . It is precompact, since A*A is a compact operator, therefore,
there exists a Cauchy subsequence {A*Axy,}° ;. Now, let us use these indices for the image

of A:
19k, = Vi P = (A, — Xk, ), A(h, —%%,)) = (A*AQxr, —Xk,) Xk, — X, ) <

< [AA G, = x| - e, = >,
where |x;, —xg, || <2 and |A*A(xg, —xx,)|| — O as ky, ki — c0. Thus, we have found a Cauchy

subsequence, so the operator is compact. ]
Corollary 16.1. AcC(H) < A*€C(H).

Proof. The composition of a bounded operator and a compact operator is compact.
Suppose that A is compact. Then AA* is compact, and, due to the theorem, A* is compact.
If A* is compact, then we take a compact A*A, so A is compact. n

Let us continue solving the exercises.
3) Let X be a Banach space, dimX = oo, and A be a compact operator Then there is
no bounded A~

We will prove it by contradiction. Let there exists A~! € B(X); then AA~! = I. Since
A is compact and A~! is bounded, AA™! is a compact operator; but the identity
operator in an infinite-dimensional space is not compact since the unit ball is not

a precompact space.

4) Let ¢ € Cla,b] be some certain function. Consider

(Ap.f)(x) = @(x)f (x).

Then
ApeC(Cla,b]) <= o(x)=0.

This is the simplest example of a compact operator. The proof in < is obvious. Let
us prove the inverse by contradiction using the Arzela—Ascoli theorem.

Let 3xp: @(xp) # 0; without loss of generality, suppose ¢(xp) > 0. Then 36 >0, ¢ > 0:
@(x) > ¢ for x € (xp,x0+ 0) or x € (xo— 0,x0). Let xo # b, and take 1/n < §. Consider
a sequence fp, | full =1, see Fig. 16.2.
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1.2

0.6

0.4+~

0.2+

o+ 1/n
| I | 1 1 1 1 1
0.6 0.8 1.0

Puc. 16.2. Graph of f,(x).

{Afn} | is precompact, therefore, it is equicontinuous; let us estimate

(45) (3045~ (45 o) > .

since (A fn) (x0) =0 and (A fn> (xo + %) > ¢, which contradicts to the equicontinuity.

Note that in L[a,b] we will prove the same (more precisely, that multiplication
operator is compact iff the corresponding function vanishes almost everywhere) later

using the properties of spectrum.

Exercises on Inverse Operators

In C[0, 1], consider ’
Anw - | soa.
Is there a right or a left inverse?
Consider the operator B, Bf = f’. It is obvious that BA =1, so AZ_I =B.

Is there a right inverse? If there exists a right inverse C, AC = I, then A must be

surjective. One can see that
RnA = {ge C'[0,1], g(0) =0},
so the operator is not surjective, since RnA # C|[0, 1].
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2)

2)

Let X be a Banach space. Prove that if C: X — X, |C| <1, then 3(I+C)~!.

If we imagine that C is just a number, not an operator, then
1 o0
— =) c~
1-C =
We claim that

I-CO)'=1+Cc+C*+C+....

First, we have to explain why this sum converges. Consider, for n > m,

- ok ORI (ol
Si= 2005 Isi=Sul=| 3 < X Ict<
k=0 k=m+1 k=m+1 1=l

As m — o0, it decreases to 0; therefore, S, is a Cauchy sequence. Thus, since B(X,Y)

is a Banach space when Y is Banach, there exists a limit element

S= lim§S,.

n—0o0

Let us expand the expression for S, in (I —C)S,:

(I-C)Sy=I+C+C*+--- +C"—C—-C*— ... —C"—C"" =1-C""' T as n— oo,

Similarly, I +C) ! =I-C+C?>— -+ (=1)"C" +....

Self-Study Exercises

In L,[0, 1], consider the Hardy operator

ane =1 | s

a) Prove that A is bounded.

b) Prove that A is not compact.
Hint: item a) can be solved by definition. To solve item b), one can use the property
of compact operator from Lecture 15: a compact operator maps a weakly converging
sequence to a sequence converging with respect to norm. So, the aim is to find

an appropriate weakly converging sequence. Note that the operator seems to be bad
at x =0.

In some space, construct an operator A such that A% =0 and A is not compact.
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3) Consider A in £, defined as an infinite matrix A ~ (a;;);_, (Ax); = Z;O:] a;jxj. Prove
that

o O
ZZ\aij|2<oo = AeC(t).
i=1j=1

4) Consider the differential operator Af = f’ in C[0,1] with domain D(A) = C'[0,1].

Prove that there exists a right inverse, but it is not unique.

5) Consider
(AF)(x) = fx) jo f(t)dr

a) in C[0,1].
b) in L,[0,1].

Find the inverse operator. The answer must not involve infinite sums.
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Lecture 17. Spectrum of a Bounded Operator.

Classification of Points in the Spectrum

Banach Bounded Inverse Theorem

Let us continue to discuss inverse operators and property of invertibility. We begin

with the Banach Bounded Inverse theorem:

Theorem 17.1 (Banach Bounded Inverse Theorem, without a proof). Let X, Y be Banach
spaces, A€ B(X,Y). Then

JA~'eB(Y,X) < A is a bijection.

It is clear that a bijection has an inverse map; it is also clear that an invertible map
is a bijection. The most difficult part of this theorem is that the inverse is bounded.
Moreover, under weaker assumptions, i.e. that X and ¥ are just some normed space (not

complete), one can construct counterexamples.

Spectrum, Resolvent Set, and Resolvent

Definition 17.1. Let A € C, A € B(X), where X is a Banach space. We say that A is
a point of spectrum of the operator A (A € 6(A)) if A— Al is not a bijection.

The study of operator spectra is crucial for numerous applications. In particular, in
Quantum Mechanics, to each observable there corresponds a self-adjoint operator, and
any measured value of the observable in an experiment must lie within the spectrum of
that operator.

The complement to 6(A) is resolvent set:
Definition 17.2. p(A) = C\o(A) is called a resolvent set.

If A e p(A), there exists a bounded inverse Rj(A) = (A —Al)~! € B(X) (called
a resolvent).
If A is not bijective, there are two possibilities; it can be not injective or not surjective.

Thus, there are different points in the spectrum.

Classification of Points in the Spectrum

Let us consider the following possibilities for A € 6(A):
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1) A is not an injection: Ker(A — A1) # {0}:
Ix#0: (A-ADx=0 < Ax=Ax

Such A and x are called an eigenvalue and an eigenvector of A respectively. All

eigenvalues form a point spectrum, which we denote by o, (A).
2) A is an injection but not a surjection: Ker(A —AI) =0 and Rn(A — A1) # X.

a) Rn(A—AI) = X (the image is dense). Such A is called a point of the

continuous spectrum; we denote A € 6.(A).

b) Rn(A—AI) # X (the image is not dense). Such A is called a point of the

residual spectrum; we denote A € 6,(A).

Thus, the whole complex plane is decomposed into two disjoint sets, C = ¢ (A)

L p(4),
and the spectrum is decomposed into three components: 6(A) = 6,(A) L 6.(A) L 6-(A).

Properties of the Spectrum

Prior to studying the properties of the spectrum, we shall present the theorem on the

stability of invertibility.

Theorem 17.2. Let X be a Banach space, A€ B(X), and 3A~" € B(X). Let Be B(X) such
that

1
IB| < -
lA=1

Then 3(A+B)~' e B(X).

This means that a small (in some sense) perturbation does not affect the invertibility
of an operator.

Proof. Let us recall that if |C|| < 1 then 3(I+C)~".

Now, consider A +B = A(I + A~'B); this representation is valid since A is invertible.
The inverse operator to a composition is a composition of inverse in the inverse order,
ie., (A142)7 1 =AJ'AT! s0 (AU +A*IB))_l = (I+A7'B)"'A~1. There exists an inverse

to A, so we have to prove that there exists an inverse to (I +A~'B). Due to

I8l <
el

IA='B| < [|[A~Y| - |B| < 1, therefore, there exists an inverse to A + B of the form

A+B) '=(I+A"'B)y A =(1—A"'B+A"'BAT'B—..)A"L. O
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Theorem 17.3. 6(A) is a closed set (p(A) is open).

Proof. We will prove the second statement, so 6(A), being a complement to p(A),
would be automatically closed.

Let A9 € p(A), so A— Ayl is invertible, and suppose A belongs to some neighborhood
of Ay:

1
A— -
Aol < T 20T

We are to prove that A — Al is invertible as well.

First, decompose the operator:
A=A = (A= Jol) — (A= Do),

where the first one is invertible and the second one is a small perturbation:
1
[(A=20)I|| = |A = 2ol < 57— 77
[(A=20D)~1|
Then, due to the theorem above, there exists an inverse to A —AI, so A € p(A). O

As a side result, let us write the following representation for the inverse to A — Al =

(A—2ol) (1 - (0 — )R (4):
A= A1) = (- (A~ Ao Ry (A)) i A~ A0 (4);

this expression defines an analytic function of A (an operator-valued geometric series),

which converges for

1
A— -
A= ol < T 2D T

Theorem 17.4 (Spectrum Localization). Let X be a Banach space and A € B(X). Then
c(A)c{AeC: |A| <A}

Thus, spectrum of A lies within a disk of radius [|A].

Proof. An equivalent formulation of the theorem is the following: if |A| > |A|| then
A€ p(A). We will prove exactly this statement.

Suppose |A| > |A|. Then

1
A-Al=—2 (1— —A): (17.1)
denote C:=A/A, and calculate its norm:
lal
c H 4| - I
el - 4] - 13t <
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Thus, ((17.1) is invertible, and the inverse has the form

Z )Li (17.2)

which completes the proof. 0

(A—AD)"

>>|»—

Note that representation ((17.2)) looks similar to the Laurent series. In fact, it is a well-
known formula called a Neumann series for the resolvent.
Thus, for A € C such that

A —2o| < Aoep(A),

L
[R (A

we have the following representation for the resolvent:

0

Ru(4) = 3 (A — 20 REF (4),

k=0

and, for large A4, i.e., when |A| > |A[, the Neumann series (17.2)) becomes valid.
Theorem 17.5. Let X be a Banach space, A€ B(X). Then 6(A) # .

Note that the assumption that A is bounded is crucial: an unbounded operator may
have an empty spectrum. However, there are examples of bounded operators, spectrum
of which consists of a single point (for instance, A =0 and A =1).

Proof by contradiction. Suppose that o(A) = ¢J; then p(A) = C. Thus, the

resolvent Rj (A) is an analytic function on entire C. One can see that
[Ra(A)| =0 as [A]— o

due to the expansion into Neumann series. Therefore, it is bounded. Then, by Liouville’s
theorem from the course of Complex Analysis, R (A) is constant. Moreover, due to the
estimation above, Rj vanishes at infinity, so R, (A) = 0, which is a contradiction to the
invertibility of A —AI (note that the inverse must be invertible as well). O

There is another way to demostrate that the resolvent is continuous and analytic.

Theorem 17.6 (The First Hilbert Identity). Resolvent of an operator A satisfies the

relation
Ru(A) — Ry (4) = (11— L)y (A)Ry(A), (17.3)

where A, e p(A).
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Proof. Consider the equality
(A—Al)—(A—pl) = (u—2)I

and multiply it by Ry (A) on the left and R (A) on the right. Then we obtain equality (17.3)).
O
This identity has a profound corollaries. For instance, it is clear that the resolvent of

the same operator taken at different points of the resolvent space commute:
Ry (A)Ry(A) = Ru(A)Ry (A),

since, when swapping A and g in ((17.3]), one must change the signs on the left- and on
right-hand sides, so the identity preserves; it can be seen clearly from the symmetry of

the following expression

R (AR, (a) = R,

U # A, with respect to transposition A <> L.
Let us consider the limit g — A in (17.3)); then, since (4t —A) — 0 on the right-hand

side, the left-hand side approaches zero as well:
RH<A)_RX(A)7 ‘Ll—>/l,

which means that the resolvent Ry (A) is continuous with respect to A. Considering the

limit

we get the resolvent has a complex derivative (independent of the direction on the complex

plane).

Spectrum of the Adjoint Operator

At times, determining the spectrum of an operator proves to be a difficult task, while
the spectrum of its adjoint can be described with relative ease. Hence, it becomes essential
to understand the relationship between the spectrum of an operator and that of its adjoint.
For applications, the relationship between the spectra of Hilbert adjoint operators is of
greater importance; however, we will also discuss the situation involving Banach adjoint

operators.

Theorem 17.7. Let H be a Hilbert space, A€ B(H). Then

Aec(A) <« Aeoc(A”).
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In a Banach space, the relation is somewhat different:

Theorem 17.8 (without a proof). Let X be a Banach space, A€ B(X). Then
Aeoc(A) = Aeoc(A).

Proof of Theorem I7.7
Let us first note that the operations of taking the inverse and taking the adjoint

commute:

if the inverse exists (which is not always true, as opposed to the existence of the adjoint):
consider
(AAfl)*:(Afl)*A*:I’ (AflA)*:A*(Afl)*:L

then we see that (A~!)* = (A*)~L.
Further, let us formulate the statement of the theorem in the equivalent form:

Aep(A) < Aep(AY).
Suppose that A € p(A); then 3(A — AI)~!. Moreover, there exists
((a-an=) =@ -an",

which means that 4 € p(A*). O
Now, recall that we have the classification of points in the spectrum. Let us find out

what happens to this classification when taking the adjoint.
Theorem 17.9. Let H be a Hilbert space, A€ B(H). If A € 6,(A), then A € 6,(A*).
Remark 17.1. In Banach spaces, A € 6,(A) = A € 0,(A").

Proof. Suppose that A € 6,(A). Then, by definition of the residual spectrum, the image

of the operator is not dense in H:
Rn(A—AI) < H.
This space is nontrivial; thus, there exists a nonzero vector that is orthogonal to it:
Ix#0: x L Rn(A-AI),

which means that
VyeH: (x,(A—Al)y)=0.
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Using the definition of the adjoint operator, we rewrite it as
((A* —Il)x,y) =0 VyeH.
Since the vector (A* —Il)x is orthogonal to each y € H, it is zero, therefore,
A¥x = Ax,
so A € 0,(A%). O

Theorem 17.10. Let H be a Hilbert space, A€ B(H). If A € 6,(A), then A € 6,(A*) U
o, (A%).

Remark 17.2. In Banach spaces, A € 6,(A) = A € 6,(A") U G,(A").

Proof. First, note that due to Theorem m, if A € 6,(A) then A € 6(A*). Hence, it is
sufficient to prove that A does not belong to the continuous spectrum of A*. By definition,
if A € 6,(A) then 3x # 0: Ax = Ax, therefore,

VyeH: ((A—2Al)x,y)=0.
Then, by the definition of the adjoint operator,
VyeH: (x, (A*—Il)y) =0,

which means that Jx # 0: x L Rn(A* — AI), therefore, x L Rn(A* —4I), so the image of
A* — I is not dense in H; that is, A ¢ 6.(A*). ]

Example 17.1. In {5, consider the left- and right-shift operators:
Ax = (O,XI,XZ,...), Apx = ()Q,)Cg,...).

What are the spectra of Ay, Ay? These operators are adjoint to each other; it is more
convenient to study their spectra simultaneously.
First, let us try to find the point spectrum of A,:
(0=12Ax,
x1 = Axp,
Ax=Ax <= K

Xn = AXpy1,

\

In the first row, we have the product of two numbers that is equal to zero. This means that

either A or xy is equal to 0.
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1) Suppose A = 0. Then, the entire column of right-hand sides is zero, therefore, each
coordinate is equal to zero: xx =0 Yk =1,2,.... Therefore, x is not an eigenvector,

since an eigenvector must be nonzero.

2) Suppose x; =0, A # 0. Then, solving each equation one by one, we obtain x; =0,

x3=0, ..., 50 x is not an eigenvector again; thus, 6,(A,) = .

Now, consider the eigenequation for Ay:

"

X = Axq,
x3 = Axy,

Apx=Ax < X
Xpi1 = AXp,

L

Note that, since the operator is linear, one can seek for solutions (eigenvectors) up to
a constant factor. As above, condidering x; =0, we obtain that xo = x3 =--- =0. However,

e.qg., for A =0, the eigenequation for Ay has a solution:
Agel =0.

Let us proceed as follows: setting x; = 1, we obtain xo = A, x3 = A%, ...; since x must

belong to ¢, we must regire that
Q0
DTAPED < oo,
k=1

Thus, {|A| <1} < 0,(Ap).
What do we know about the norms of these operators? Since |A| = |A*|, the norms of

Ay and A, coincide. The norm of A, is equal to 1, therefore, the same is true for Ay:
|AA = Al = 1.

The spectrum belongs to the disk of radius equal to the norm of the operator (which is 1

in our case). Since the spectrum is a closed set, we obtain
o(Ay) =0o(A) = {|A]| <1}

Further, due to Theorem the residual spectrum of Ay is empty: 6,(Ay) = . Using
Theorem and the facts that o,(Ag) = {|A| < 1}, 0,(Ar) = &, we establish that
6,(A) = {]A] < 1}.
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The spectrum is closed; therefore, the only option for the boundary of the unit disk is

to belong to the continuous spectrum:
Gc(Ar> = GC(AZ) = {|A'| = 1}'

The results can be summarized in a table:

A, Ay
o, | Al <1
G | |A|=1 A =1
o | IA[<1 2

Spectrum of a Normal Operator

Recall that a normal operator is an operator that commutes with its adjoint; A, and

A, above serve as examples of nonnormal ones.

Let us formulate the following theorem regarding the structure of spectrum of a normal
operator:

Theorem 17.11. Let A be a normal operator in a Hilbert space H. Then 6,(A) = .
Proof by contradiction. Suppose that A € 6,(A). Then A € 0,(A*), therefore,
Ix#0: A*x=2Ax.
Recall that for a normal A, A — Al is also normal; further,
|Ax] = [A%x].

Let us take the vector apply this operatot to x:

[(A=AD)x| = (A" = A1),
where the right-hand side is zero, since x is an eigenvector of A* corresponding to A. Thus,

[(A=AD)x]| =0,

therefore, A € 6,(A), which is a contradiction to our assumption A € 6,(A) (note that the

discrete and residual spectrum do not intersect). O

Recall that self-adjoint, unitary, and multiplication operators are normal. Therefore,

they all have empty residual spectrum.
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Spectrum of a Self-Adjoint Operator

We already know that for A = A*, the residual specrum is empty: 0,(A) = .
In Linear Algebra, all symmetric operators have purely real (discrete) spectrum. In the
infinite-dimensional setting, for self-adjoint operators, the spectrum is also real, however,

it may be a disjoint union of the point and continuous spectra.

Lemma 17.1. Let X be a Banach space, Y be a normed space, A€ B(X,Y), and
de>0 VxeX: |Ax| = c|x|.

Then RnA is closed.

Remark 17.3. Why is it important to study the spectrum? Assume that for some A, we
have proved
[(A—=AD)x| = c|x]. (17.4)

Therefore, A cannot belong to the continuous spectrum, since due to the lemma the image
of A— Al is closed (while, for A to belong to the continuous spectrum, the image and its

closure must be different sets).

Note also that bound (17.4) implies that A is injective.

Proof. Suppose that y is a limit point of RnA; then
dyn € RnA,  y, —y.
By definition, 3x,: Ax, = y,. Let us rewrite inequality (17.4]) in the following way:
1
e =26l < = [y = -

yn — ¥, so it is a Cauchy sequence, therefore, x, is also Cauchy. Since X is Banach, the
limit point belongs to X: x, — x € X. Since the operator is continuous (which is equivalent
to that it is bounded), Ax, — Ax. Thus, Ax =y, so y € RnA, which means that the image

is closed. O

Theorem 17.12. Let A =A* € B(H), where H is a Hilbert space. Then
c(A) cR.

Proof.
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1) Suppose that A € 6,(A). Then
Ix#0: Ax=Ax.
Let us take the dot product of this equality with the same vector:
(Ax,x) = (Ax,x) = A|x|>.
Rewriting the left-hand side, we obtain
(x,Ax) = (x,Ax) = A x|,
therefore, A |x|[> = A[x|?, x| # 0, s0 A = 4.
2) Suppose that A € 6.(A), A = a+if}, B # 0, and consider
[(A=AD)|* = (A—al —iBI)x,(A—al —iBI)x) = [(A—ad)x|*+if (A — al)x,x) —if (x,(A— al)x) +

Since (A—al)* =A* — ol = A— al, the second and the third term cancel each other.

Thus, we arrive at the bound
[(A=AD)]| = |B]]x].

Due to the lemma above, the image of A — A[ is closed, therefore, A ¢ 6.(A), which

is a contradiction to our assumption. Therefore, o.(A) < R.

3) For A = A*, 6,(A) = &. 0

Spectral Radius

Furthermore, we can say that for A = A*, the spectrum belongs to the interval:
o(A) < [—|A],|A]]]. However, this estimation is not quite sharp: e.g., consider A = I; for
this operator, we obtain o(I)  [—1, 1], while in fact o(I) = {1}. To resolve this issue, we

will use a new notion.

Definition 17.3. Let X be a Banach space and A € B(X). The spectral radius of A is
defined as
r(A) = max |A|.
Aec(A)

The theorem on spectrum localization implies the following inequality:

r(A) < |Al.
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One can see that this inequality is not sharp. Consider, for instance, a Jordan matrix of

(0 )

For this operator, we have r(A) =0, since 6(A) = {0}, while |A| > 0, since the operator is

the form

nonzero.
However, for normal (and, therefore, for self-adjoint) operators the spectral radius

coincides with the norm:
Theorem 17.13 (Gelfand’s Spectral Radius Formula, without proof).

r(A) = lim |A"|"/".

n—o0

Remark 17.4. Applying the Cauchy—Hadamard theorem, which determines the radius of

convergence for power series, to the resolvent in the form of Neumann series
1 & Ak
Rl(A):_IZﬂa |l|>HAH7
k=0
like for numerical series Zkakzk, for which
I —,
R~ Vil

then we obtain the statement of the theorem. While for numerical series, the upper limit
18 considered, for the operator-valued series the limit always exists due to the

submultiplicative inequality |A" K| < A" - |A¥||.
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Lecture 18. Exercises on Spectra of Operators

Discussion of Self-Study Problems form the Previous Lecture
We begin with considering some of the self-study problems from Lecture 16.
5) Consider
AN = 0~ | Far = 1-c)f
a) in C[0,1].
b) in Ly[0,1].

Find the inverse operator. The answer must not involve infinite sums.

First, if |C|, we can write out the inverse operator in the form

o0
=3k
k=0

For L[0,1], |C|| < [K| 1,[ap2, where, in out problem,
1, t<ux,
K(X,I) =
0, t>ux,

therefore,

|K(x,0) = 1/v2.

However, in C[0, 1] (as has been previously proved), the norm of C is not small:

ICf| = max’ff dt\max |f )| dt|,

Xe

where |f(£)| < |f| =1, thus, |Cf| < 1; for f(z) =1, we have

ICf| = max‘ff t)dt| = max x = 1,
x€[0,1]

so the bound is sharp, and ||C|| = 1.

Further, even though the bound |C|| < 1 does not hold, we can employ the expansion
of (I—C)~! into series, since it is fine if the bound holds for some power of C, meaning

that the series converges if

dng Vn=no: |C"]<1.
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Let us estimate the norms of powers of C. Beginning with the second power, we get

= [ ([ ssras)ar

here, we integrate with respect to s and ¢ such that 0 <s <t < x. Let us change the

order of integration, so that we would integrate with respect to ¢ first:

fox (folf(S)ds> dt = folf(s) J: dtds = JOX(X—S)f(S)ds.

Y (x — n—1
e - | i)

0 (n — 1)'
which can be easily proved by virtue of mathematical induction. It is evident that

Furthermore,

f(o)dt,

the norms decay rapidly as a result of the division by the factorial: |C"| — 0 as
n— 0.
Now, let us find the inverse to A:

0

D ~x X — k
@0 = (-0 ) = S = 0+ Y [ rnar
k=0 ’

k=0

where we will swap the order of summation and integration (it is totally legal since

the sum converges uniformly):

- x(x_t § * xX—t
)+ 3, fo I fwyd = )+ fo S f () di.

Another approach to solve the problem is the following. Constructing the inverse is

equivalent to solving the equation

£x)— fo f(r)di = g(x)

for f(x) for a given g(x). Suppose the functions in question have derivatives of
higher order (note that C'[0,1] is dense in both C[0,1] and L;[0,1]). Then we can

differentiate the equation and solve the ordinary differential equation obtained.

Consider the differential operator Af = f’ in C[0,1] with domain D(A) = C'[0,1].

Prove that there exists a right inverse, but it is not unique.

Let us note that this operator is not invertible since it has a nontrivial kernel:

KerA = (1).
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However, there is a right inverse:
X
ATlf= f f)ydt+C, AA;' =1
0

For C # 0, the operator Ar_1 is nonlinear, and, of course, it is not unique.

In L,[0, 1], consider the Hardy operator

1 X
AN -1 | roa.
a) Prove that A is bounded.

b) Prove that A is not compact.

It is quite simple to obtain the bound |A| < 2. In further, we will see that the point
spectrum of the Hardy operator consists of points {|z— 1| < 1}, so [|A| = 2.

Let us begin with the estimation:

= [ [ roafa< [ ([ orar) (ab),

which can be integrated by parts:

(o) (=ab) = =([rora) ] + [ 2( [ 1r0a) - 1) ax
0 “Jo X 0 X100 Jo 0 X

At point x = 1, the first term is negative, so by excluding it, we obtain an upper
bound; at point x = 0, this term must be carefully calculated, since there is a possible
singularity due to the x-inverse factor. Let us use the Cauchy-Bunyakovsky—-Schwarz

inequality:

(] rwtar) <1 (] v [rPan) = 2 [0~ 0 as x—o,

so, in fact, there is no singularity. For |Af|?, we obtain

NN TR

Let us use the Cauchy-Bunyakovsky—Schwarz inequality again (with |f(x)| as one

of the integrand functions):
2 ([ wonar) -trentac<2( [ 1 [Cuona))s ([ rwra)”
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where the second factor is | f|. Let us denote

o ([ 2o

Recalling the beginning of our estimation, we obtain the bounds
|AfI? < m* <2m] f],
therefore, M < 2| f|, and
lAfI?<alf] = JAl <2

Let us also try to solve the eigenequation for A in the form of a power function x%,

acR:
1 X o
Ax% = Ax%, —f t%dt = ,
A 0 oa+1
so A =1/(a+1)). Note that x* € L,[0,1] if
1
J ¥*%dx < 0,
0
whence 20 > —1, or, equivalently, o > —1/2. Taking
oo 1.1
n — 2 n7
we see that .
an#HZ as n— o,
—§+5+1

so the spectral radius is at least 2, and, therefore, the norm is at least 2 as well.

Let us prove that this operator is not compact. We will demonstrate it using
the property of compact operators: a compact operator maps a weakly converging

sequence to a converging one.

First, let us point out that the Hardy operator seems to be bad near x = 0. We will

construct a sequence of functions that concentrate at x = 0:
Ja(x) = x/ﬁx[%] (), Ifall = 1.
We claim that f;, — 0. Why is that? We must show that
VF € (L2[0,1])": F(fy) — 0.

By Riesz’s theorem,

1/n
F(fy) = (fng) = L Vg dx,
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to which we apply the Cauchy-Bunyakovsky-Schwarz inequality:
Un 1/n 12, (l/n 1/2 1/n 1/2
Vng(x)dx < (J ndx> (f |g(x)|2dx> =1- <f |g(x)|2dx> —0
0 0 0 0

as n — o, since g € L»[0, 1] and the integration interval shrinks to zero (to a set of

measure zero). Further,

1AL :Ll (%J:\/ﬁx[o,}q](t)thdx:Jol/n <%f:\/ﬁdt>2dx+f/n...dx,

where the second term is nonnegative, so
1/n 1~ 2
Afn!2>J (—J ﬁdt) dx=1+0,
0 X Jo
therefore, A is not compact.

Later, we will show that the spectrum of a compact operator, except for A =0, is
purely discrete and consists of isolated points. As can be seen, the spectrum of the

Hardy operator is not of this form.

Exercises on Spectra and Spectral Radii. Spectrum of
a Self-Adjoint Operator

1) Prove that for A = A* € B(H), where H is a Hilbert space,
r(A) = [Al.

a) First, we will show that |A*A| = |A|? for any A € B(H). In one direction, the
estimation is obvious:
2
|AA] < [A%]-|A] = [A]*,

since |A*| = |Al|. We know that A*A is self-adjoint. In Lecture 13, we proved
that the norm of a self-adjoint operator can be computed as the supremum of
the associated quadratic form:
|A*A] = sup [(A™Ax,x)|,
x| =1

SO
sup |(A*Ax,x)| = sup |(Ax,Ax)| = sup HAxH2 = HAH2

¢l =1 el =1 el =1
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b) If A=A*, then |A?| = |A|?, thus, |A%"| = |A|]*"; let us prove it by mathematical
induction:
2n+l 2"\2 2112
|A7 I = 1(A)7] = A=,

‘zn-&-l

which is equal to |A| by the induction hypothesis.

Next, using this in the formula for the spectral radius, we obtain
r(A4) = lim [A"]"" = tim [4%]'>" = ],
— —>00
In Lecture 17, that we obtained the following: for A = A*,
o(A) < [—[Al.[Al]-

This bound is not quite good, since, for instance, the spectrum of the identity operator
is o(I) = {1}, while the inclusion above gives us o(I) < [—1,1]. Now, we will try to make
the bound sharper.

2) Let A =A*. Define

m = inf (Ax,x), M = sup (Ax,x).
Ixl=1 x| =1

Then, we claim that o(A) < [m,M], moreover, both endpoints belong to the
spectrum, i.e., m,M € o(A), and max(|m|, |M|) = |A|.

For example, for A =1 we have m = M = 1, and this is precisely the spectrum of I.
a) For any x € H, consider
2 2
mlx|” < (Ax,x) < M|jx|".

For x = 0, it is the equality; for x # 0, we will divide it by ||x|?:

me (A2 <u
¢l

which follows from the definition of m and M.

Further, we should discuss the localization of spectrum.

b) Let A € 6,(A): 3x, x # 0, Ax = Ax. Then,
(Ax,x) = Axl?, mlx® < Afx]? < M|x]?,
therefore, m < A < M.

¢) The residual spectrum is empty.
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d) We must show that if A > M (and, similarly, A <m), then A ¢ o.(A).
Let A =M+ 68, § > 0. Then, consider

MA—M%Wz(MfWH—&MﬂLJﬂ—SUQ:
:MA—MUMW—S(M—WHMJ)—SCLM—JHM)+5%ﬂ{
where, due to the self-adjointness of A,
—SOA—AHhJ>—5<LQ4—MUM>:—QSQA—AHMJ>=
— —28(Ax,x) +28M|x|* =0,

so, excluding these terms from the equality above, we obtain the bound
2 2
[(A=AD)x]” = &]x]".

Thus, due to the theorem from Lecture 17, the image is closed, which implies
that A ¢ 6.(A). The proof for A < m is similar.

e) Now, let us show that the endpoints of the interval belong to the spectrum: m,
M e o(A). Let us consider
A=A—ml.

This operator is self-adjoint as well, and m = 0, M=M-—m:

~

o() < [0,M—m];

moreover, ||A| =M —m, and |A| = r(A) = M —m = r(A). Therefore, there exists
Aeo(A):
A=M-—m.

Thus, shifting it back, we obtain
Meo(A).

For A = A — MI, we obtain

m=m—M <0,

and the further proof for m € 6(A) is similar.

Spectra of Similar Operators

The problem of finding the spectrum of an operator is often quite challenging. Next,

we will consider an approach that simplifies it in certain cases.
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Definition 18.1. Let X, Y be Banach spaces, and A € B(X). Let there exist a bijective

operator S, S € B(X,Y), and an operator B€ B(Y) such that the diagram is commutative

%X
S
B

~

Y

Y

i.e., SA = BS. Then we say that the operator A is similar to the operator B and denote
A~ B.

Note that since § is bijective, due to the Banach bounded inverse theorem, there exists
S~! so that
SAS~! =B.

In finite-dimensional spaces, we can fix a basis, and the operator takes the form of
a matrix in that basis. Under a change of basis with a transition matrix S, the matrix
of the operator transforms according to the same rule. It is a known result in Linear
Algebra that the characteristic polynomial of a matrix is unchanged under a change of
basis. Therefore, the eigenvalues of the operator, which are the roots of the characteristic
polynomial, also remain invariant. The same is true in Banach spaces: the spectra of

similar operator coincide.

Theorem 18.1. Let Ae B(X), Be B(Y), where X, Y are some Banach spaces. Let A ~ B.
Then

moreover, the classification of points in spectra coincide.
Proof.

1) Let Aep(A) = I(A— A~ e B(X),

1

A-AD"'=('BS—ANT = (STHB-ADS) =s(B-AD7'S,

therefore, A € p(B), so the resolvent sets of A and B coincide, which means that the

spectra coincide as well.

2) Let A € 6,(A). Then 3x # 0:
Ax = Ax.

Since A = ST'BS, we have
ST'BS=Ax < BS=ASx,

171



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES
IGOR SHEIPAK STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

and Sx # 0, since S is injective; therefore, Sx is an eigenvector of B corresponding to

an eigenvalue A.

3) The continuous and residual spectra of A are related to the properties of image of A

(more precisely, to whether the imeage is dense in the entire space). Consider
(A=Al =S Y (B-ADS.

Thus, if the image of (A — AI) is dense in X, then the image of (B — AI) is dense

in Y, and vice versa. Therefore,

0.(A) =0.(B) and o0,(A)= 0/(B). O

Example 18.1. Consider Ay, A, in two-sided ly: >(7Z), where
ez(Z) o2X = ( ey X1,X05 Xy - )

with the condition .

Dl <o,

k=—o0

(For instance, the discrete Schridinger operator is usually considered in this space).

In l5(Z), for x = (...,xf1,(x0),x1,...),
Apx = (~"7x—27(x—l)7x07"')7 Aren = epyi,

and

Apx = (...,X(),(X]),Xz,...), Ae, =e,_1.

It is known that all separable Hilbert spaces are isometrically isomorphic. Thus, there are

a bijection S and an operator B, such that

6(Z) —2— 05(Z)

s| Is

L,[0,27] —25 L,[0,27],

where B, acts on the basis elements in the same way as A, does.
Operator S must map a basis into a basis; in ¢,(Z), a basis can be chosen in the form
n

en=1(...,0,1,0,...);

in L,[0, 7], let us fix a complex exponential basis:
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Since e, — e, 1 under A,, we have for B,
B.E;, = n+1,
so B, is a multiplication operator:

B.f(t)=¢€"f(t), fel,[0,2n].

Similarly, the operator Ay is similar to the multiplication operator By such that

Bff(t) = e_itf(t)7 f € L2[072ﬂ]

It is clear that Ay and A, are adjoint and inverse to each other in ¢»(Z), and the same
holds for By, B,. Thus, these operators are unitary. The spectrum of a unitary operator
lies on the unit circle.

In further lectures, we will study the multiplication operators in more detail. For now,

we will formulate the following theorem:

Theorem 18.2. Let ¢ € Ly[a,b]. Then, for Ay : Lr|a,b] — Ly[a,b],

Apf = @(x)f(x),
the equality
6(Ay) = esSE(p)

holds, where essE (@) is the set of essential values of @:

essE(@) = {/1 ve>0u(fx: o) —A| <g}) > o}.
Note that, e.g., for ¢ € C[at, B], the essential range is simply the range. Next, consider

-1, <0,
sgnt =<0, t=0,
1, t>0.

The values —1 and 1 of sgn? are essential, and the value 0 is not essential since the function
takes this value on the set of measure zero.
Note also that the multiplication operators in L, are normal. Therefore, the residual
spectra of By and B, are empty.
Are there eigenvalues of By and B,? For 4 € 6,(Agp), there must exist a function
f€Lya,b], f+#0, such that
Aof =Af.
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which is the same as
(p(x) —2)f(x) =0.

For this product to vanish on the entire [a,b], either the function f must be vanishing
on [a,b] (in the sense of L), or ¢(x) = A on a set of positive measure. For instance, the
function

¢l(op)=C

+it

satisfies the condition. However, e=" is not constant on any set. Thus, the spectra of B,

and By are purely continuous.

Self-Study Exercises
1) Prove that c(AB)\{0} = o(BA)\{0}.

2) If AB—BA =1, then at least one of the operators A, B is unbounded.
Hint: AB = BA + 1 implies

AB—AI=BA—(A—1)I,

so the “shifted” set must coincide with the set itself. Therefore, it is either
an unbounded set, or an empty set. However, the spectrum of a bounded operator

cannot be empty.

3) Let U* =U~'. Prove that
o(U)c{zeC: || =1}.
4) Let a = (04,00,...) € ly. In £, consider
Agx = (a1x1,00x7,...).
Find o(Aq).
5) Let X be a Banach space and Q < C be a nonempty compact set. Prove that

JAeB(X): o(A)=A.

Hint: Use problem 4 to construct an operator A.
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6) Let U =U* = U~!. Describe all operators of this form.

Hint: The entire Hilbert space must be decomposed into two components H =

Hy (—BHOL such that
I 0
U = ,
0 —I

where U‘Ho =1 and U‘Hoi =—1.
7) In £y, for a, b€ R, consider
Ae, = be,_1 +ae, +be,y1, n=2, Ae; =ae|+bey,
00

a
b a

A ~

0

a

Find the spectrum of A by constructing a similar operator.
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Lecture 19. The Hilbert—Schmidt Theorem

Weyl Sequences

We continue to study the spectrum. In this lecture, we will formulate a number of

theorems that help one to find it.

Definition 19.1. Let X be a Banach space, A € B(X). We say that for A € C there exists
a Weyl sequence {x,} if

lxn| =1, (A—=ADx, >0 as n— .

For instance, suppose that x # 0 is an eigenvector corresponding to an eigenvalue A € C
of an operator A; consider x,, = x. Then {x,} is a Weyl sequence for A. Thus, for clarity, it

is convenient to think of a Weyl sequence as an “almost eigenvector”.
Theorem 19.1. If for A € C there exists a Weyl sequence {x,}, then A € 6(A).
Proof by contradiction. Let A € p(A); then there is an inverse:
JA—-AI"teB(X).
Denote y,, := (A — Al)x,; yo — 0. Applying the inverse to y,, we get
(A=2A0) " yy = x, #— 0,

which is a contradiction to the continuity of (A —AI)~!, since for a continuous (which is
the same as bounded) operator T, w, — 0 = Tw, — 0. Thus, there is no bounded inverse,
so A € 6(A), which completes the proof. O

In the previous lecture, we formulated a theorem on the spectrum of a multiplication

operator. Let us return to it:
Theorem 19.2. Let Ay : Lr|a,b] — Ly[a,b], Apf = ¢(x)f(x), where ¢ € Ly[a,b]. Then
0(Ag) =essE(@)={AeC: Ve>0 ufx: [@(x)—A| <&} >0}

Moreover, if there exists a measurable set Q, u(Q) >0, such that (p’Q =A, then A€ 0,(Ag).

The remaining essential values form the continuous spectrum o.(Ag).
Remark 19.1. 1) Note that Ay is normal, so 6,(Ag) = .

2) For application, the most useful case is @ € Cla,b]. For such @, essE(@) is just the
set of all values that @ takes.
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Proof.

1)

Let A e essE(¢@). Then, by the definition of essential range,
1

VneN:,u{x: lp(x) —A < —} > 0;
n

let us denote M, := {x: |@(x) — A < 1/n}, and define a function f,:

£ X, (x)
K (My)
One can see that | f,|r, = 1. Next,
— 22 1
A2l 2=f P=A L o,
fa-ansf= | o< o,

so fn is a Weyl sequence, and, therefore, A € (A).

Now, we are to prove the inverse. Suppose A ¢ ess E(@); we will show that A € p(Agp).
Let us denote
Mg :={x: |p(x)—A| <e};
by definition,
AdessE(p) < Je>0: u(Me)=0.

The problem of construction the resolvent R;(Ag) = (A —AI)~! is equivalent to

solving the equation
(Ap—Al)f =g

for an arbitrary given g € Lp. The equation can be rewritten as

so, if we seek for a solution f(x), it is sufficient to divide by the first factor:

1
flx) = mg(x)~

However, if |@(x) — A| is “small”, the resulting function f(x) can be that “large”

so it would not belong to L. Let us exclude the small values from the result by

considering
1
—g X ) x¢M )
fx) = o0 — 25 )
0, xeM;.

Note that since M, is a set of measure zero, and the space L|a,b] is an equivalence

class of functions that are equal almost everywhere (that is, they are equal except
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for a set of measure zero), f(x) may take any form on M, and all functions that

differ on M, are indistinguishable in the L;-sense.

Further, we must verify that the resolvent defined by the rule above is bounded.

Consider

g(x)?
” ( (P) ” |g0(x)—M2
[a7b]\M€
on the integration set, |@(x) —A| > €, so
R, (Ao)g|? ! 2du < Lol
IR2(Ap)g|” < 2 sl gl du < sl

thus, |Ry|| < 1/€. Note that € is a fixed nonzero value. Therefore, R; is bounded,
and A € p(Agp).

Next, we must prove the statements on the classifications of points in spectrum; it

is quite simple.

Let A eessE(¢@). When A € 6,(A¢)? For A to belong to the discrete spectrum, the

following must hold:
Af e Lh|a,b], f#0 (3Q: u(Q) >0, fQ(x) #0 VxeQ), Apf =Af.

It means that
(p(x)—=24)f(x) =0 in Ly[a,bl;

since f(x) # 0 on Q, the first factor must vanish on this set:
ox)—A=0 on Q,

where u(Q) > 0.

Since the residual spectrum is empty, all the other points of essE(¢) belong
to 0.(Ag). O

Note that the essential range of a continuous function on an interval coincides with

range. However, this is not true for continuous functions on R; consider, e.g.,

1
QD(X)ZXZ—H, xeR.

This function takes the values (0, 1], see Fig. 19.1, while the essential range is [0,1].
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Puc. 19.1. Graph of ¢(x).

Further, let us consider a multiplication operator in C[a,b|. The result is similar to

one in Ly[a,b] with minor modifications.
Theorem 19.3. Let ¢ € Cla,b], Ay : Cla,b] — Cla,b], Apf = ¢(x)f(x). Then
0(Ap) =Rneo={A: dxela,b] A = ¢(x)},

moreover,
Aeoy(Ag) < 3I(a,B)ca,b]: (p‘(aﬁ) =,

and other values of ¢ belong to 6,(Ag).
Proof.

1) If A e Rng, consider

By definition, A € Rn¢ means that
dxy €la,b]l: A =(xy).
At this point, g(x;) =0, thus,
Rn(Ay) # Cla,b]
(the operator is not surjective), so A € 6(A).

2) Let A ¢ Rn¢. Rn@, being an image of a closed set under continuous map, is a closed
set. Therefore,
dist(A,Rn@) =d > 0,
where

dist(2,Rn) = min 2.~ ()]

x€la,b
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Now, we will construct the resolvent and check its boundedness. This is equivalent

to solving the equation
(@(x) = 24)f(x) = g(x)
for an arbitrary given g(x). Formally dividing by the factor (¢(x) — 1), we get

1
xX)=————8x)=A_ X).
f(x) (p(x)_lg( )=A_1 8
As we proved in previous lectures, the norm of multiplication operator A |

o(x)—24
in Cla,b] is equal to the maximum of 1/(¢(x) —A1):

1 1 1

R4l = A | =g =y - minfe() 4| d "

so the resolvent is bounded, and A € p(Ay), which completes the proof of the first

statement.

Next, we show that the classification is as stated.
When 4 € 6,(Ag)? For this to be true, the following must hold:

HfEC[Cl,b], f7_é0 A(Pf:kfa

that is,
(@(x) = A)f(x) =0. (19.1)
f % 0 means that 3xg € [a,b]: f(xp) # 0. Since f is continuous,

Io,B)3x0: f (aﬁ)(x) # 0.

Thus, for validity of , it is necessary that
ox)—A=0 on (a,p).
Why do other points belong to the residual spectrum? Let A € Rn@; it means that
Iy A=0(x).
If g e Rn(Ap — A1), then
g(x) = (p(x)—A)f(x),  glxy)=0.

Consider the closure of the range in C[a,b]; the uniform convergence preserves the

values at points: if
h(x) e Rn(Ay — AI),

then h(xy) = 0. So the closure does not coincide with the entire space, and therefore,
by definition, A € 0,(A¢). O

180



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES
IGOR SHEIPAK STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

We have considered only bounded operators, although many concepts carry over to
the unbounded case as well. For instance, the position operator in quantum mechanics,

i.e., the operator of multiplication by x in Ly(RR), has the entire real line as its spectrum.

The Hilbert—Schmidt Theorem: Auxiliary Propositions

The fundamental Hilbert-Schmidt theorem concerns the properties of compact self-
adjoint operators. Recall that when discussing the Gram—Schmidt process, we mentioned
that, at present, there are two known methods for constructing orthogonal bases in
Hilbert spaces. The first method involves taking a closed linearly independent system
and orthogonalizing it using the Gram-Schmidt procedure. By a well-known theorem,
a closed orthogonal system forms a basis. The second method relies on the Hilbert—
Schmidt theorem. Before we state this theorem, we need to establish a few auxiliary

results.

Definition 19.2. Let A € B(H), where H is a Hilbert space. A subspace Hy < H is

an tnvariant subspace of A if
VX()EHQ . AXEH().

Lemma 19.1. If Hy is an invariant subspace of A, then HOL 15 invariant under the

operator A*.
Proof. Let xe Hy, y€ HOL. We must prove that A*y e HOL. Consider
(A*y,x) = (y,Ax) =0,

since yeHOL and Ax € Hy, so A*yeHol. ]

This lemma has an obvious corollary:
Corollary 19.1. IfA =A™ then HOL 18 tnvariant under A.

Recall that for A = A=, we know

|A = sup |(Ax,x)].
=1

Lemma 19.2. If there exists xo, ||xo|| = 1, such that
|(Axo,x0)| = [A],
then xo is an eigenvector of A corresponding to A = +|A|:
AX() = AX().
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Proof. Assume that dimH > 2. Take z€ H, |z|| = 1, and z L xp. Consider
x(t) = xgcost + zsint.

For t € [0,2x], it forms a circle in two-dimensional span of xg, z. By the Pythagorean

theorem, |x(z)| = 1. Let us plug it into the quadratic form, and consider

£(t) = (Ax(1),x(r)).
At zero, we get f(0) = (Axp,Xo), and this is an extremum of f, so f/(0) = 0. Since
f(t) = (A(xgcost +zsint),xgcost +zsint) = cos?1(Axo,x0) +2Re(Axq,z) sinz cost 4 sin’1(Az, z),

we obtain

0 = f(0) = 2Re(Axp,2).

Changing z — iz, we get Re(Axy,iz) = —Im(Axg,z) = 0. Thus, (Axg,z) = 0, and therefore,
Axg € ZL, SO
Axo € (x5)" = (xo),

and Axg = Axp, which means that xo is an eigenvector. The equality A = £||A| is obvious

since the quadratic form equals to A:
’(AX(),)CO)’ = A’(x()va) = A’?

and |(Axo,x0)| = |A]. O

The following is the property of compact operators.
Lemma 19.3. Let A€ C(H), where H is a Hilbert space. Let x, — x. Then
(Axp,xn) — (Ax,x).

This means that quadratic form is a weakly continuous function.

Proof. Consider the difference of quadratic forms
(Axp,xn) — (Ax,x)‘ = ‘(Axn,xn) — (Ax,x,) + (Ax,x,) — (Ax,x)‘ <

< ‘(A(xn —X),X)

+ ‘(Ax, (xn —x)) ‘

Each summand in this bound tends to zero: by virtue of the Cauchy-Bunyakovsky—

Schwarz inequality,
‘ (A(xn — x),x,l)

< [|Axn — Ax]| - [bxa
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where |[x,| is bounded, since {x,},, weakly converges to x, and therefore, is weakly

bounded (which is, by the Banach—Steinhaus theorem, equivalent to being bounded):
|A%n — Ax][ - [}xa]| < [[Ax, —Ax]-C,
and, since A is compact, it makes a converging sequence out of weakly converging, thus,

|Ax, —Ax||-C — 0, and so is ‘(A(xn —X),Xp)

b

as for the second summand, due to Riesz’s theorem, it is the evaluation of the functional

F4., which corresponds to a fixed element Ax, at the element x,, — x, so
)(Ax, (xn —x))’ = ‘FAx(xn —x)) — 0,
which completes the proof. O

Theorem 19.4. A unit ball in a Hilbert space is weakly sequentially compact. It means
that

[0.¢]
Vb=t <1,
there exists a weakly converging subsequence Xxp — X.

Given the difficulty of proving this theorem, we will omit the complete proof and focus
on the key idea, which is the following. For a separable space (while the theorem is valid

for unseparable spaces as well), in a unit ball, where |x,| <1,
Xn —X = (-xi’hek) - <x7ek)

Vk, where {ex};~ | is an orthonormal basis. This means that Vf e H*: f(x,) — f(x), which

is equivalent to
VyeH: (xny)— (x,y)

by Riesz’s theorem. Then, y can be expanded into the Fourier series with tail being
bounded by some €, and for (x,,y), and for the remaining finite sum, we have the
coordinate convergence.

There is an analogy for this. Consider continuous functions on a compact set. They
have many remarkable properties, one of which is that a continuous function on a compact
set attains its maximum and minimum. Similarly, weakly continuous functions on weakly

compact sets also attain their maximum and minimum.

Theorem 19.5. Let (X,|-|) be a normed space, and F be a weakly continuous function,
1.€.,
Xp—x = F(x,) > F(x).
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Let M be a weakly compact set. Then
dxpeM: F(xog) = supF(x).
xeM
Proof. By the definition of sup,
Ix,eM: F(x,) — C=supF(x).
xeM
Since M is weakly compact, I{x,, }{2: X, — xo. Since F is weakly continuous, F(x,, ) —
F(xp), and, simultaneously, F(x,) — C, so F(xp) =C. O

Now, we are all set to formulate the Hilbert—Schmidt theorem.

The Hilbert—Schmidt Theorem

Theorem 19.6 (The Hilbert—Schmidt Theorem, for separable case). Let H be
a separable Hilbert space, dimH = o. Let A = A* € C(H). Then there exists
an orthonormal basis {ex};, in H that consists of eigenvectors: Aey = Meg. Ay € R.

Moreover, if A, are enumerated such that
A == A=
then
A1| =|A] and 1lim A, =0.
n—aoo

Note that a basis exists only if we consider the eigenvalues with multiplicities. For
each eigenvalue Ay, there may be a set of linearly independent eigenvectors ex;, and it
is necessary to choose an orthogonal basis in their span. However, if all eigenvalues are
simple (i.e., to any A, there correspond a unique e; up to a constant factor), then all the
eigenvectors are automatically orthogonal.

Proof.

1) Consider the supremum of the quadratic form associated to A:

sup |(Ax,x)|.
<=1

The unit sphere is weakly compact; A is compact, therefore, (Ax,x) is weakly

continuous, and Jey, || = 1:

and it is equal to |A|, since A is self-adjoint. By Lemma [19.2] e; is an eigenvector:
Aey = Mier,  |M] = [A].
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2) The sub H is i i der A due to L 19.1] Hy = L
€ subsSpace <€1 () 1S Invariant under , SO, due 1o Lemma L 1 4] 1S

invariant under A as well. Consider the restriction of A to Hy:
A\Hl =A;, A=A}
and A; € C(H}). Thus, by the same argument,

JexeHy: |(Arez,e2)| = sup (Apx,x),

e, =1
SO
Aer =hrer,  |dof = [Ar] < [A] = |Ai].

Through mathematical induction, we can construct a sequence {ex}2,, which is
orthogonal, and
Ae, = Aey, and |11| = |7Lz| =

Why A, — 07 Let us prove it by contradiction. Suppose that there exists C > 0 and
a subsequence |A,,| = C. Taking a dot product with e, (this operation is a linear
functional), we obtain the Fourier coefficients, which belong to ¢,. Thus, e, — 0,

and, therefore, by the property of compact operators,
Aep, I 0,

but
|Aen || = [Anc]-llen, ]| = A0, | > C,

which leads to a contradiction.

Further, define
Hoo = <e1,ez,...>L.

There are two possibilities:

a) Hy ={0}. Then, {e;} is an ONB.
b) Hy # {0}. Then, for the restriction of A to this space, we have

]y, [ <1401 = 120 —0.

SO
Al =0.

This means that Hy, = KerA. Let us take an orthonormal basis in the kernel:
{fk}gzla N < 0.

Then {ex};” ;U {fi}¥_, is an orthonormal basis in H. O
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Example: a Compact Operator in ¢,

Consider the following operators in /5:

n

1) Ax = <x1,%,...,ﬁ,...>, that is,

1
Aey = —ey.
€k kek

2) Ax = <x1,07%, ,%,O,...),

What is Hy in these cases? In case 1, it is Hy, = {0}. One can see that Hy, = (e, e4,...)

n case 2.
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Lecture 20. Applications of the Hilbert—Schmidt

Theorem

Discussion of Self-Study Exercises from the Previous Lecture

We begin by discussing the self-study problems from Lecture 18.

1) Prove that o(AB)\{0} = o(BA)\{0}. Additionally, if at least one of operators has
a bounded inverse, then 6(AB) = 6(BA).

Note that if, for certainty, there exists A~!, then AB ~ BA:
AB = A(BA)A™L.

Therefore, the spectra coincide.

Without the assumptions on invertibility of A and B, the problem is a little more
difficult. Let A # 0, and A € p(BA) (for example, |A| > |BA|). For |A| > ||BA|, let us

use the Neumann series for the resolvent:

_ 1 & (AB) 1 AB ABAB
— 1:—— = -_—— —_— ——
(AB—AI) (1+5-+=5+)

All the summands in the brackets, except for I, have A as the first factor and B as

the last one. We can write it in the form

—%(IJr%%—% ) _ —%<I+%A<I+BTA+I%+...>B> _
=—%<I—AR,1(BA)B>.

Now, let us look at the formulas obtained and see that the answer has no series
included. Thus, it is possible that the same equality holds for other points of the
resolvent set, and not only for |A| > |BA|:

Ry (AB) = —% (I—AR,I(BA)B, Ae p(BA)),

and, similarly,

Ry (BA) = —% (1 _BR, (AB)A) .

It is easy to check that these are indeed resolvents to the corresponding operators
by multiplying it by (AB— AI) and (BA — AI) respectively.

Example, where the spectra are not exactly the same, can be provided by Ay, A, in
ly:
AgArZI, G(AgAr)I{l},
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and
ArAg) = Pell’ G(ArAg) = {0, 1},

so the spectra coincide expect for 0. The fact that the spectrum of any projection

operator belongs to {0,1} will be proved later.
Let a = (04,00,...) € ly. In £, consider
Agx = (01x1,00x7,...).
Find o(Aq).
The point spectrum is easy to find:
Agx=Ax = Vk: ogxp = Axy;
if x; # 0, then A = oy. For instance,
Ager = ogeg.

Thus, 0,(Aq) = {04 }2,. Further, note that since the sequence {0y };7, is bounded,
due to the Bolzano theorem, it has limit points. Therefore, since the spectrum is

a closed set,
{oaw} 2, c 0(Aa).

For instance, consider

X2 X3
Ax=(x, 28
X (xla2737

so 0p(A) = {1/k}{2,, however, 0€ 6(A) and O {1/k}2 ;.

')7 O =

Returning to the general case, we can claim that
m = 0(Aq).
Let us show it. Suppose A # m. Then, the distance to this set is positive:
gl;|ock—7t| =d>0,

and we construct a bounded resolvent Rj(Agy), i.e., solve (Aq —Al)x =y. In

coordinate form, the solution can be expressed as follows:

Ri(Aa)y = (o 2 )

(Xl—),’az—l’.“

in fact, this is a multiplication operator corresponding to {Bi};=; = {1/(0x —A)}2;:
R; (Aa) = Ap.
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The norm of this operator is

1 1 1
|R(Ae) | = sup

= - =—-<w®
10— A  inflog—A| d
k=1

Y

which completes the proof.

Let X be a Banach space and Q < C be a nonempty compact set. Prove that
JAeB(X): o(A)=A.

In Q, there is a countable dense set, and ¥n € N there exists a finite (1/n)-net y1”,
Y55+ - +5 Ym,» Where the superscript stands for the number of the approximation step.
The union Upen{y!, ..., ¥y, } of these nets is a countable set, and it is dense. Let us
enumerate it like this: (a, 0,...,0,...).

Let U =U* = U~!. Describe all operators of this form.

First, |U| =1, therefore,
VAeC, [A|>1, = Aep(U).
Suppose |A| < 1. U has an inverse U~! = U*, |U*| = 1, and

1
M < =7
1%

so the operator U — Al has a bounded inverse, since we can consider Al as a small

perturbation of U. Therefore,
c(U)c{reC: |A|=1};

in fact, for any closed subset of the unit circle, there exists a unitary operator that

has this subset as spectrum.

Further, we consider an operator that is self-adjoint and unitary at the same time.
So, due to the properties of these operators, o(U) < {+}. Next, let us find out

whether these options are possible or not. Consider the operator

I—U+I+U_I
2 2

Squaring the first one, we get

<1—U)2_1—2U+U2_1—2U
2 /) 4 2
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so this is a projection operator. The same can be verified for the second one. Further,

consider a vector x from the image of the first operator; denote RnI_TU =: Hy:

I1-U
2

xX=x, Xx€H,

thus, (I —U)x = 2x, so Ux = —x. Similarly, Vx € Hy, H| = Rn”TU, we have Ux = x.

Therefore, in the decomposition

H=Hy®H,

o-(0)

It is possible for any of these spaces to be trivial; for instance, if U = I, then Hy = {0}.

the operator is of the form

Now, we are to prove that for the projection operator P, o(P) c {0,1}. Let X be
a Banach space decomposed into X = Xo@®X; with X; being closed. Let P: X — Xj

be a projection along Xj.

First, let us try to find the eigenvectors:
Px=Ax, xo=A(xo+x1), xjeX;.
Rearranging this equation, we obtain
(1 —A)xp = Axy,
and, since Xy and X have a trivial intersection, it is equal to O:
(I—A)xp=0, Ax; =0.

When is it true? Taking A = 0 and an arbitrary x;, we have xo = 0, so Xy = KerP.
Further, for A # 0 and x| = 0, we obtain, for xo # 0, that A = 1. Therefore, c,(P)

{0,1}.
In fact, the spectrum of P is purely discrete. One can prove it by constructing the

resolvent. Suppose A ¢ {0, 1}. Let us solve
(P—Alx =y;
decomposing it with respect to the components Xy and X;, we get
X0 — A(xo+x1) =yo+ 1.
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The sum is direct, therefore, the components with index 0 on the left-hand side

coincide with those on the right-hand side; the same goes for the index 1:

(1-2w=y =T
—Ax; = - _ 0
1 =)1 X1 e
Thus, the resolvent can be written in the form
R 4
1-4

Exercises: Applications of the Hilbert—Schmidt Theorem

A while back, we considered the operator

(Af)(x) = jo f(r)di

in L,[0,1], and obtained the bound for its norm. Recall that for any T : Ly|a,b| — Ly|a,b],

b

(Tf)(x) = j K(e)f(6)dt, K(xt) € Lofa,b].

a

the following bound is valid:
17| < K]z,

Since for A we have

1
(Af)(x) = jo tealt) flo)dr,

the bound for the norm is [A| < 5. In fact, the norm is less than this upper bound. Let
us find it by employing the Hilbert—Schmidt theorem.

This operator is compact, but not self-adjoint. However, we know that
2
|AA] = A=

This operator is self-adjoint and compact, so one can apply the Hilbert—Schmidt theorem,

which gives that the largest eigenvalue is equal to the norm:
M(ATA) = |AA],
where A is taken with absolute value omitted since the operator is nonnegative:

(A*Ax,x) = (Ax,Ax) = ||Ax||*> > 0.
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Further,
|All = v/ 241 (A*A).

We have to find the adjoint operator at first. For the integral operator in L,[a,b],

b

Mﬁ@%j[Kwﬂﬂﬂw

a

the adjoint is given by
b

mvxo:memﬂww

a

Thus, in our case, we have

1 1
Mﬁ@=£%%mwﬁff@m

one can see that the operator A is not self-adjoint since the integral kernel is not symmetric.

Next, let us consider the eigenequation
A*Af = Af.

Expanding the right-hand side, we obtain

Ll (Jotf(s) ds) dt = A f(x). (20.1)

To find f, we will differentiate it. Why is it legal, considering f € L,[0, 1]? For an arbitrary
function from L, [0, 1], the derivative is not defined, however, this function is an eigenvector
of our operator, and is defined by the equation above. The first integration on the left-
hand side of the equation gives us a function from AC[0,1], and the second one takes
this function to C'[0,1]; therefore, the right-hand side is from C!'[0,1] as well. Repeating
this argument, we integrate f e C'[0,1] twice, and obtain that € C?[0, 1], and so on, thus,
feC®[0,1].

Differentiating with respect to the lower limit of the integral, we obtain

X
- [ s6rds=2r) (202
0
and, differentiating again, we arrive at

—f(x) =Af"(x),

and one can see that A =0 — f =0, so A is positive. Thus, we have

£ = =31,
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and the solution is a linear combination of sine and cosine:

X X
flx) = asm\/—I +COS\/_T

Note that the differential equation is not equivalent to the integral equation, since the

(20.3)

boundary condition must be imposed. Note that it follows from the integral
equation that f(1) = 0, and equation implies that f'(0) = 0. We have
a second-order differential equation, so there are two boundary conditions to be
imposed, and we just have found them.

It is better to begin with considering the condition for f’, since it is posed at 0, where
the sine vanishes. By differentiating , we obtain

flix) = T cos - b sin ——,
VAT VA VA VA
thus,
"(0) = i’
so a = 0. Therefore,
f=bcosi=0,

VA

and b # 0. Therefore,
1 /4
Vi 2
which gives A A
Cw2(1+2n)2 M=

therefore, |Al| = /A0 = 2/m. From the Hilbert—Schmidt theorem it also follows that

P

fn(x) =cos (g + 7rn>x

is an orthogonal basis in L,[0,1].

Note that if we consider AA*, we evidently obtain the same result, since nonzero
eigenvalues of AA* and A*A coincide for a bounded operator A.

Further, let us consider self-study problem 7 from Lecture 18, where the operator of

the form

acts in £», a, b€ R. We will construct a similar operator, and find the spectrum.
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The aim is to find a unitary isomorphism U and an operator B such that

52%52

v v

L]0, 7] —2— L]0, 7).

In Ly[—m, 7], one of the standard orthonormal bases is

1 1 1
——sinnx, ——=cosnx, neN. (20.4)

Var' m v

In L,[0, 7], one can take as a basis either odd or even part of the basis above, so

. 4 V2 1
—=sinnx, and —=cosnx, T
T

L3 N3
are both bases. It is quite simple to demonstrate; considering the odd (or even) extension
of feL,[0,m] to Ly[—m, 7], we see that the Fourier series with respect to basis ([20.4))
consists only of sines (or, respectively, cosines).

Next, let us fix the standard basis {e,} in £, and the sine basis {E’%f sin nx} in L,[0, x].

There is an isometric isomorphism U so that U : e, — E,. Let us construct it. It can be
easily seen that

Aey| = ae| + bey,

and, for n > 2,

Ae, = be,_1+ae,+ be, 1.

Therefore, for B we have
BE| = aE| +bE; = (a+2bcosx)Ey,

and, for n > 2,

V2

2
BE, = %(l)sin (n—1)x+asinnx+bsin(n+ 1)x) = \/—E(a+2bcosx) sinnx = (a+2bcosx)E,,
thus, since B acts the same way for any element of the basis,
Bf = (a+2bcosx)f(x).
This is a multiplication operator, spectra of which are well-studied, so

o(B) = [a—2[b|,a+2|b|],

and, more precisely, it is 0,(B), because the measure of the preimage for each value that

(a+2bcosx) takes is zero. Therefore, the same goes for o(A).
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Schatten—von Neumann Classes and Nuclear Operators

Let Ae C(H). Then A*A is self-adjoint and compact. By the Hilbert—Schmidt theorem,
Jdey: A¥Aer = Ae, A= 0.
Define si(A) := 4/ A(A*A); we call them s-numbers of the operator A.

Definition 20.1. If {ct}{2, € £y, then we denote A€ S, and say that A belongs to the
Schatten—von Neumann class. The case p =1, Sy, is often referred to as the nuclear class.
Sy s called a Hilbert—Schmidt class.

For S;-class operators, the trace is well-defined, i.e., the sum

D (Aex,ex)

k

is independent of the choice of basis.

Note also that Sy, is the space of all compact operators in H. Now, we remind that the
space of compact operators is a closed two-sided ideal in the space of bounded operators;
the classes S, are ideals as well, however, they are not closed. Their closure is So. Thus,
the classes S, can be can be regarded as a certain classification of compact operators.

In perturbation theory, compact perturbations of operators are often considered.
Sometimes, stricter conditions must be imposed, such as requiring the perturbation to
belong to the class S, for some p. For example, the well-known Kato’s theorem states
that the absolutely continuous spectrum of a self-adjoint operator is stable under trace-

class perturbations.

Self-Study Exercises

1) Consider, for Ae C(H),

N
Ax = Zsk(A)(xa(pk>Wk7 N < o,
k=1
where {¢} is an orthonormal basis and {y;} is an orthogonal system. This is called

the Schmidt representation. Prove the validity of the representation.

2) Consider
1
(Af)(x) = fo min(e, 1) £(1) di

in 1,[0,1]. Find the eigenvalues, eigenvectors, and the corresponding p for S, class.
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3) Let py be solutions of
1
tany = ——, u>0.
u

Prove that cosyx forms an orthogonal system, but is not a basis. Additionally,

prove that being completed by po that is a solution of
1
cothu = —,
u

cos Wx forms an orthogonal basis.

This problem is equivalent to the following one. Consider

1
(Af)(x) L max(x, 1) f(¢) dt

in L,[0,1]. Find the eigenvectors and (asymptotic) eigenvalues.
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Lecture 21. Fredholm Theory

Fredholm Theory: Introduction

During this lecture, we focus on the study of Fredholm theory. Its main objective is

to analyze the solvability of equations of the form
(1 _A)x =Y

where A is a compact operator, in some Banach space X. The questions posed are as
follows. For a given y, does a solution x exist? If not, why? If yes, is it unique?
Clearly, the case of dimX = o0 is of interest, as such problems are well-studied in linear
algebra for finite-dimensional spaces.
Let us first consider the finite-dimensional analog. Suppose dimX =n < o, T € £L(X).
Then,
dimKer7T +dimRn7 = n.

In infinite-dimensional case, this equality makes no sense. However, we can consider it
from another point of view. If dimKer7 = 0, then the range is the entire space X, so
injectivity of T immediately implies its surjectivity, and vice versa, if dimRn7 = n, then
the kernel is trivial, so T is surjective. For operators of the form I —A with compact A, it
works the same way, so injectivity and surjectivity become equivalent.

We will prove all the statements for Hilbert spaces, since the key ideas are preserved
for Banach spaces, and the proof involves tedious technical work rather than conceptual
difficulty. At the same time, Hilbert spaces are more natural here for applications.

In a Hilbert space H, consider the following equations:
(I=Ax=y, (1) (I-A)x=0, (2)
and, for the adjoint operator,
(I—-A%)x=y, (3) (I—A%)x=0. (4)

These equations are very closely related. These equations can be also considered in
a Banach space X, with A* being replaced by A’, and for the adjoint operator, the equation

is given in the dual space X*.

Auxiliary Lemmas

As a first step, it is necessary to formulate and prove several auxiliary lemmas, which

will simplify the proof of the fundamental theorems in Fredholm theory. We emphasize
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one more time that we always assume H to be a Hilbert space and A to be a compact

operator.
Lemma 21.1. dimKer(/—A) < o0.

Proof. Suppose x € Ker(I —A). Then, by definition,
(I—A)x=0.

Therefore,

Ker(I—A)
Since A is compact, and the identity operator is compact only in a finite-dimensional

space, we conclude that dimKer(/ —A) < . O
Lemma 21.2. Rn(I —A) is closed.

Proof. Denote
Hp :=Ker(I—A).

It is a finite-dimensional closed subspace of H; consider its orthogonal complement
HIZHd_, HZH()@H}.

Naturally,
Rn(/—A) =Rn(I—A)| ,

H,
since I — A takes all the elemts of Hy to O.

Recall the previously proved auxiliary statement. If for a bounded operator T in
a Banach space X there exists ¢ > 0 such that ||Tx| > c||x|, then RnT is closed.

How do we show that the range of I —A is closed? We will prove a constant ¢ so that
the bound above holds for (I —A)| p,- Let us show the existence of ¢ by contradiction.

Suppose that there is no such constant. The inequality
[(F =A)x]| = c|x]
means that Tx is separated from zero for x # 0; thus, the following means the inverse:
x,, |lxu| =1, such that (I—A)x, — 0.

Further, {x,},°, is bounded and A is compact, so the set {Ax,},~, is precompact.
Therefore, there exists a converging subsequence x,, such that Ax, — xo € H;. At the

same time, (I —A)x, — 0. Therefore,
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as well. One can see that
(I—A)xp =0,

so xo € Hy, while we supposed that xg € H;. Whence, xo = 0, which gives a contradiction

with the continuity of the norm, since [|x,| = 1. O

Lemma 21.3. The following equalities hold:
Ker(I—A)®, Rn(I —A*) =H, Ker(I—A*)®,  Rn(I—A) =H.

Remark 21.1. If we consider T € B(H) instead of [ —A with A€ C(H), the decomposition
above becomes
KerT®) RnT* =H,

since for an arbitrary bounded operator, the range need not form a closed subspace.

Proof. These statements are symmetric, so it is sufficient to prove only one of them.
First, we will show that these two subsets are orthogonal. Suppose x € Ker(/ —A) and
yeRn(I—A*), that is, Ize H: y = (I — A*)z. Then,

(x,y) = (x,(I=A")z) = (I —A)x,2) = (0,2) =0,

since x € Ker(I—A), so x L y.
Next, we must show that the sum of these two subspaces is the entire space. Assume
that
Jw L (Ker(I—A)@Rn(I—A*)).

It implies that w e Rn(I —A*), so
VyeH: 0= (w,(I-A%)y),

as (I—A*)yeRn(I—A*). By the definition of the adjoint operator, it can be transfered to
the first argument of the dot product as

(w, (I =A%)y) = ((I = A)w,y),

therefore, since this product vanishes for all ye H, we obtain (I—A)w =0 = we Ker(I—A).
At the same time, w L Ker(I —A), thus, w = 0. ]
Recall that one of our aims was to show that the injectivity and surjectivity are

equivalent. The following lemma is the first part of this.

Lemma 21.4. If Ker(I—A) = {0}, then Rn(I—A) = H.
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Proof by contradiction. Suppose that
Rn(/—A) =H, < H.
In further, we are to consider the powers of this operator. For its powers, we have
H,=(I-A)H,_;, H,=Rn(—A)

due to the injectivity of (I —A); see the diagram in Fig. 21.1.

H H

Puc. 21.1. Diagram of H 2 Hy 2 H;.

Thus, we obtain a chain of inclusions of subspaces
H=Hy2H 2H, 2 2H, 1 2H,2....

For any ne N,
-1 €Hy1, X411 Hy, Hxnle =1

Since the set {x,},°, is bounded and the operator A is compact, the set {Ax,},, is

precompact, and, therefore, there exists a Cauchy subsequence for it. Consider, for m > n,
|Axy — Ax|® = [|(T = A)xn — (I — A) Xy — X + 2| >

For the first term, we have (I —A)x,, € Hy1; the second one belongs to Hy,11, and the
third one belongs to H,,. All three first terms together lie in H, |, while for the last one,

we have x, € H,. Therefore,
Xn L (I—A)xpy, — (I —A)xy, — xp,
therefore, due to the Pythagorean theorem,

H(I_A)xm - (I_A)xn —Xm +an2 = Hxn”2 + H(I_A)xm - (I_A>xn _me2 =
=14+ [(I=A)xy — (I = A)xy — x|* = 1,

which contradicts to the existence of a Cauchy subsequence of {Ax,},” . O
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Lemma 21.5. IfRn(I—A) = H, then Ker(I —A) = {0}.

Let us point out that Lemmas 21.4] together imply that an operator of the form
I —A with A being a compact operator is injective if and only if it is surjective.
Proof. It is sufficient to combine two previous lemmas to prove this one. If Rn(/—A) =
H, then, due to Lemma 21.3],
Ker(I —A*) = {0}.

Further, since A* is compact as well, Lemma gives
Rn(I—A*)=H,
from which, by virtue of Lemma [21.3] we obtain
Ker(I—A) = {0}. O

Note that the the same holds for (I —A*).

Fredholm Solvability Conditions
Recall the equations from which we started the lecture:
(I=Ax=y, (1) (I=A)x=0, (2)
and, for the adjoint operator,
(I-A%)x=y, (3) (I—A%)x=0. (4)

Theorem 21.1. Equation (1) (or (3)) has a solution iff y is orthogonal to solutions of
equation (4) (respectively, to solutions of equation (2)).

Proof. This theorem follows from Lemma [21.3] Suppose that equation (1) has
a solution; then, y € Rn(I —A). According to Lemma y L Ker(I —A*), which is the

space of solutions of equation (4). For equation (3), the proof is similar. ]

The Fredholm Alternative

Theorem 21.2 (The Fredholm Alternative). Either equation (1) has a unique solution

for every y, or equation (2) admits a nontrivial solution.

Remark 21.2. Note that, similarly, either equation (3) has a unique solution for anyy,
or equation (4) has a nontrivial solution.

Note also that it is possible that for some y there is no uniqueness of solution, and for
some there is no solutions at all. However, if there is a solution for every ye H, then it

15 automatically a unique one.
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Proof. It is quite simple to prove the theorem by combining Lemmas and [21.5)]

according to which
Ker(I —A) = {0} < Rn(/—-A)=H.

Let us look at the first possibility. If we have a solution of equation (1) for any y, then
Rn(/—A) = H, then the kernel is trivial, i.e., Ker(I —A) = {0}, which, in turn, means that
equation (2) has only a trivial solution. Therefore, the second possibility is false. The
uniqueness of the solution of (1) follows from injectivity of I —A.

Next, suppose that equation (2) admits a nontrivial solution. In this case, Ker(I —A) #
{0}, so Rn(I —A) # H, and thus, for some y € H, there are no solutions of equation (1).
Therefore, the first possibility is false. O

The Third Fredholm Theorem
Note that Lemma 21.1] claims that
dimKer(I —A) < o,
and, since A* is compact as well,
dimKer(I —A*) < o0.
The third theorem, in turn, claims that these dimensions are equal:

Theorem 21.3.
dimKer(/ —A) = dimKer(I —A™).

Proof. Denote
n=dimKer(/—A), m = dimKer(/ —A™).

Let {@i,...,®,} be an orthonormal basis in Ker(I —A) and {yy,...,¥,} be an orthonormal
basis in Ker(I —A*). Suppose that these numbers are different, e.g., n > m. Consider the
operator T given by
m
Tx=(I—-A%)x+ Z(x7 Vi) 0.
i=1

Additional part has finite rank, so it is a compact operator, and Tx can be rewritten as

Tx = (I —B)x,
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where Be C(H) is defined by

Bx=A%x— Z(x, V) Qi
i=1

As T is an operator of the same form as earlier, Lemmas[21.1 and Theorems[21.TH21.2
are valid. Let us show that Ker(/ —B) = {0}. Suppose x € Ker(I — B). Then

m
D=2k e
i=1

By definition, (I —A*)x e Rn(l —A*), and

m

D (x, ;) @i € Ker(I - A).

i=1
According to Lemma these subspaces are orthogonal to each other. Therefore, this
sum vanishes if both terms vanish:

m

(I-A%x=0, > (y)pi=0

i=1

The first equality gives x € Ker(I —A*). Next, since {@y,...,@,} is a basis, any subsystem

of it is linearly independent, so

(x, ;) =0, i=1,...,m.

Recalling that {yq,...,y,} is a basis in Ker(I —A*), we conclude that x L Ker(I —A*).
Therefore, x = 0, which means that the kernel of T = I — B is trivial, and hence, Rn(/ —B) =
H. This means that the equation

(I—=B)x=y
has a solution Vy e H. Let us take a look at the equation

m

Tx=(I—A*)x+ ) (X, V)0 = Q1. (21.1)

i=1

(Recall that we supposed that n > m, so we have at least one additional element of the

basis in Ker(I —A).) Taking the dot product of this equation with ¢, we obtain

((I—A x <pm+1) + 2,00 V) (@1 P 1) = | @1 [
i=1

Since {@j,...,®,} is an orthonormal basis in Ker(/ —A), the right-hand side is 1. On the
left-hand side, we have (I —A*)x e Rn(I —A*) and ¢+ € Ker(I—A), so the first summand
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vanishes, and since (¢, @+1) =0, i = 1,...,m, all terms under the sum vanish as well.
Thus, we obtain the contradiction: 0 = 1. Therefore, n < m. Supposing that n < m, one
can consider the operator S defined by
Sx = (I—A)x+ > (x,0) ¥,
1=n
and, using by reasoning, arrive at a similar contradiction. Thus, n = m, which completes
the proof. n

History of the Fredholm Theory

E. Fredholm considered integral equations of the form

b
76) - [ KGwnnse)dr = g(a) (212)

a
It does not matter in which space these equations are considered — whether in Banach
spaces such as C|a,b] or L,[a,b], p # 2, or in Hilbert spaces such as Ly[a,b|. The operator A
defined by ,
af = [ Ktensoa,

a
obviously, must be compact, for the entire Fredholm theory to be applicable here. Note
that equation is called the Fredholm equation of 2nd kind.

It is worth noting that the Fredholm alternative does not mean “either everything is
good or everything is bad”. Instead, it signifies “either everything is good or almost good”,
where “good” corresponds to the operator I —A being a bijection, where equation ([21.2)
has a unique solution, and “almost good” corresponds to the case where the right-hand
side must be orthogonal to the kernel of the adjoint operator, which is in fact finite-
dimensional, so it imposes only mild constraints on the choice of the right-hand side in
the inhomogeneous equation. Additionally, in the latter case, a solution (if any) is not

unique, which is a minor flaw.
The Fredholm equation of 1st kind is of the form

b
J Ko f()di = g(x),  Af=g.

To solve this equation for generic g, one must find an inverse operator to A. The problem
is that, in an infinite-dimensional space, a compact operator has no bounded inverse. This
leads to the following issue. Suppose that there is a solution for g = go, and consider a small
perturbation of go: go + €g1. Applying an unbounded inverse to g;, one can make it not
really small correction. Due to this fact, the problems of this kind are called sometimes

1ll-posed problems.
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Corollaries: Spectra of Compact Operators in Banach Spaces

From the Fredholm theory, one can derive many valuable corollaries about the

structure of the spectrum of compact operators.
Theorem 21.4. Let X be a Banach space, dimX = o, and A€ C(X). Then
1) 0ec(A).

2) If Aec(A) and A # 0, then A € 6,(A), and A is an isolated eigenvalue with finite
multiplicity:
dimKer(A — A1) < .

3) Y& > 0 there exists a finite number of eigenvalues A such that |A;| > €.

The third property means that, outside some ball centered at 0 in C, there is a finite
number of eigenvalues of a compact operator. This implies that the only possible limit
point for {A;} is 0.

Proof.

1) We will prove this property by contradiction. Let 0 € p(A). Then there exists
A~'eB(X):
AATT =1

Since A is compact and A~! is bounded, the composition is compact, but I can be

compact only in X with dimX < oo. O

2) This property is an immediate corollary of the Fredholm theory. Suppose that A # 0

and A € 6(A). Constructing the resolvent is equivalent to solving the equation
(A—AD)x =y.

Since A # 0, this equation can be rewritten as

R

Consider the possibility given by the Fredholm alternative.

a) For any right-hand side, there is a unique solution. Therefore, (I —A/A) is
bijective, which is equivalent to that A — A[ is bijective, so A € p(A), which is

a contradiction to the assumption A € 6(A).
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b) The homogeneous equation

(- e

has a nontrivial solution. It is equivalent to
Ax = Ax,
so A € 0,(A).

The multiplicity of A4 is finite due to Lemma [21.1] Consider x € Ker(A — A1), A # 0.
This is equivalent to Ax = Ax, that is,

A
X = —X.
1
Therefore,
A
2 Ker(A—?LI)’

and, since A is compact, and due to the fact that the identity operator is compact

only in a finite-dimensional space, dimKer(A —AI) < co.

Note that there is no such restriction for A = 0. It can belong to o.(A), 6,(A), or
0,(A), and, in the latter case, it may have infinite multiplicity. ]

3) To be proved in the next lecture.
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Lecture 22. Fredholm Theory: Exercises

Localization of Eigenvalues of a Compact Operator

Note that the proof of the following fact was set aside for discussion in this lecture:
Ve > 0 there exists a finite number of eigenvalues A; such that |A;| > €. Now, we are to
prove it by contradiction.

Suppose that there exists an infinite number of different eigenvalues, namely, {A;}2,,
outside some g-neighborhood of zero: |A;| > €. We stress that assumption that eigenvalues
are different is important due to the fact that eigenvectors correspoding to different
eigenvalues are linearly independent (one can prove it through mathematical induction).
Let ¢ satisfy

Aey = Aey;

consider the linear span X, = ey, e,...,e,). These spaces are nested:
X1eXH<S XS X1 S
Due to Riesz’s theorem, for any n € N, there is an element x, € X,, such that
dist (x,, X,—1) = 1—8, &¢€(0,1).

Since x, € X, one can expand it in terms of the basis

n
Xp = Z agéy.
k=1

Consider y, := x,/A,; for this element, we have |y,| < 1/€. Since A is compact, the set
{Ayn},2 | is precompact. We are going to show that it is impossible to choose a Cauchy

sequence, which will lead to a contradiction. Expanding y, and Ay,, we obtain

ae, " ace " agde

n€n k€k kM€K

Vn = + E , Ay, = ape, + E =Xp+Zn—1, Zn—1 € Xn—1,
2’I’l k_l A’n k_l An

where z,_1 = Ay, — x,, is indeed from X,,_1, since the n-th term vanishes. Let us try to

choose a Cauchy subsequence in {Ay,}; for m > n, consider
|Ayn — Ayml| = |xn + 20—1 + Xm + Zm—1]|-
Since x, + Zp—1 + Zm—1 € Xm—_1, due to Riesz’s theorem,
%0 + zn—1 + Xm + Zm—1] > 1 -6, 0€e(0,1),

therefore, there is no Cauchy subsequence, hence, A is not compact, which is

a contradiction. ]
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Discussion of Self-Study Exercises from the Previous Lecture
Consider some self-study problems from Lecture 20.

1) Consider, for Ae C(H),

N
Ax = Zsk(A)(xa(Pk)lllka Néoo,
k=1

where {@} is an orthonormal basis and {y;} is an orthogonal system. This is called

the Schmidt representation. Prove the validity of the representation.

Let us consider A*A. This operator is compact and self-adjoint, therefore, due to the

Hilbert-Schmidt theorem, there exists an orthonormal basis {¢y};°, such that
ATAQ = APy
Additionally, A*A is nonnegative: (A*Ax,x) = 0, therefore, 4; = 0. By definition,
sk(A) = A/ Ak (A*A).

Since {@}{2, is a basis, Vx € H we have

o0]
X = Z (x7 (pk>q)k7
k=1

SO
N

PNER-BLT (22.1)
Py

Ax

where we exclude numbers k such that Agy =0, and N < oo. For A, = 0, we have

sk(A) # 0, since for @ we have
Ag—=0 = A*Ag—0,

so it is an eigenvector corresponding to the eigenvalue A = 0. Take only @y, A@y # 0,

and denote
_ Ag

Cosi(A)”
Let us verify that this system is orthonormal:

(AQe AQn) _ (A"AQr, @n) _ A(A™A)(@x, Pn)

Vi

(Wi W) = st(A)sn(A) — sk(A)sn(A) A Sins
since ) ) _
(@ Pn) = 8 and s%(—A) — 1.
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Thus, for (22.1), we have
x (pk Yk,

||M2

where numbers k are such that Aqok

3) Consider
J max (x,)f(t)dt

in L5[0,1]. Find the eigenvectors and (asymptotic) eigenvalues.

It is clear that this operator is compact and self-adjoint (since the integral kernel is
a continuous symmetric real-valued function). Due to the Hilbert—Schmidt theorem,

eigenvectors of this operator form an orthogonal basis. Consider the eigenequation
Af=Af:
X 1
J xf(t)dt—i—f tf(t)dt = Af(x). (22.2)
0 X

One can see that this equation implies that its solution is a differentiable function,

so we can differentiate the equation with respect to x:

f f)dt +xf(x) —xf(x) = Af'(x). (22.3)
0
Differentiating once again, we obtain

flx) =Af"(x).

Further, we must obtain the boundary conditions. Substituting x = 0 and x = 1

into and (22.3)), we get
1
Af(0) =J tf(t)dt

Jf
=Lf(t)dt

Thus, the following boundary conditions must be imposed:

Af'(0)

The operator is self-adjoint, so eigenvalues are real. Consider the following

possibilities.
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a)

A > 0. Then
flx) = ae”/V 4 be*x/ﬁ,

and |
f’(x) _ \/_I (aex/\/x _ be_x/ﬁ>,
so, f/(0) = 0 gives a = b, therefore, f(x) = acosh (x/+/A). Further, substituting

it into the second boundary condition, we obtain

1 1
acosh— = ﬁsinh— a#0,

VA AT WA

which can be rewritten as

1
coth —

f VA

Denote p =1/ V/A. The equation cothyt = i can be solved asymptotically by
employing the expansion in Taylor series, however, we will omit this calculation;

there exists a unique solution u = Uy, see Fig. 22.1.

7

Puc. 22.1. Graphs of u = cothy and u = p.

Of course, there must be other eigenvectors, since they have to form a basis.

A < 0. In this case,
flx) = acos\/% +bsin\/%7,
S0,
f/(x):\/%<—asmr+bcosr>
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Therefore, the condition f’(0) = 0 gives b = 0:
2
V=i

Substituting it into f(1) = f’(1), we obtain

f(x) =acos

1 a 1
acos = — sin , a#0.
V=21 V=A V-2
Denoting p :=1/v/—A, we arrive at the equation
tanyl = ——,
see Fig. 22.2.
6
4
2
-6 4 -2 "

Puc. 22.2. Graphs of u =tany and u = —1/u.

o0

There are infinitely many eigenvalues {u,},~ ;,

and U, ~ wn. Thus, our operator

belongs to S, Vp > 1. The functions
coth (tox), cos(U,x), neN

form an orthogonal basis in L,[0,1].

Fredholm Theory: Exercises
1) In L,[0, 7], consider

fx) —ansin(ert)f(t)dt = g(x).
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For which A and g does a solution exist?

Due to the Fredholm Solvability theorem, there exists a solution iff g is orthogonal
to the solutions of (I —A*)f = 0. Since the integral kernel sin(x+¢) is symmetric,
the operator above is self-adjoint, therefore, g must be orthogonal to the solutions
of

f(x)—?tfonsin(x+t)f(t)dt=0.

Using the sine of sum identity, we can rewrite it as

T T

costf(t)dt + A cosxj sint f () dt.
0

F(x) = Asinx f

0

If there is a solution of this equation, it has the following form
Jhom(x) = asinx + bcosx.

Substituting it into the homogeneous equation, we obtain

Y T

cost(asinx +bcosx)dt + A cosxf sinx(asinx + bcosx)dr.

asinx+bcosx = A sinxJ
0

0

Since sinx and cosx are linearly independent, the coefficients must match, so
T T
a:lf beos?tdt, azlj bsin’t dr,
0 0

so a = Abmw/2 and b = Aarm/2. Therefore,

2.2
b:lﬂb.
4

For A = +2/x, this equation admits any value of b as a solution, and a = +b.

For A =2/m, we have

Shom(x) = a(sinx + cosx),

and, for A = —=2/m,

fhom (x) = a(sinx —cosx).

For A # 0, the equation admits only a trivial solution fyom = 0. Thus, in this case,

there exists a unique solution Vg € L,[0, 7], moreover,
f(x) = g(x) +asinx+ bcosx (22.4)

for some certain a and b. For A = +2/m, g must be orthogonal to fhom(x) =

sinx £ cosx, and, moreover, all solutions have the form f(x)+ Cfhom(x), where f(x)
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has the form as in (22.4]); so, there are infinitely many solutions, and they form

a one-dimensional affine space.

The key here is that the integral kernel is a linear combination of two functions. In

a more general setting, for

all steps above can be repeated.

In L,[0,1], consider

1
F) - fo K(x,0)f(t)dt — sin (20247x)

with K(x,7) of the form

K(x) - {x(l —t1), t>x,

t(l1—x), t<x.
In the operator form, this equation becomes (I —AA)f = g.
For A =0, we get f =g.

For A # 0, consider first the homogeneous equation, and decompose the integral

operator into the sum of two:

X 1
f<x)—/1f0z(1—x)f(t)dt—/1f (1) f(t) dt = 0.

Differentiating this equation, we obtain

F1() = Ax(1 —x)f(x) + A thf(t)dt (1 —x) £ (x)— A fu _0)f(t)dt — 0.
Since the nonintegral terms cancel out, one can take the second derivative; this gives
f(x) + Axf(x) + 2 (1 = x) f(x) =0,

and, after simplifying it, we obtain
f"(x)+Af(x) =0. (22.5)

Since it is the second-order equation, we have to find two boundary conditions. One
can see that f(0) = f(1) =0, and that, given these boundary conditions, the operator
d? /dx? is negative. Let us show it. First, we take dot product of equation (22.5) with

f(x)
[rrravea[pa=0 < [avea[r=0
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therefore, A > 0.

Further, a solution of the homogeneous equation is of the form

f(x) = asinVAx + bcosVAx.
The condition f(0) =0 gives b = 0; then, substituting x = 1, we obtain
asinvAx = 0.
For a # 0, we have
VA = nn, neN,
or, equivalently, A, = w%n>.

Note also that the homogeneous equation (I —AA)f =0 with A # 0 is equivalent to

the following eigenproblem
1
Af =—f.
f=37

That is, 1/(n*n?) are eigenvalues of A, and the eigenvectors
Sn(x) = sin(7nx)

form an orthogonal basis; for this basis to become orthonormal, one can put

a normalization factor in front of sine:
en = \/2sin (mnx). (22.6)

Further, one can try to find a solution expressed in the form of Fourier series.
Expanding the right-hand side into the Fourier series, one can obtain the relation

for the Fourier coefficients of the solution. Note also that g(x) = sin (20247x) belongs
to family ([22.6)).

In the case A = 220242, a solution of the homogeneous equation takes the form
Shom(x) = asin (20247x), so the right-hand side g(x) is not orthogonal to it, therefore,
due to the Fredholm theory, there is no solution for such A. For any other A, let us

try to find a solution of the form

f(x) =) aer.
k=1

Substituting it into the equation, we obtain

o0 o0
Zae—lZa ! e _ 0
k€k P kn_zkzk \/i’

k=1
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or simply .
A
Z ak<1 — —)ek = %
= 2k2 ﬁ

Upon carefully examining this equation, one can see that

a) For A # m’k?*, ke N:
1

V2 (1-4)
b) For A = n%k?, k € N\{2024}, the coefficient a; can be arbitrary,
1

vio—é%y

and a, =0, n # k,2024, so we have a one-dimensional affine space of solutions.

arp4 = a, =0, k#2024.

a4 = a, =0, k#2024,

c¢) For A =2024?x2, there are no solutions.

Let us demonstrate another approach to solving problems of this kind using the

following equation as an example:

1
fx) —AJ K(x,t)f(t)dt = x.
0
Taking the second derivative, we obtain the equation

f'(x) = Af(x).

Although this equation is the same as the homogeneous one, the boundary conditions

must be modified. One can see that

Substituting
f(x) = asinVAx+ bcosVAx,

into f(0) =0, we get b = 0; next, substituting it into f(1)1, we get

asinvVA = 1,

SO
1

- sinv/A

a

for A, # w%n?. In that case,
B sinv/Ax
sinvA

For A = m?n?, there are no solutions, since x £ { fhom,n)-

A # m2n’.

f(x)
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3)

(Weyl Theorem). Let Ae B(X) and A € 6(A)\0,(A). Let Be C(X). Then A € 6(A+B).

This can be reformulated in the following form: under a compact perturbation B of A,
the continuous and residual spectra remains in the spectrum of the operator A + B.

However, the classification may change.
The proof of this statement is quite simple. Let us prove it by contradiction.

Suppose A ¢ 6(A + B). Then, there exists a bounded resolvent. Consider
A~ =A+B+AM—~B=(A+B—Al)(I-(A+B—AI)"'B),

where the first factor is invertible, and (A +B— A1)~ !B is compact since B is compact
and (A+B—AI)~! is bounded, whence, the second factor is a Fredholm operator.
Let us examine the possibilities for the second factor, as dictated by the Fredholm

alternative. The first possibility is that the equation
(I-(A+B—AD"'B)f=¢

has a unique solution for any g € H, that is, (I —(A+B —ll)_lB) is invertible.
Therefore, A — Al is invertible as well, but this is not true since A € 6(A). Another

possibility is that the homogeneous equation
(I-(A+B—AI"'B)x=0

admits a nontrivial solution, so x is an eigenvector correspoding to the eigenvalue 0;

therefore, it is an eigenvector of A corresponding to A, which is not true, since

Aé¢o,(A). O

Self-Study Exercises

Consider
b n
F0) 2 | Kens@di= 0, Ko = Ypato. (227
where the functions {p;}?", are linearly independent. Then a solution has the form
n
f(x) = g(x) + D cipix),
i=1

where {¢;}!_, is a solution of the following system of equations:

n
Zaijcj = b,‘, i= l,2,...,n.
Jj=1
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Find a;}, b;.
Note that equation (22.7]) can be considered in any Banach space of functions where

all the integrals and functions are well-defined.

2) Consider ;
FO)—A JO cos(x—1)f(t)dt — g(x).

For which A € C and g € L,[0, 7] does a solution exist?
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Lecture 23. Unbounded Operators: Introduction

Volterra Operators

Recall first what we proved in the last two lectures. Let A € C(X), where X is a Banach

space, dimX = co. Then
1) 0ec(A).
2) f Aeo(A), A #0, then A € 6,(A) and dimKerA — A1 < 0.
3) Ve > 0 there exists a finite number of eigenvalues A such that |A| > €.
Now, we proceed to the following topic.
Definition 23.1. A is called a Volterra operator if A€ C(X) and 6(A) = {0}.
The importance of these operators is due to the Fredholm Alternative. Consider
(I—A)x=y.

Recall that there are two possibilities: either there exists a unique solution x for any y € X,

or there exists a nontrivial solution x¢ to the homogeneous equation
(I—A)xp =0.

If A is a Volterra operator, then for any A € C the equation
(I—AA)x =Yy

has a unique solution for any y € X, that is, for Volterra operators, the first possibility of

the alternative always holds. To explain this, let us consider the following possibilities.
1) If A =0, then x =y, since (I —AA) becomes I.
2) If A #0, then
(o
and 1/A ¢ 6(A), so there exists a bounded resolvent

Ry (A) = (A— %1)1.
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Examples of Volterra Operators

1) Consider §
AN = | fio)d
in C[0,1] or L,[0,1].

First, let us show that the point spectrum is empty: 0,(A) = . Let us try to solve

the eigenequation §
Af=Af. | fde=2sw).

Note that the eigenfunction must be a differentiable function, since it is equal to the
integral of itself, and the integral increases the number of derivatives. Moreover, if
there is an eigenfunction f, one can see that f e C*[0,1], since the aforementioned
reasoning can be repeated infinitely many times. Differentiating the equation, we
get
flx) =2Af(x) (23.1)
with the Cauchy condition
f(0)=0. (23.2)

Thus, from (23.1]), we obtain
flx)y=ce’*, A =#0.

Substituting it into (23.2), we get C =0, so f(x) =0, which is not an eigenfunction.
Further, if A =0, then f(x) =0 as well.

Another approach is to construct the resolvent. Let |A| > |Al|, then the Neumann

series is valid:
1 " (23.3)

k=0
Recall the expression obtained in the previous lectures:

(x—t)k*1

Akf = f—Ox(k_—Wf(t)dt.

Due to the factorial in denominator, the sum in (23.3) converges, so one can

interchange the summation and integration and obtain

Ry(A)f = —% (f+ %Ee@”/*f(r) dt).

With this expression, one can drop the condition |A| > [|A| since it holds for any

nonzero A.
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2) Consider a slightly more difficult example

X

(Af)(x) = j K(e,0)f(r)di

a

in Cla,b| with the condition K € C[a <t < x| (this kind of K(x,7) is called a triangle
kernel) or in Ly[a,b] with the following conditions: K is measurable and |K(x,1)| < M.

This is a Volterra operator as well, and we will consider it in detail a little later.

Unbounded Operators: Introduction

Let us recall the Hellinger—Toeplitz theorem: If A € L(H), where H is a Hilbert space,
and Vx,ye H
(Ax,y) = (x,Ay),
then A€ B(H).
Therefore, an unbounded operator cannot be defined in the entire space H, and it

must have some domain. Consider the example
Af =if’
in L,[0, 1] this operator is called the momentum operator. Consider, for instance,

fn(x) = sinwnx,

1

For these functions,

T
IAf] = "= > as n— .

V2

One of the standard domains for this operator is
D(4) = {feWz[0,1]: £(0) = f(1) =0},
where | |
(Af) = | i (T dx = if G~ | 17T
and the nonintegral terms vanish due to the boundary conditions in D(A), therefore,

(Af;8) = (f,Ag)-

Note that this operator is not self-adjoint since the domain of adjoint operator is larger.

Our further studies, we will focus on the study of unbounded operators in Hilbert
spaces. Let H be a Hilbert space, and A € L(H) be an unbounded operator. By definition,
a domain of the operator A is a subset D(A) < H such that the following condition holds:

xeD(A) = AxeH.

The largest domain of A is called sometimes a natural domain; usually, this domain has

no effective description.
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Graph of an Operator. Graph Norm. Closed Operators
Definition 23.2. A graph of an operator A is a set I'(A) € H x H such that
I'(A) = {{x,Ax}eHxH: xe D(A)}.
Definition 23.3. |x|4 = ||x| + |Ax|| is called a graph norm of an operator A.

If Ae B(H), due to the fact that the boundedness is equivalent to the continuity, one
can take a sequence x,, — x, and then Ax, — Ax. In general, this does not work this way
for unbounded operators. However, there is a class of unbounded operators, for which this

property is preserved:

Definition 23.4. A is called a closed operator if T'(A) is closed in H x H with respect
to the graph norm |- |a.

For a closed operator A, if x, € D(A) and x, — x, Ax, — y, then xe D(A) and y = Ax.

Example of a Nonclosed Operator

Consider A : L»[0,1] — L»[0,1], Af = £(0) -1 with D(A) = C|0, 1]. This operator is not
closed; let us show it. Consider the functions f, — 0 € L,[0, 1] as depicted in Fig. 23.1.

1.04
08
06
04
0.2:

0.4 0.6 0.8 1.0

Puc. 23.1. Graph of f,.

These functions converge to zero in L,[0,1], and we have {f,,1} € I'(A), however, for
the limit function, the point {0,1} cannot belong to I'(A), since it is a graph of linear

operator.
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Note that, for a closed operator, the graph norm is equivalent to the original norm
of H.

Closure of an Operator. Closable Operators

What can we do if the operator is not closed? We can consider I'(A). Then

1) If T'(A) is a graph of some operator B, then we call B a closure of A and denote

B =A, and A is called a closable operator.

2) If T'(A) is mot a graph, i.e., {0,y} e '(A), y # 0, then A is not closable.

In the example above, we face an nonclosable operator.

Let us also consider the operator Af = if’ with domain

D(A) = {f €C*[0,1], f(0) = (1) =0}.
Then, for A, we have
D(A) = {feW)2'[0.1], f(0) = f(1) =0},
that is, A is closable.

Definition 23.5. If T'(A) is a graph of some operator, then A is called a closable
operator, and its closure is A with T(A) =T'(A).

The Adjoint of an Unbounded Operator

One of the key concepts in operator theory, the adjoint operator, can be extended to

the case of unbounded operators in a natural way.
Definition 23.6. Let Ae L(H), D(A) = H. Define the domain of A* by

D(A*) ={heH: x— (Ax,h) is a bounded functional in H, x€ D(A)}.
By Riesz’s theorem, (Ax,h) = (x,z), and then we define z := A*h.

It is necessary for D(A) to be dense in H, so for z to be unique; otherwise, the adjoint
operator is not well-defined.
In the previous examples, for Af = f(0) -1 with D(A) = C[0,1], the domain is dense

in 1,[0,1]; the same holds for Af = if’ with D(A) = W, [0, 1].
Theorem 23.1. Let Ac L(H), D(A) = H. Then A* is closed.
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Proof. Let us consider the operator
W:HxH—HXxH, W{x,y} = {—y,x}.

We are going to show that I'(A*) = (WI'(A)) L; it is known that the orthogonal complement
is closed, and, in that case, so is ['(A*). Consider (Ax,y) = (x,A*y); equivalently, (Ax,y) —

(x,A*y) = 0. Further, it can be rewritten as

{—Ax,x} L {y,A*x} in HxH,

since
(e} w2l € (enx)a + (1,32,
SO
({—Ax,x},{y,A"x}) = (=Ax,y) + (x,A"y) = 0.
Thus, since
{—Ax,x} = W{x,Ax} and {y,A*x}el(A%),
we see that ['(A*) = (WL'(A))*. O

Theorem 23.2. Let Ac L(H), D(A) =H. Then
H =KerA* @ RnA.

Note that we proved this statement for the operators of the form I —A, and we did
not use the boundedness of this operator.

Proof. Let us first show that KerA* | RnA. If x€ KerA*, ye RnA, then A*x = 0 and
y = Az for some z € D(A). Further,

<x7y> = (X,AZ) = (A*xvz) =0,

since A*x = 0.
Next, one can verify that
KerA* 1 RnA

by considering the limit points of RnA.
Now, the only point to be proved is that KerA* @RnA = H. Suppose that there exists
h e H such that
h Ll (KerA* @Lm)
For x € D(A), consider
0 = (Ax,h) = (x,A*h),

where h 1 Ax, so the first dot product vanishes, and the second one is defined for xe D(A),
D(A) = H, therefore, A*h =0, and thus, h € KerA*, which means & = 0, since & is orthogonal
to this space. O
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Closability of a Densely Defined Operator

Theorem 23.3. Let Ac L(H), D(A) = H. Then A is closable iff D(A*) = H.

If A* is densely defined, then A = A** (note that it may not coincide with A for
unbounded A).

o

Consider Af = if’ with D(A) = W,

and these operators are not self-adjoint, since the adjoint one has different domain. Both
of these operators are closed, and A = A = A**.

Note also that there is a difference between symmetric and self-adjoint operators, and
it is due to the difference in domains. However, for some symmetric operators, there exist

so-called self-adjoint extensions. By definition, a symmetric operator satisfies
(Af.8) = (f,Ag) Vf.geD(A).
We also know that
(Af.8) = (f,A%), VfeD(A), VgeD(A"),

so, for a symmetric operator A, the following holds: A — A*, which means that D(A) c
D(A*) and

A*|9J(A) =4,

and the closure may be non-self-adjoint. In further lectures, we will construct all self-

adjoint extensions of (23.4)).
Proof of Theorem [23.3] Consider the second power of W:

w: {X,y} = {_yax}7

that is, W? = —I. Since A is densely defined, for WI'(A*), we have
* 1 2 L 1
WE(A%) = W (W((A))) " = (W2T(4)) " = (T(4)",

and
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Example: Nonexistence of A**

Consider again the following example: in L,[0, 1],
Af=£(0)-1, D) =clo,1].

What is A*?
We know that
KerA*@®) RnA = [,[0,1]

and
D(A*) = {ge L[0,1]: (Af,g) is a bounded functional}.

Further,
1 _ 1
J f(0)-1-g(x)dx = f(O)J g(x)dx.
0

is the very functional that must be bounded. However, this is not a continuous functional

on the domain of A; there is a way to make it continuous by restricting to the case where

Jol g(x)dx=0.

Thus, g L 1, and 1 is from the range of A, therefore, g € KerA*, so A* = 0. (It is not
a typical situtation, however, it is quite typical for nonclosable operators.) Since A* is not
densely defined, there is no (A*)*, and, therefore, it is impossible to construct A.

Inverse of an Unbounded Operator

Theorem 23.4. Let Ae L(H), D(A) = H. Then there exists A~ € B(H),
A”':RnA > H,
iff
de>0: VxeD(A): |Ax|=c|x].
Proof. =. Since there exists A~!, then

WyeRnA: A Yy < |AY] |yl

and KerA = {0}. There exists a unique x: y = Ax, and

1

xl < A7 JAx], €=y
lA=1]
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Further, for <, we have |Ax| = c|x|, which is equivalent to KerA = {0}, therefore, there
exists A™! : RnA — H. Let us show the boundedness of A~!:

¥ = cla="yl,

SO
_ 1 _
lA 1yH<;HY|| = A7'eB(H). O
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