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Lecture 1. Basics of Functional Analysis. Metric Spaces

Metric Spaces. Examples of Metric Spaces

Definition 1.1. pX ,ρq, where X is an arbitrary set and ρ : X ˆ X Ñ r0,`8q, is called
a metric space, if ρ satisfies

1) ρpx,yq “ 0 iff x “ y,

2) ρpx,yq “ ρpy,xq,

3) ρpx,yq ď ρpx,zq ` ρpz,yq (the triangle inequality).

One of the central concepts in Functional Analysis is the notion of a complete metric
space, defined as follows:

Definition 1.2. A metric space pX ,ρq is called complete if for any Cauchy sequence
txnu8

n“1 there exists lim
nÑ8

xn “ x P X .

Now we demonstrate some fundamental examples of metric spaces.

Example 1.1. Rn (or Cn) with coordinates x “ px1,x2, . . . ,xnq endowed with a standard
Euclidean metric

ρpx,yq “

g

f

f

e

n
ÿ

i“1

|xi ´ yi|2.

In further, when we mention some metric spaces, they are assumed to be endowed
with a certain (standard in some sense) metric, so we omit the explicit notation of the
given metric.

Rn and Cn above serve as examples of finite-dimensional metric spaces, while the main
objects, which are studied in Functional Analysis, are infinite-dimensional metric spaces.
Let us look at the following examples.

Example 1.2. Consider the following spaces of sequences:

a) c00, which is the space of infinite sequences x “ px1,x2, . . . ,xn,0,0, . . .q with a finite
number of nonzero coordinates (this number may be different for distinct elements
of the space):

@x P c00 Dn “ npxq : @k ą n xk “ 0.

b) c0, which is the space of infinite sequences x “ px1,x2, . . . ,xn, . . .q such that

lim
nÑ8

xn “ 0.
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c) c, which is the space of infinite sequences x “ px1,x2, . . . ,xn, . . .q such that

D lim
nÑ8

xn “ a ” apxq.

These are examples of infinite-dimensional metric spaces. The standard metric is given
by ρpx,yq “ sup

iě1
|xi ´ yi|. It can be easily seen that c00 Ă c0 Ă c.

What can we say about the completeness of these spaces in examples above? Rn and
Cn, being finite-dimensional spaces, are obviously complete, since the convergence there is
in fact the coordinate-wise convergence. Let us define the convergence in a generic metric
space.

Definition 1.3. xn
ρ

Ñ x in pX ,ρq if ρpxn,xq Ñ 0.

In the first example, the convergence with respect to the metric is just the coordinate-
wise convergence.

What can we say about the space c00?

Exercise 1.1. Prove that c00 is not complete.
An example proving that this space is incomplete can be constructed by adding

something small to further and further coordinates, for instance,

x1
“

´

1,0,0,0, . . .
¯

,

x2
“

´

1,
1
2
,0,0, . . .

¯

,

. . .

xn
“

´

1,
1
2
, . . . ,

1
n
,0, . . .

¯

.

txnu8
n“1 is a Cauchy sequence:

ρpxn,xm
q “

1
minpn,mq ` 1

Ñ 0 as n,m Ñ 8

(note that we have the supremum metric, and not ℓ2-metric!). By the convergence with
respect to metric in c00, c0, and c, it follows that @k xn

k Ñ xk, so the limit sequence is
harmonic: x “ p1, 1

2 ,
1
3 , . . . ,

1
n , . . .q, which is not finite, therefore, it does not belong to c00.

Let us proceed to the following examples.

Example 1.3. Consider ℓppnq, 1 ď p ă 8, the space of finite-dimensional vectors x “

px1, . . . ,xnq, x j P R (or C), with metric

ρpx,yq “

´

n
ÿ

i“1

|xi ´ yi|
p
¯1{p

;

8



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS

IGOR SHEIPAK

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

if we take the limit with respect to the parameter p, as p Ñ 8, then, for p “ 8, we have

ρpx,yq “ max
iě1

|xi ´ yi|.

It is clear that these functions ρpx,yq are indeed metrics in the spaces ℓppnq: they are
symmetric, nonnegative, take zero values only for coinciding elements (x “ y), and the
corresponding triangle inequalities are simply the Minkowski inequalities.

Example 1.4. Consider ℓp, 1 ď p ă 8, the space of infinite sequences x “ px1, . . . ,xn, . . .q,
x j P R (or C), such that

n
ÿ

i“1

|xi|
p

ă 8

for p ă 8 and
sup
iě1

|xi| ă 8

for p “ 8. The metric is given by

ρpx,yq “

´

n
ÿ

i“1

|xi ´ yi|
p
¯1{p

for p ă 8 and
ρpx,yq “ sup

iě1
|xi ´ yi|

for p “ 8.

The following example is represented by the space of functions.

Example 1.5. Consider Cra,bs, the space of continuous functions with the (uniform)
metric

ρp f ,gq “ max
ra,bs

| f pxq ´ gpxq|.

These metric spaces (ℓppnq, ℓp, and Cra,bs) are complete, though this property can be
violated if we define the metric in the space of continuous functions in the following way:

Example 1.6. Consider Cpra,bs, the space of continuous functions, where the parameter p

indicates that we use the integral metric

ρp f ,gq “

´

ż b

a
| f pxq ´ gpxq|

p dx
¯1{p

;

as the functions are continuous, the integral is the Riemann integral. If we take the limit
as p Ñ 8, we immediately obtain the previous example, i.e. the space Cra,bs of continuous
functions with the uniform metric.
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For 1 ď p ă 8, these spaces are not complete.

Exercise 1.2. Prove that C1r0,1s is not complete.
We can construct a sequence t fnu8

n“1 of continuous functions such that fn ” 1 for
x ď 1{2, fn decreases to zero on r1

2 ,
1
2 ` 1

ns, and fn ” 0 for x ě 1
2 ` 1

n . This sequence is

Рис. 1.1. Graphs of fn, n “ 3,5,7,9,11,13,15.

obviously a Cauchy sequence: ρp fn, fmq is dominated by the square of the triangle with
vertices p1{2,1q, p1{2 ` 1{n,0q, and p1{2 ` 1{m,0q, that is,

ρp fn, fmq “
1
2

ˇ

ˇ

ˇ

1
n

´
1
m

ˇ

ˇ

ˇ
Ñ 0

as n,m Ñ 8. With respect to the given metric, fn converges to an indicator function χ
r0, 1

2 s

of the interval r0, 1
2s, which is not continuous, so the space C1r0,1s is incomplete (since

the metric is integral, we must identify the functions that are equal almost everywhere, but
since we are in the space of continuous functions, this means that “almost everywhere” is
equivalent to “everywhere”, so the limit function is unique).

In the following example, we consider the spaces of differentiable (smooth) functions.

Example 1.7. Consider Cnra,bs, the space of functions f such that @ j “ 0,1, . . . ,n:
f p jq P Cra,bs. We can endow this space with either of metrics

ρ1p f ,gq “

n
ÿ

j“0

max
r0,1s

| f p jq
pxq ´ gp jq

pxq|

10
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or
ρ2p f ,gq “ max

0ď jďn
max
r0,1s

| f p jq
pxq ´ gp jq

pxq|.

These metrics are equivalent since ρ2 ď ρ1 ď pn ` 1qρ1 (so when replacing one metric
with the other, we just change the geometry of our space, while the convergence properties
remain the same). These spaces are complete.

Consider more complicated examples.

Example 1.8. Consider pΩ,M,µq, where Ω is the universal set, M is a σ -algebra, and
µ is a σ -finite measure. We can define the space of measurable functions LppΩ,µq:

f P LppΩ,µq if
ż

Ω

| f pxq|
p dµ ă 8, 1 ď p ă 8,

and f P L8pΩ,µq if esssup | f pxq| ă 8, i.e. the function is bounded almost everywhere,
meaning that

esssup | f pxq| “ inf
µpAq“0

sup
ΩzA

| f pxq|.

For 1 ď p ă 8, the metric is defined by ρp f ,gq “

´

ş

Ω

| f ´g|p dµ

¯1{p
; for p “ 8 it is defined

by ρp f ,gq “ esssup | f pxq ´ gpxq|. These spaces are complete.

Example 1.9 (Sobolev spaces, one-dimensional case). Consider

W n
p ra,bs “ t f such that @ j “ 0,1, . . . ,n ´ 1 f p jq

P ACra,bs, f pnq
P Lpra,bsu,

where ACra,bs is the space of absolutely continuous functions. For 1 ď p ă 8, the metric
can be defined as follows:

ρp f ,gq “

´

n
ÿ

j“0

ż

ra,bs

| f p jq
pxq ´ gp jq

pxq|
p dµ

¯1{p
,

and for p “ 8, the integral must be replaced with the essential supremum. These spaces
are complete.

Example 1.10. Discrete metric space Xdiscr. Let X be an arbitrary set, and let the metric
be defined by

ρpx,yq “

#

1, if x ‰ y,

0, if x “ y.

In this metric, all Cauchy sequences are simply stabilizing sequences:

x1, x2, . . . , xN , a, a, . . . , a, . . .

Thus, this space is obviously complete since a P X . In the topology associated with the given
metric, every set is open.

11
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Limit and Closure Points. Closure of a Set. Separable Spaces

Let us remind the definition of open and closed subsets of the metric space.

Definition 1.4. Let pX ,ρq be a metric space and M Ă X . M is open if @x P M Dε ą 0:
Bpx,εq Ă M, where Bpx,εq “ ty P X : ρpy,xq ă εu. M Ă X is closed if XzM is open.

According to this definition, a single point tau Ă X is an open subset of Xdiscr; any
union of open sets is open, so any subset of X is an open set in the metric space Xdiscr.

Another definition of the closed subset can be given in terms of limit points of the set.
Let us recall some definitions.

Definition 1.5. x0 is called a limit point of a set M Ă pX ,ρq if @ε ą 0 Bpx0,εq X M

contains infinitely many points of M.

Definition 1.6. x0 is called a closure point of a set M Ă pX ,ρq if @ε ą 0 Bpx0,εqXM ‰

H.

Definition 1.7. The closure of a set M Ă pX ,ρq is M “ M Y tall limit pointsu “

tall closure points of Mu.

Let us recall some other definitions from Functional Analysis.

Definition 1.8. A set M Ă pX ,ρq is dense in X if M “ X .

Definition 1.9. A metric space pX ,ρq is called separable if there exists a countable or
finite dense subset of X .

Note that the condition of finiteness of the dense subset is reserved specifically for
discrete metric such as in Xdiscr.

Next, we shall point out which of spaces in the examples above are separable and
which are not.

1) Xdiscr is separable if Xdiscr is finite or countable.

2) Cra,bs is separable since for every f P Cra,bs and any ε ą 0 there exists
a polynomial p with rational coefficients such that } f ´ p}Cra,bs ă ε (see the
Weierstrass approximation theorem):

p “

n
ÿ

i“0

cixi, ci P Q.

3) LppX ,µq, 1 ď p ă 8, are separable if the measure µ is σ -additive.

12
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4) ℓ8 is not separable.

Exercise 1.3. Prove that ℓ8 is not separable.

Lemma 1.1. Let pX ,ρq be a metric space. If there exists an uncountable M Ă X such that
Dd ą 0 @x,y P M: ρpx,yq ě d, then X is not separable.

Proof by contradiction. Assume that X is separable, then

DX0 Ă X , finite or countable, such that X0 “ X .

This is equivalent to the following property. For ε ą 0, consider balls with centers at x of
radii ε. Thus,

YxPX0Bpx,εq “ X .

The number of the balls in this union has the same cardinality as X0, i.e. it is finite or
countable. But M (see the condition of the lemma) is not countable, so DBpx0,εq Ą tx,yu,
x,y P M. Take ε “ d{3; then

d ď ρpx,yq ď ρpx,x0q ` ρpx0,yq ď 2d{3,

where the first inequality is due to property of the set M, and the second one is due to the
triangle inequality, which gives us a contradiction.

If we would like to use this lemma to prove that ℓ8 is not separable, then we have to
find a subset of ℓ8 with the property described. Consider the set of sequences

M “ tx “ px1,x2, . . . ,xn, . . .q such that @k : xk P t0,1uu.

This set is uncountable; one can show it by employing Cantor’s diagonal method (if we
suppose that this set is countable, we can write it in the form of a table; then, we pick the
diagonal and change any symbol of the diagonal to the opposite; there is no such an element
in this table, so the set is uncountable. This method is usually used to prove that R is not
countable in Calculus) and ρpx,yq “ 1 as x ‰ y, so this set satisfies the conditions of the
lemma.

Maps of Metric Spaces

Let pX ,ρq and pY,dq be metric spaces. Consider the map pX ,ρq
f

Ñ pY,dq. We will focus
on the following kinds of maps:

1) f is continuous at a point x0 P X ,

13
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2) f is continuous on X ,

3) f is uniformly continuous on X ,

4) f is Lipschitz continuous on X . (Recall that it means that

Dr ě 0 : sup
x,yPX : x‰y

dp f pxq, f pyqq

ρpx,yq
“ r ă 8,

and r is called a Lipschitz constant).

For instance, in the existence and uniqueness theorem for the solution of Ordinary
Differential Equation (namely, the Cauchy problem) there are Lipschitz continuous
functions considered as a right-hand side of the equation; for the Cauchy problem

y1
“ Gpx,yq,

ypx0q “ y0

to be uniquely solvable, we must require that Gpx,yq is Lipschitz continuous with
respect to y.

5) f is contraction:

Definition 1.10. f : pX ,ρq Ñ pY,dq is called a contraction if f is Lipschitz
continuous with r P r0,1q.

6) f is isometry:

a) f is a complete isometry if f is a bijection X Ñ Y and dp f pxq, f pyqq = ρpx,yq.

b) f is a partial isometry if f is not a bijection, while dp f pxq, f pyqq = ρpx,yq

holds.

These are the most important properties of maps of metric spaces.

Properties of Complete Metric Spaces

The main property is that we can take a limit and guarantee that the limit element
has the same properties as the elements of the sequence converging to it. For instance, we
know that the space of (n times) differentiable functions is complete; thus, taking a limit
of a sequence of differentiable functions we can only obtain a differentiable function.

Theorem 1.1 (fixed-point theorem). Let pX ,ρq be a complete metric space, and f : X Ñ X

be a contraction mapping. Then

D!x˚
P X : f px˚

q “ x˚.

14
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Example 1.11 (of incomplete space for which this theorem is not valid). Consider
a real axis with zero excluded, Rzt0u, with a standard metric ρpx,yq “ |x ´ y|. Consider
a contraction f pxq “ x

2 . On R, it has 0 as a fixed point; when we exclude 0 from the
space R, it becomes incomplete, and, at the same time, it looses the fixed point of the
given contraction.

Idea of the proof. Let x0 be an arbitrary start point. Take

x1 “ f px0q,

x2 “ f px1q “ f p f px0qq,

. . . ,

xn “ f pxn´1q,

xn`1 “ f pxnq,

. . . ,

so we obtain a sequence txnu8
n“1. We can prove that this sequence is a Cauchy sequence

using the contraction properties of f , therefore, there exists

x˚
“ lim

nÑ8
xn.

We can prove that f px˚q “ x˚, and then prove that if there is another point y˚ such that
y˚ “ f py˚q, then x˚ “ y˚.

To formulate the following theorem, we have to define the system of nested closed
balls.

Definition 1.11. Bn “ Brxn,rns, such that B1 Ě B2 Ě ¨¨ ¨ Ě Bn Ą Bn`1 is called a system
of nested closed balls.

Remark on notation. Bpx,εq “ ty P X : ρpx,yq ă εu denotes an open ball and Brx,εs “

ty P X : ρpx,yq ď εu denotes a closed ball.

Theorem 1.2. Let pX ,ρq be a metric space. It is complete iff @tBnu8
n“1 (system of nested

closed balls) with radii rn Ñ 0

D!x˚
“ X

8
n“1Bn.

Proof. ñ. Let pX ,ρq be complete. Let tBnu8
n“1 be our system of nested closed balls

with rn Ñ 0. Consider a sequence txnu8
n“1 of centers. This sequence is a Cauchy sequence:

ρpxn,xmq ď
nąm

rn Ñ 0 as n Ñ 8,
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therefore, since pX ,ρq is complete,

Dx˚ :“ l im
nÑ8

xn.

As it is the limit of xn, and the intersection XBn of all balls is closed, x˚ is a limit point
of this set. Thus,

x˚
P X

8
n“1Bn.

If there would be another point of this set, we would have y˚ P XBn; then the distance
ρpx˚,y˚q between x˚ and y˚, by the triangle inequality, is dominated by an infinitesimal
sequence:

ρpx˚,y˚
q ď ρpx˚,xnq ` ρpxn,y˚

q ď 2rn Ñ 0,

so x˚ “ y˚.
ð. Let any system of nested closed balls have a unique common point. Prove that our

space is complete.
Let txnu8

n“1 be an arbitrary Cauchy sequence. By the definition of the Cauchy sequence,

Dn1 P N : @n ě n1 ρpxn,xn1q ă 1{2.

Take the first ball B1 :“ Brxn1,1s (twice as large as in the line above). Then, by induction,

Dn2 ą n1 : @n ě n2 ρpxn,xn2q ă 1{4.

Take the next ball B2 :“ Brxn2,
1
2s. It can be easily verified that B2 Ă B1: let y P B2; let us

find ρpxn1,yq. ρpxn1,yq ď ρpxn2,yq ` ρpxn2,xn1q ă 1
2 ` 12 ă 1, so y P B1. Then we construct

by induction

B1 Ą B2 Ą ¨¨ ¨ Ą Bm, Bk “ Brxnk ,
1

2k´1 s,

k “ 1, . . . ,m,
Dnm`1 ą nm : @n ě nm`1 ρpxnm`1,xnmq ă 1{2m,

and take Bm`1 :“ Brxnm`1,
1

2m´1 s Ă Bm. Thus, txnmu is a Cauchy sequence, and

D x
mÑ8nm

“ x˚.

But xnm is a subsequence of xn. Even though,

ρpx˚,xnq ď ρpx˚,xnmq ` ρpxnm,xnq,

and each of these terms approaches zero (for the second one, it is due to the fact that we
have a Cauchy sequence) as n,m Ñ 8, therefore, x˚ “ lim

nÑ8
xn.
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Lecture 2. Metric Spaces. Normed Spaces. Seminorms

and Polynormed Spaces. Banach Spaces.

Wrapping Up the Previous Lecture: Properties of Complete

Metric Spaces

In the previous lecture, we have completed the proof of the theorem, which provides
a criterion for completeness in terms of systems of nested closed balls. Now, we are to
give some examples.

Example 2.1. Let pX ,ρq be an incomplete metric space. We have a system of nested
closed balls tBnu, so that their radii rn approaching zero, and X8

n“1Bn “ H. This example
can be represented by Rzt0u and the balls with centers at 1{n and the same radii: Bn :“

Br1
n ,

1
ns “ p0, 2

ns. These balls are closed in that space (according to the definition of the
closed subset), and their intersection is empty.

The following theorem is the last one in the section devoted to the general properties
of complete metric spaces.

Definition 2.1. A subset M Ă pX ,ρq is called nowhere dense if @B (ball in X) DB̃ Ă B

(another ball): M X B̃ “ H.

This definition is equivalent to interior of M “ H.

Theorem 2.1 (Baire category theorem). Let pX ,ρq be a complete metric space, and X

be represented as a countable union of subsets X “ Y8
n“1Xn. Then Dn0: Xn0 has interior

points.

This means that all Xn cannot be nowhere dense all at once.
According to Baire, X is a set of I category if there is a representation of X as

a countable union X “ Y8
n“1Xn of nowhere dense sets Xn; X is a set of II category otherwise.

So, if pX ,ρq is complete metric space, then it belongs to the II category.
Proof by contradiction. Let pX ,ρq be complete, and suppose that there is

a representation of X as a countable union X “ Y8
n“1Xn of nowhere dense sets Xn. Then,

by definition of nowhere dense set, there exists a ball B1 “ Brx1,r1s, r1 ă 1: B1 X X1 “ H.
Then we take the nowhere dense X2; there exists B2 “ Brx2,r2s Ă B1: B2 XX2 “ H, and

r2 ă 1{2.
If we construct nested balls B1 Ą B2 Ą ¨¨ ¨ Ą Bn, Bk “ Brxk,rks, rk ă 1{2k´1 in such

a manner, then
Xk X Bk “ H,
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and since Xn`1 is nowhere dense, there exists a ball Bn`1 “ Brxn`1,rn`1s, rn`1 ă 1{2n, such
that Xn`1 X Bn`1 “ H.

We obtain a system of nested closed balls tBnu8
n“1, so that rn Ñ 0 and Bn X Xn “ H.

According to the theorem from the previous lecture,

D!x˚
“ X

8
n“1Bn.

Thus, x˚ R YXn “ X , so we arrive at the contradiction.
Let us give some remarks concerning this theorem. First of all, the Baire category

theorem tells us something only about complete metric spaces (that they belong to the
second category); incomplete metric spaces can belong to either of the categories. Consider
some examples:

Example 2.2. Let pX ,ρq be an incomplete metric space. For which X can we find
a representation in the form of a countable union X “ Y8

n“1Xn of nowhere dense sets
Xn? For instance, X “ Q “ YrnPQtrnu: each point rn P Q is nowhere dense in Q.

Example 2.3. Let pX ,ρq be an incomplete metric space. For which X there is no
representation in the form of a countable union X “ Y8

n“1Xn of nowhere dense sets Xn?
The simplest example is Rzt0u (this is an incomplete metric space, but there is no such
a representation, since otherwise we would prove that R is countable).

Example 2.4. D countable dense in R, countable nowhere dense in R, and uncountable
nowhere dense in R: Q, N, and the Cantor set respectively.

What can we do if our metric space is incomplete?

Definition 2.2. pY,dq is called a completion of a metric space pX ,ρq if

1) pY,dq is a complete metric space,

2) DY0 Ă Y : Y0 – X (full isometry),

3) Y0 “ Y .

Theorem 2.2 (without a proof for now). For any metric space pX ,ρq, there exists
a unique (up to isometry) completion.

Normed Spaces

Definition 2.3. Let X be a linear space over a field K (K “ C or R). A function
} ¨ } : X Ñ r0,8q, x ÞÑ }x}, is called a norm if it satisfies the following conditions:
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1) }x} “ 0 ô x “ 0,

2) @α P K @x P X : }αx} “ |α | ¨ }x},

3) @x,y P X : }x ` y} ď }x} ` }y} (the triangle inequality).

A set X endowed with a norm }¨} is called a normed space. Convergence in the normed
space is naturally defined by

xn Ñ x if }xn ´ x} Ñ 0 as n Ñ 8.

Any normed space pX ,} ¨ }q is obviously a metric space pX ,ρq with metric ρpx,yq “

}x ´ y}, so the convergence here means exactly the same as the convergence with respect
to the norm.

All the examples of metric spaces from the previous lecture, except for the space with
discrete metric, are normed spaces. Discrete metric cannot be defined by a norm since
this metric is not linear.

Question: Is every linear space X with a shift-invariant metric ρ (i.e. ρpx ` z,y `

zq “ ρpx,yq) a normed space? (This property obviously holds for the metric defined by
ρpx,yq “ }x ´ y}.)

The answer is no!
We can construct a metric space, metric of which cannot be defined by a norm.

Consider a space of all sequences:

s Q x “ px1,x2, . . .q;

it has linear structure:
α ¨ x “ pαx1,αx2, . . .q, α P K,

and
x ` y “ px1 ` y1,x2 ` y2, . . . ,q.

What about the convergence in this space? It is natural to define a point-wise convergence:

xn
” pxn

1,x
n
2, . . . ,x

n
k , . . .q Ñ x ” px1,x2, . . . ,xk, . . .q

if @k: xn
k Ñ xk as n Ñ 8.

Statement 2.1. 1) There exists a metric ρ such that ρpxn,xq Ñ 0 ô xn
k Ñ xk @k,

2) there is no norm } ¨ } that defines convergence in s.
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Hint: if ρ is a metric, then ρ 1 “
ρ

1`ρ
is also a metric, and it defines the same

convergence. Moreover, this metric is bounded from above by 1. Proof of these facts
is an optional exercise.

Proof of 1). Consider a metric

ρpxn,xq “

8
ÿ

k“1

1
2k

|xn
k ´ xk|

1 ` |xn
k ´ xk|

(it is obviously a metric, according to the exercise above). We claim that convergence
with respect to this metric is equivalent to the coordinate-wise convergence:

ρpxn,xq ô xn
k Ñ xk @k.

To prove it in ð direction, we note that the sum converges uniformly with respect to n:

the sum can be dominated by
8
ř

k“1

1
2k ă 8. Thus, one can take a limit with respect to n

under the sum sign:
lim

nÑ8

ÿ

“
ÿ

lim
nÑ8

due to the uniform convergence, as we remember from Calculus. Now recall that
assumption here is that we have a coordinate-wise convergence; then,
pxn

k Ñ xkq ñ ρpxn,xq Ñ 0.
Proof in ñ direction can be completed by contradiction: let ρpxn,xq Ñ 0 and Dk0:

Dn j Ñ 8 Dc ą 0: |xn j
k0

´xk0 | ě c. Note that the function f ptq “ t{1 ` t is a strictly monotonic
function, thus

ρpxn,xq ě
1

2k0

|xn j
k0

´ xk0 |

1 ` |xn j
k0

´ xk0 |
ě

1
2k0

c
1 ` c

­Ñ 0,

which gives us a contradiction.
Proof of 2) can also be completed by contradiction. Let D} ¨ }. Consider

xn
“ p0, . . . ,0,1,0, . . .q,

where 1 appears at the n-th position. The norms of these elements are some nonzero
numbers (since xn ‰ 0, see the definition of the norm): }xn} “ αn. Now we consider
a sequence

yn
“

xn

αn
, }yn

} “ 1.

What can we say about the distance between yn and 0, i.e. ρpyn,0q?

ρpyn,0q “
1
2n

1{αn

1 ` 1{αn
Ñ 0 as n Ñ 8,
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so yn converges to 0 with respect to the metric from the point 1) above; it is equivalent to
the coordinate-wise convergence. In other words, we constructed a sequence converging
to 0 with a norm equal to 1, which means that this sequence does not converge with
respect to the norm, so we have a contradiction.

Seminorms and Polynormed Spaces

In further, we are going to refrain from the topology of the spaces we study, so that this
course would not become a topological functional analysis; our aim is to study operators.
Even though, let us now consider a little topological side note.

Definition 2.4. Let X be a linear space over a field K, K “ C or R. A function p : X Ñ R
is called a seminorm if

1) @x P X : ppxq ě 0,

2) @α P K, @x P X : ppαxq “ |α | ¨ ppxq,

3) @x,y P X : ppx ` yq ď ppxq ` ppyq.

The difference between norms and seminorms is that the latter can be equal to zero
even for nonzero elements of our space: x ‰ 0 and ppxq “ 0.

Example 2.5 (of seminorms that are not norms). 1) For sequences
x “ px1, . . . ,xn, . . .q: pkpxq “ |xk|.

2) For R3: ppxq “

b

x2
1 ` x2

2.

3) For Cra,bs: pxp f q “ | f pxq| (evaluation of the value of f at a certain point x P ra,bs).

Definition 2.5. X is called a polynormed space (or a locally convex space) if there
is a set of seminorms defined on X : tpαuαPΛ (Λ can be uncountable), and convergence is
defined by

xn Ñ x i f @α P Λ : pαpxn ´ xq Ñ 0,

and the set of seminorms distinguish the points, i.e.

@x ‰ y Dα : pαpx ´ yq ‰ 0.

The latter assumption is required for the topology to be Hausdorff (otherwise, the
limit may be nonunique).
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The base for the topology of the polynormed space is so-called “standard” balls
Uε,α1,...,αnpx0q “ ty P X : @i “ 1, . . . ,n : pαipx0 ´ yq ă εu, i.e. this is an intersection of the
balls of the prebase:

Uε,α1,...,αnpx0q “ X
n
i“1Uε,αipx0q.

Now we can consider the following constructions:

1) Let pX ,tpαun
α“1q be a polynormed space with a finite number of seminorms. We

claim that this space is a normed space: pX ,} ¨ }q; for instance, we can choose

}x} “

n
ÿ

k“1

pkpxq or }x} “ max
1ďkďn

pkpxq.

2) pX ,tpku8
k“1q. This space is a metric space pX ,ρq, where the metric can be defined,

for example, in the following way:

ρpx,yq “

8
ÿ

k“1

1
2k

pkpx ´ yq

1 ` pkpx ´ yq
.

Banach Spaces

Earlier, we considered complete metric spaces. Any normed space is a metric space.
A natural question arises about the restriction of the concept of completeness to normed
spaces.

Definition 2.6. A complete normed space pX ,} ¨ }q is called a Banach space.

The following spaces considered in the first lecture are Banach spaces: Rn, Cn, c0, c,
ℓppnq, ℓp, Cra,bs, Cnra,bs, LppΩ,µq, W n

p ra,bs (and, in fact, all Sobolev spaces).

Lemma 2.1. Let pX ,ρq be a complete metric space, and M Ă X . Then

pM,ρq is complete ô M is closed.

Proof. ð. If txnu8
n“1 is a Cauchy sequence in pM,ρq, then it is Cauchy in pX ,ρq, and

Dx :“ limxn; x is a limit point, so x P M, therefore, M is complete.
ñ. Let x be a limit point of M; then there exists a sequence xn P M such that

x “ lim
nÑ8

xn.

txnu is Cauchy, thus, x P M; therefore, M is closed.

Theorem 2.3. For any metric space pX ,ρq, there exists a completion, and it is unique
up to isometry.
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Proof.

1) Consider a space BpXq of bounded functions on X with norm

} f } :“ sup
xPX

| f pxq|. p f : X Ñ R.q

2) BpXq is complete (i.e., it is a Banach space): Let t fnu8
n“1 be a Cauchy sequence; then

@ε ą 0 DN “ Npεq : @n,m ě N :

sup
x

| fnpxq ´ fmpxq| ă ε. (2.1)

Then we immediately obtain that the sequence of values is Cauchy (at any x):

@x P X : | fnpxq ´ fmpxq| ă ε ñ t fnpxqu
8
n“1 is Cauchy,

therefore,
@x D lim

nÑ8
fnpxq “: f pxq (a pointwise limit).

Then we have to demonstrate that this function is bounded, and we must show that
this is a limit in the supremum sense. In order to do so, we use (2.1). This inequality
is uniform with respect to x P X and n,m ě N. Take

lim
mÑ8

¨ ¨ ¨ “: sup
x

| fnpxq ´ f pxq| ď ε

(we can take it under the supremum due to the uniformity). Thus, f is the limit
function in BpXq. Then

} f } ď } f ´ fn} ` } fn} ď ε ` } fn};

the second term is finite, therefore, f is bounded.

3) Construct an isometric embedding X ãÑ BpXq. For any x P X , we put in
correspondence a bouded function fxptq “ ρpx, tq ´ ρpx0, tq, where x0 is some fixed
point. For y P X , it is fyptq “ ρpy, tq ´ ρpx0, tq.

a) fx is bounded:

| fxptq| “ |ρpx, tq ´ ρpx0, tq| ď |ρpx,x0q ` ρpx0, tq ´ ρpx0, tq| ď ρpx,x0q p@ tq.

b) fx is an isometry:

} fx ´ fy} “ sup
t

|ρpx, tq ´ ρpy, tq| ď ρpx,yq,

and for t “ x or t “ y, we have an equality.

Let the image of X in BpXq under the embedding described be denoted by Y0. Take
a closure: Y “ Y0. It is a closed subset of BpXq, thus, according to the lemma above,
Y is complete. Therefore, Y is a completion of X . The uniqueness will be discussed
in the next lecture.

23



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS

IGOR SHEIPAK

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

Self-Study Exercises

The following exercises are for self-study.

Exercise 2.1. 1) Prove that c0 is complete.

2) Prove that Bra,bs (bounded functions on ra,bs) with norm } f } “ sup
xPra,bs

| f pxq| is not

separable.

3) Using the fixed-point theorem, find the limit of the sequence

2, 2 `
1
2
, 2 `

1
2 ` 1

2

, . . . .

4) Give an example of a complete metric space pX ,ρq with system of closed nested balls
Bn “ Brxn,rns such that rn Ñ r ą 0 and X8

n“1Bn “ H.

5) 2-adic metric: let x,y PQ, x ‰ y. Then there exists a representation x´y “ 1
2n

a
b , n PZ,

a and b are odd. Prove the following:

a)

ρpx,yq “

$

&

%

1
2n , x ‰ y,

0, x “ y

is a metric, and ρpx,yq ď maxpρpx,zq,ρpz,yqq;

b) if pB1 “ Bpx1,r1qq X pB2 “ Bpx2,r2qq ‰ H, then either B1 Ă B2, or B2 Ă B1;

c) let a,b,c P Q, then at least two of

ρpa,bq, ρpb,cq, ρpa,cq

coincide.
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Lecture 3. Euclidean and Hilbert Spaces.

Proof of Uniqueness of the Completion

In the previous lecture, we proved only the existence of the completion of the metric
space. Now, we prove the uniqueness.

Let pX ,ρq be a metric space and pY,dq, pZ,wq be two completions. By definition of
completeness,

DY0 Ă Y and Z0 Ă Z : Y0 – X – Z0, Y0 “ Y, Z0 “ Z.

Then there exists a bijection ϕ : Y0 Ñ Z0. So we can just extend it to the limit points. If
y is a limit point of Y , and y R Y0, then

Dtyn,0u
8
n“1 P Y0 s.t. yn,0 Ñ y.

We have the bijection ϕ between our spaces, so we map into a sequence zn,0 :“ ϕpyn,0q.
Since ϕ is isometry,

wpzn,0,zm,0q “ dpyn,0,ym,0q Ñ 0 as n,m Ñ 8,

therefore, tzn,0u8
n“1 is Cauchy, and we define

ϕpyq “ l im
nÑ8

ϕpzn,0q “ z.

This construction is well-defined: consider another sequence ty1
n,0u8

n“1, y1
n,0 Ñ y, and

combine both of them
y1,0,y1

1,0, . . . ,yn,0,y1
n,0 ¨ ¨ ¨ Ñ y,

therefore,
ϕpy1,0q,ϕpy1

1,0q,ϕp. . . ,yn,0q,ϕpy1
n,0q, . . .

converges, so the construction of z is well-defined.
Note that for the normed spaces this construction based on the embedding into the

bounded functions does not preserve the linear structure. Even though, for normed spaces,
there always exists a completion preserving the linear structure.

Why Banach Spaces Are not Good Enough

Recall that we call a complete normed space pX ,} ¨ }q a Banach space. Sometimes the
property of being complete is not sufficient for further constructions and applications.
There are two historical questions:
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1) The existence of the closed complement.

Let X be a Banach space, and X0 be a closed subspace X0 Ă X ; one can easily prove
that as it is closed, the space pX0,} ¨ }q is Banach itself.

Question: Is there a closed subspace X1 such that

X “ X0 ‘ X1?

The common answer is, unfortunately, no. Example can be provided by c0 Ă ℓ8,
which is closed, but does not have a closed complement.

2) Approximation. More precisely, existence of a basis.

For infinite-dimensional spaces, there are two commonly used different definitions
of a basis:

Definition 3.1 (of algebraic (or Hamel) basis). Let X be a linear space, dimX “ 8.
A system teνuνPΛ (Λ may be uncountable) is called a Hamel basis if

• it is linear independent, i.e., any finite subsystem of teνuνPΛ is linear
independent,

• @x P X : x “
řn

k“1 ckeνk .

There is a theorem valid for any linear space claiming that there exists a Hamel
basis; this theorem is not constructive. A rare exception is c00, where the Hamel
basis can be explicitly constructed.

Definition 3.2. Let X be a separable normed space, dimX “ 8. teku8
k“1 is called

a Schauder basis if

• it is linear independent, i.e., any finite subsystem of teνuνPΛ is linear
independent,

• @x P X : D! representation

x “

8
ÿ

k“1

ckek, ck P K pR or Cq

such that

}x ´

n
ÿ

k“1

ckek} Ñ 0 as n Ñ 8.
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So we can approximate any vector with a finite sum.

If Schauder basis exists, our space is forced to be separable since we have a countable
set of functions ek, and if we replace the coefficients ck with rck P Q, we obtain
a countable dense subset

!

n
ÿ

k“1

rckek, rck P Q
)

.

Question: Is it true that for any separable normed space there exists a Schauder
basis?

The answer is no again.

First example was given in 1972 by Enflo; he constructed an example of separable
Banach space without a Schauder basis.

Euclidean and Hilbert Spaces

For Hilbert spaces, one can construct both the closed complement and the basis. These
spaces are also commonly used in applications, i.e., in Quantum Mechanics.

Definition 3.3. Let H be a linear space over a field K (R or C). A function p¨, ¨q : H ˆH Ñ

K is called a dot product if

1) @x P H: px,xq ě 0 and px,xq “ 0 ô x “ 0,

2) @α,β P K, @x,y,z P H: pαx ` βy,zq “ αpx,zq ` β py,zq,

3) @x,y P H: px,yq “ py,xq.

The space
`

H,p¨, ¨q
˘

is called a Euclidean space, furthermore, if H is complete w.r.t. the
Euclidean norm }x} “

a

px,xq, then H is called a Hilbert space.

Properties of Dot Product

1) Cauchy–Bunyakovsky (Cauchy–Schwarz) inequality:

@x,y P H : |px,yq| ď
a

px,xq ¨
a

py,yq.

2)
a

px,xq is the Euclidean norm in H: }x} “
a

px,xq, so

|px,yq| ď }x} ¨ }y}.
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3) x K y if px,yq “ 0.

Then we can define an orthogonal complement to M Ă H by MK “ ty P H : @x P

M px,yq “ 0u.

In real spaces, we can also define an angle between vectors.

There is a simple statement:

Statement 3.1. MK is a closed linear subspace.

It follows from the linearity of the dot product and the fact that p¨, ¨q is a continuous
function (by Cauchy–Bunyakovsky inequality).

4) The Pythagorean Theorem. If x K y, then

}x ` y}
2

“ }x}
2

` }y}
2.

5) The Parallelogram law (identity):

}x ` y}
2

` }x ´ y}
2

“ 2}x}
2

` 2}y}
2.

Example 3.1. Show that Cr0,1s with norm } f } “ max
xPr0,1s

| f pxq| is not Euclidean. How do

we show it? We can simply prove that for this kind of norm, the parallelogram law does not
hold. So we have to find a pair of functions for which it is not valid. Take, for example,

f pxq ” 1, gpxq “ x.

Then
} f } “ 1, }g} “ 1, } f ` g} “ 2, } f ´ g} “ 1,

so, according to the parallelogram law, 4 ` 1 “ 2 ` 2, which is incorrect.

Theorem 3.1. Let H be a Hilbert space, and H0 Ă H be a nontrivial closed subspace
(H0 ‰ t0u, H0 ‰ H). Suppose x R H0. Then

D!x0 P H0 : }x ´ x0} “ distpx,H0q, and x ´ x0 K H0.

Definition 3.4. Let pX ,ρq be a metric space, M Ă X , and x P X . Then

distpx,Mq “ in f
yPM

ρpx,yq.
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Рис. 3.1. x, yn, ym, and the parallelogram

Proof. x R H0, H0 is closed ñ distpx,H0q “: d ą 0 (or else x is forced to be a limit point
of H0). By definition of inf,

Dtynu
8
n“1 : yn P H0, }x ´ yn} Ñ d,

so,
@ε ą 0 DN “ Npεq s.t. @n ą N : d ď }x ´ yn} ă d ` ε.

Take n,m ě N, and consider the geometric interpretation (see figure 3.1 below).
Write down the parallelogram law:

}yn ´ ym}
2

` }2x ´ yn ´ ym}
2

“ 2}x ´ yn}
2

` 2}x ´ ym}
2.

Then we rewrite it as

}yn ´ ym}
2

“ 2}x ´ yn}
2

` 2}x ´ ym}
2

´ 4}x ´
yn ` ym

2
}

2,

so
}yn ´ ym}

2
ă 2pd ` εq

2
` 2pd ` εq

2
´ 4d2

“ 8dε ` 4ε
2

Ñ 0 as ε Ñ 0;

this means that tynu8
n“1 is Cauchy, and, therefore, there exists a limit, which we denote

by x0.
The sequence tynu8

n“1 such that }x´yn} Ñ d is not unique. However, if we take another
sequence, tznu8

n“1 Ă H0, so that }x ´ zn} Ñ d, and write down the parallelogram law for yn
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and zn, then
}yn ´ zn}

2
“ 2}x ´ yn}

2
` 2}x ´ zn}

2
´ 4}x ´

yn ` zn

2
}

2,

so the same bound holds:
}yn ´ zn}

2
ă 8dε ` 4ε

2,

therefore, the limit is unique: limyn “ limzn.
Why is x ´ x0 orthogonal to H0? Consider a vector

xptq “ x ´ x0 ` tz

for an arbitrary z P H0 and t P R, and a function

f ptq “ }x ´ x0 ` tz}
2.

We know that t “ 0 is a minimum of f ptq. Rewrite the formula for f ptq:

f ptq “ px ´ x0 ` tz,x ´ x0 ` tzq “ }x ´ x0}
2

` 2Repx ´ x0,zqt ` }z}
2t2.

Since t “ 0 is the minimum,

f 1
ptq

ˇ

ˇ

t“0 “ 0 ñ Repx ´ x0,zq “ 0;

in real space, it means that x ´ x0 K z (@z P H0). In complex space, we can replace z with
iz, and then we obtain Impx ´ x0,zq “ 0. Therefore, x ´ x0 K z.

Corollary 3.1. Let H be a Hilbert space and H0 Ă H be a closed nontrivial subspace. Then
there exists a closed subspace H1 such that H “ H0 ‘ H1 (H1 :“ HK

0 ).

Proof. If x P H0, then x “ x`0, where x P H0 and 0 P HK
0 . If x R H0, due to the theorem

above,
Dx0 P H0 : }x ´ x0} “ distpx,H0q,

and x ´ x0 K H0. So we take x1 :“ x ´ x0, and x “ x0 ` x1, where x0 P H0 and x1 P H1; this is
an orthogonal sum, and, therefore, it is a direct sum.

Orthogonal Systems in Euclidean and Hilbert Spaces

We will consider only separable Euclidean spaces H, dimH “ 8.

Definition 3.5. A system tenu8
n“1 is orthonormal (ONS) if pei,e jq “ δi j.

Given an orthonormal system, for any x P H, we can obtain xn :“ px,enq (the Fourier
coefficients); the series

ř8
k“1px,enqen is called a Fourier series.
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Theorem 3.2 (Bessel inequality). Let H be a separable Euclidean space, dimH “ 8, and
tenu8

n“1 be an ONS in H. Then for any x P H:

8
ÿ

k“1

|xn|
2

ď }x}
2.

To prove this, we begin with

Lemma 3.1. Define

xn
“

n
ÿ

k“1

xkek.

Then x ´ xn K xn.

Proof of the Lemma. Write down the dot product:

px ´ xn,xn
q “ px ´

n
ÿ

i“1

xiei,
n
ÿ

j“1

x je jq “

n
ÿ

j“1

x jpx,e jq ´

n
ÿ

i, j“1

xix jpei,e jq,

where pei,e jq “ δi j, so

px ´ xn,xn
q “

n
ÿ

j“1

|x j|
2

´

n
ÿ

j“1

|x j|
2.

Proof of the Theorem. For

}x}
2

“ }x ´ xn
` xn

}
2,

we use the Pythagorean theorem:

}x}
2

“ }x ´ xn
}

2
` }xn}

2
ě }xn

}
2

“

n
ÿ

j“1

|x j|
2

for any positive integer n. Then, we take a limit

l im
nÑ8

: }x}
2

ě

8
ÿ

j“1

|x j|
2.

Remark 3.1. The Bessel inequality implies that tx ju
i
j“1n f ty P ℓ2.

Theorem 3.3 (Riesz, Fisher). Let H be a Hilbert space, tenu8
n“1 be an ONS in H, and

txnu8
n“1 P ℓ2. Then there exists x P H: xk “ px,ekq.
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Proof. Consider the partial sum

xn
“

n
ÿ

k“1

xkek.

Let n ą m:

}xn
´ xm

} “

n
ÿ

j“m`1

|x j|
2

Ñ 0 as n,m Ñ 8,

therefore, txnu8
n“1 is Cauchy, and so there is a limit xn Ñ x. It is clear that xk “ px,ekq.

Now we have to introduce some additional notions.

Definition 3.6. Let
`

X ,} ¨ }
˘

be a normed space. A system teku8
k“1 is called closed if the

closure of its linear span is X : xteku8
k“1y “ X .

By default, if we say basis, we mean a Schauder basis.

Remark 3.2. What is the difference between a closed ONS and a basis? If teku8
k“1 is

a basis, then teku8
k“1 is closed, since, by definition of basis,

}x ´

n
ÿ

k“1

ckek} Ñ 0 as n Ñ 8.

The converse is false, see an example below.

Example 3.2 (The Weierstrass approximation theorem). ekpxq “ xk, k P N Y t0u, in
Cr0,1s. According to the Weierstrass approximation theorem, this system is closed; but
this is not a basis.

For basis, we have a priori representation

x “

8
ÿ

k“1

ckek.

So if }x ´
řn

k“1 ckek} ă ε and we want to increase the accuracy, say, make it
}x ´

řn1
k“1 ckek} ă ε{2, we just have to take n1 ą n; this is not true for the closed systems:

we have no representation for x as a sum.

Definition 3.7. Let H be a Euclidean space. A system teku8
k“1 is called complete if

@x P H :
´

px,ekq “ 0 @k
¯

ñ px “ 0q.

Theorem 3.4. Let H, dimH “ 8, be a separable Hilbert space and teku8
k“1 be an ONS

in H. Then the following statements are equivalent:
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1) teku8
k“1 is closed,

2) teku8
k“1 is complete,

3) teku8
k“1 is basis,

4) @x P H:
ř8

k“1 “ }x}2 (Parseval’s identity).

Proof. The idea is to show that 1 ñ 2 ñ 3 ñ 4 ñ 1.
1 ñ 2) Assume that teku8

k“1 is a closed system, and x K ek (@k), x ‰ 0. By the definition
of a closed system, there exist sequences of linear combinations

n
ÿ

k“1

ckenk Ñ x

(here we vary n, ck, and nk):

}x}
2

“ lim
n,ck,nk

`

n
ÿ

k“1

ckenk ,x
˘

“ 0,

since under the limit we have
ř

ckpen,k,xq, and this dot product vanishes for any nk;
therefore, x “ 0.

2 ñ 3) Take x, then take the Fourier coefficients xk “ px,ekq, and consider the sum
8
ÿ

k“1

xkek.

If
ř8

k“1 xkek ‰ x, we define another vector

y :“
8
ÿ

k“1

xkek.

Consider the dot product

px ´ y,ekq “ px,ekq ´ py,ekq “ xk ´ xk “ 0,

where px,ekq “ xk by the definition of xk, and py,ekq “ xk by the construction of y. Thus,
due to the completeness of the system, x ´ y “ 0, therefore, x “ y.

3 ñ 4) By definition of the basis, @x:

x “

8
ÿ

k“1

xkek, and x “ lim
nÑ8

n
ÿ

k“1

xkek.

Then we obtain that

}x}
2

“ px,xq “ lim
nÑ8

p

n
ÿ

k“1

xkek,xq “ lim
nÑ8

n
ÿ

k“1

xkpek,xq,
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where pek,xq “ xk, so

}x}
2

“ lim
nÑ8

n
ÿ

k“1

|xk|
2

“

8
ÿ

k“1

|xk|
2.

All we have to prove by now is 4 ñ 1), or, more precisely, 4 ñ 3 ñ 1), where 3 ñ 1)
follows from definition of the basis and the closed system.

To prove 4 ñ 3, take x P H: xk :“ px,ekq. Assume that

8
ÿ

k“1

xkek “ y ‰ x.

(This series converges due to the Bessel inequality.) We know that

}x ´ y}
2

“

8
ÿ

k“1

|px ´ y,ekq|
2

“

8
ÿ

k“1

|px,ekq ´ py,ekq|
2,

where px,ekq “ xk by the definition of xk, and py,ekq “ xk by the construction of y, so all
the terms cross out, i.e. x “ y.
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Lecture 4. Separable Hilbert Spaces. Bases in Hilbert

Spaces.

Further Development of the Previous Lecture: Existence of

an Orthonormal Basis in Separable Hilbert Spaces

We continue discussing Hilbert spaces and their properties.

Theorem 4.1. Let H be a separable Hilbert space, dimH “ 8. Then there exists
an orthonormal basis (ONB) teku8

k“1

Proof.

1) Since H is separable, there exists a dense system thku8
k“1:

thku8
k“1 “ H.

This system may be quite excessive. We would like to build a system of linearly
independent vectors that would have a dense linear span. So, our next step is

2) Without loss of generality, we assume that h1 ‰ 0; then we take f1 :“ h1, and f2 “ hk,
k ě 2, where k is the first number so h1 and h2 are linearly independent.

If we construct f1, f2, . . . , fm to be linearly independent, then we can take fm`1 “ h j,
where j “ minti : hi Q x f1, f2, . . . , fmyu (i.e., we require that fm`1 does not belong to
the linear span of f1, . . . , fm).

Then we obtain a system t f ju
8
j“1 of linearly independent vectors such that

x f1, f2, . . .y “ thku8
k“1 “ H.

3) Finally, we use the Gram–Schmidt process to generate an orthogonal (moreover,
orthonormal) system from t f ju

8
j“1:

e1 “
f1

} f1}
, xe1y “ x f1y ẽ2 “ f2 ´ ce1, c P K,

where c “ p f2,e1q, as follows from the relation ẽ2 K e1 that we desire, and then

e2 “
ẽ2

}ẽ2}
, xe1,e2y “ x f1, f2y

If we construct an orthonormal system e1,e2, . . . ,em such that

xe1,e2, . . . ,eky “ x f1, f2, . . . , fky p@k ď mq,

35



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS

IGOR SHEIPAK

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

then, by induction,

ẽm`1 “ fm`1 ´

m
ÿ

j“1

c je j,

where c j, as before, can be found from pẽm`1,e jq, j “ 1,2, . . . ,m, i.e., c j “ p fm`1,e jq,
and

em`1 “
ẽm`1

}ẽm`1}
.

Following this way, we obtain an ONS temu8
m“1 that is closed: temu8

m“1 “ H. Then,
by the last theorem from the previous lecture, temu8

m“1 is an orthonormal basis.

This is one of two main approaches to find an orthonormal basis – find a closed system
and make it orthogonal by Gram–Schmidt process. Later, when the time comes to prove
the Hilbert–Schmidt theorem, we will discuss the other important way to obtain such
a basis.

Applications to Quantum Mechanics and Isometric Isomorphisms

of Separable Hilbert Spaces

In Quantum Mechanics, there are different models for describing the states of systems:

• Heisenberg’s model, or so-called matrix model (a.k.a. matrix mechanics), where
observables are operators (infinite matrices) acting on ℓ2, and the states are vectors
from ℓ2.

• The Schrödinger model, or the model of wave mechanics. In this model, observables
are symmetric operators on L2pR3q, and the states are wavefunctions f P L2pR3q.

Physicists argued a lot about whose model was more precise. In fact, both are correct,
since there is an isometric isomorphism between ℓ2 and L2:

Theorem 4.2. All infinite-dimensional separable Hilbert spaces over the same field are
isometrically isomorphic.

Proof. Let H1 and H2 be infinite-dimensional separable Hilbert spaces over K. Let
teku8

k“1 and t fku8
k“1 be ONBs in H1 and H2 respectively.

We can construct an isomorphism

ϕ : H1 Ñ H2

in the following way:
ϕpekq “ fk.
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Then

@x P H1 : x “

8
ÿ

k“1

xkek

maps to

y “ ϕpxq :“
8
ÿ

k“1

xk fk.

One can easily check that the dot product is preserved by this mapping; indeed, take
x1 “

ř8
k“1 x1

kek and y1 “ ϕpx1q :“
ř8

k“1 x1
k fk, then

px,x1
qH1 “

8
ÿ

k“1

xkx1
k “ pϕpxq,ϕpx1

qqH2 ,

where the formula in the middle is in fact the dot product of the sequences txku8
k“1 and

tx1
ku8

k“1 in ℓ2. In other words, the theorem can be reformulated as all separable infinite-
dimensional Hilbert spaces are isometrically isomorphic to ℓ2.

Discussion of Self-Study Problems

Now we will discuss some self-study problems from previous lectures.
Problem no. 2 from Lecture 2: Bra,bs (the space of bounded functions) with norm

} f } “ sup
xPra,bs

| f pxq| is not separable.

We will use the lemma from the first lecture: if there is an uncountable set M Ă X such
that Dd ą 0 @x,y P M: ρpx,yq ě d, then X is not separable, which we reformulate as

Dd ą 0 } f ´ g} ě d p@ f ,g P Mq.

Take the following set: M “ t ftpxq “ χra,tqpxq, t P pa,bsu, where χra,tq is the characteristic
function of ra, tq:

χW pxq “

#

1, x P W,

0, x Q W.

This set is uncountable: we can parametrize M by the parameter t P pa,bs, and pa,bs is
uncountable. One can also see that

} ft1 ´ ft2} “ 1, t1 ‰ t2,

so we have found an uncountable set with unit distance between any elements, therefore,
by the lemma above, Bra,bs is not separable.

Problem no. 2 from Lecture 2: give an example of pX ,ρq, a complete space, with the
system of closed nested balls Bn “ Brxn,rns such that rn Ñ r ą 0 and X8

n“1Bn “ H.
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An example is a little tricky. One can take X “ N with metric

ρpm,nq “

$

&

%

0, m “ n,

1 `
1
m

`
1
n
, m ‰ n.

The triangle equality for this metric can be verified in a straightforward way:

ρpm,nq
?
ď ρpm,kq ` ρpk,nq, n ‰ k ‰ m,

where the left-hand side is at most 1 ` 1
2 ` 1

3 and the right-hand side is at least 2 ` . . . .
Convergence in this space is similar to one in the discrete metric space, i.e. all

converging sequences stabilize:

xn Ñ x ñ x1,x2, . . . ,xk,x,x,x, . . . ,

so X is complete.
Now we take balls Bn “ Brn,1 ` 2

ns “ tm P N : 1 ` 1
m ` 1

n ď 1 ` 2
nu, which is the same as

1
m ď 1

n as m ě n. Thus,
Bn “ rn,n ` 1,n ` 2, . . .q,

and, therefore, X8
n“1Bn “ H.

Typical Examples of Hilbert Spaces

1) Cn with dot product px,yq “
řn

i“1 xiyi is a (finite-dimensional) Hilbert space.

2) ℓ2, which consists of infinite sequences x “ px1, . . . ,xn, . . .q such that
ř8

i“1 |xi|
2 ă 8,

with dot product

px,yq “

n
ÿ

i“1

xiyi

is a Hilbert space.

3) L2pΩ,µq, the space of square-integrable functions on Ω with respect to the measure
µ , with dot product

p f ,gq “

ż

Ω

f pxqgpxqdµ.

4) Sobolev spaces W n
2 ra,bs “ t f : @ j “ 0,1, . . . ,n´1 f p jq P ACra,bs, f pnq P L2ra,bsu with

dot product

p f ,gq “

n
ÿ

j“0

p f p jq,gp jq
qL2 ”

n
ÿ

j“0

ż

ra,bs

f p jq
pxqgp jqpxqdµ.
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Exercises

Now we will discuss and solve some problems:

1) Consider ℓ2, and its subspace Hn “ tx P ℓ2 :
řn

j“0 x j “ 0u. What is the distance
between e1 “ p1,0,0, . . .q and Hn?

By the theorem from the previous lecture, as Hn is a nontrivial closed supspace,
there exists a unique x˚ P Hn

}e1 ´ x˚
} “ inf

yPHn
}e1 ´ y},

and e1 ´ x˚ K Hn.

Here is a way to find such x˚. Consider x˚ “ px1,x2, . . . ,xn,xn`1, . . .q, and minimize
the norm of the difference

e1 ´ x˚
“ p1 ´ x1,´x2, . . . ,´xn, . . .q.

In Hn, we have information only about the coordinates with numbers less than n,
and we want to minimize the norm. To minimize the norm, we should set all the
“tail” coordinates to zero:

xn`1 “ xn`2 “ ¨¨ ¨ “ 0,

so x˚ P ℓ2pnq, i.e. we now consider Hn
ˇ

ˇ

ℓ2pnq
. Now it is easy to find x˚, as it is now

required that e1 ´ x˚ is orthogonal to a finite-dimensional set Hn
ˇ

ˇ

ℓ2pnq
, dimHn

ˇ

ˇ

ℓ2pnq
“

n ´ 1. Take some basis in this space, for instance,

f1 “ p1,´1,0, . . . ,0q,

f2 “ p1,0,´1, . . . ,0q,

. . .

fn´1 “ p1,0, . . . ,0,´1q.

In ℓ2pnq, for x˚ “ px1,x2, . . . ,xnq, from e1 ´x˚ K fk, k “ 1,2, . . . ,n´1, we get the system
of equations

1 ´ x1 ` x2 “ 0,

1 ´ x1 ` x3 “ 0,

. . .

1 ´ x1 ` xn “ 0,
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therefore, x2 “ x3 “ ¨¨ ¨ “ xn “ a, where 1 ´ x1 ` a “ 0, or x1 “ 1 ` a; a can be found
from the condition x˚ P Hn: for

x˚
“ p1 ` a,a, . . . ,aq,

we have 1 ` na “ 0, or a “ ´1
n , which gives distpe1,Hnq “ }e1 ´ x˚} “ 1?

n .

Exercises: Typical Examples of Bases in Hilbert Spaces

1) Prove that the system teku8
k“1, ek “ p0,0, . . . , 1

k-th place
,0, . . .q, is a basis in c0 and

not a basis in c (recall that c0 is the space of zero-limit sequences with norm
}x} “ max

kě1
|xk|, and c is the space of converging sequences with norm }x} “ sup

kě1
|xk|).

It is clear that teku8
k“1 is a system of linearly independent vectors. For any x P c0,

x “

8
ÿ

k“1

xkek, and }x ´

n
ÿ

k“1

xkek} “ max
kěn`1

|xk| Ñ 0 as n Ñ 8,

since x P c0.

What becomes wrong, if we consider this system in the space of converging
sequences? We cannot represent some elements of this space by the sum

ř8
k“1 xkek,

e.g., take e0 “ p1,1,1, . . . ,1, . . .q; if we put xk “ 1, then, for any n,

}e0 ´

n
ÿ

k“1

ek} “ sup
kě1

|xk| “ 1.

Nevertheless, if we add this element to the system, i.e., consider teku8
k“0 (from k “ 0

instead of k “ 1), then we obtain a basis in c: take

x P c such that lim
kÑ8

xk “ a.

Consider x̃ “ x´a ¨e0; this element, obviously, belongs to c0, and, therefore, x´a ¨e0 “
ř8

k“1pxk ´ aqek, or simply x “ ae0
ř8

k“1pxk ´ aqek.

2) Basis in L2ra,bs. Consider, for simplicity, L2r0,1s, L2r0,2πs, or L2r´π,πs. Classical
construction of bases in these spaces is given by either exponential function with
complex exponents or sine and cosine, depending on what functions we consider,
complex- or real-valued. In L2r0,2πs or L2r´π,πs, one can take

1
?

2π
einx, n P Z, or

1
?

2π
,

1
?

π
cosnx,

1
?

π
sinnx, n P N.
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It can be extended to L2ra,bs:

1
?

b ´ a
e

2πinx
b´a , n P Z;

for L2r0,1s, the normalizing factor is simply equal to 1.

For real-valued functions on a half-interval, i.e., L2r0,πs, one can take only sine or
cosine (with a constant included, for n “ 0) as a basis, since these functions can
be extended in either odd or even way to the complete interval r´π,πs, so there is
a basis tsinnxu8

n“1 or tcosnxu8
n“0 respectively (with normalizing factor omitted): if

we extend f P L2r0,πs to L2r´π,πs as an odd function, then
ş

f pxqcosnxdx “ 0, or,
for even extension,

ş

f pxqsinnxdx “ 0.

Bases have a lot of applications. For instance, it allows one to reduce differential
or integral equations to finite-dimensional matrix problems, if we consider partial
sums.

Basis is also a powerful instrument to compute the sums of series. Consider, for
example,

ř8
n“1

1
n2 , which is equal to π2

6 . To compute this sum, one can use
Parseval’s identity; in order to do so, we have to choose the space, take a basis,
and find an appropriate element. Take L2r´π,πs, the sine-cosine basis 1?

2π
,

1?
π

cosnx, 1?
π

sinnx, and the identity function f pxq “ x. It is an odd function, so the
Fourier coefficients in the cosine series of f are equal to 0. Thus, we have to find
only coefficients in sine:

1
?

π

ż

π

´π

xsinnxdx “ ´
1

?
π

ż

π

´π

xdp
cosnx

n
q “ ´

1
?

π

cosnx
n

ˇ

ˇ

π

´π
`

1
?

πn

ż

π

´π

cosnxdx,

where the integral vanishes, since cosine is 2π-periodic function. Therefore,

1
?

π

ż

π

´π

xsinnxdx “
2π

?
πn

p´1q
n`1

“
2
?

π

n
p´1q

n`1.

Then,

} f }
2

“

ż

π

´π

x2 dx “
2π3

3
,

and, according to Parseval’s identity,

2π3

3
“ 4π

8
ÿ

n“1

1
n2 ,

which gives the required.
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3) Consider W 1
2 r´π,πs. Prove that the system teinxunPZ is orthogonal but not a basis.

To prove the orthogonality, we just calculate the dot product in a straightforward
way:

peinx,eikx
qW 1

2
“

ż

π

´π

eipn´kqx dx ` nk
ż

π

´π

eipn´kqx dx “

#

0, n ‰ k,

2πp1 ` n2
q, n “ k,

so this system is orthogonal (we can even make this system an ONS by multiplying
it by normalizing factor: 1?

2π
?

n2`1
einx).

To prove that this is not a basis, it is sufficient to show that either this system is
incomplete (so it is necessary to find a nonzero element which is orthogonal to this
system) or that Parseval’s identity for this system is violated (in order to do so, one
can find an element of the space for which it does not hold).

Thus, our options are

1. to find f P W 1
2 such that f K einx, f ‰ 0,

2. to find f P W 1
2 such that } f }2 ‰

ř

k |ck|2, where ck is a k-th Fourier coefficient of
f .

We will follow the first way. The idea is to find a function that has more than 1
derivative, and take

p f ,einx
qW 1

2
“

ż

π

´π

f pxqe´inx dx `

ż

π

´π

f 1
pxqp´inqe´inx dx,

then, using the integration by parts, obtain

p f ,einx
qW 1

2
“

ż

π

´π

f pxqe´inx dx ` f 1
pxqe´inxˇ

ˇ

π

´π
´

ż

π

´π

f 2
pxqe´inxdx,

and equate it to zero:
ż

π

´π

f pxqe´inx dx ` f 1
pxqe´inxˇ

ˇ

π

´π
´

ż

π

´π

f 2
pxqe´inxdx “ 0.

This leads to
ż

π

´π

p f pxq ´ f 2
pxqqe´inx dx `

`

f 1
pπq ´ f 1

p´πq
˘

p´1q
n

“ 0.

If we assume that f satisfies the differential equation

f ´ f 2
“ 0

with boundary condition
f 1

pπq “ f 1
p´πq,

then f is orthogonal to our system. The solution of this boundary value problem is
the hyperbolic sine: f pxq “ a ¨ sinhx, and f pxq K einx for any n.
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Self-Study Exercises

1) Prove that teku8
k“1, ek “ p0,0, . . . ,0, 1

k-th place
,0, . . .q, is a basis in ℓp, 1 ď p ă 8, but

not a basis in ℓ8.

2) Let H be a Hilbert space, and M Ă H be an arbitrary subspace. Prove that
pMKqK “ xMy. (Obviously, by the duality property, the double orthogonal
complement contains M, and orthogonal complement of any subspace is closed.)

3) Find an example of a closed Euclidean H such that H ‰ H0 ‘HK
0 (for Hilbert space,

this property holds, so this example must be an incomplete space).

4) Compute
ř8

k“1
1
k4 .

5) Compute
ř8

k“1
1

k2`1 .

6) H “ W 1
2 r´π,πs, H0 “ t f P W 1

2 r´π,πs : f pxq “ 0 for x ď 0u. Find HK
0 .
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Lecture 5. Compact and Precompact Sets in Metric

Spaces

Compact Sets. Precompact Sets. Compactness Criteria

We begin by defining the notion of a compact set in a metric space, which plays a
fundamental role in functional analysis.

Definition 5.1. Set M Ă pX ,ρq is compact if for any sequence txnu8
n“1 Ă M there exists

a subsequence txnku8
k“1 such that

xnk

ρ
Ñ x P M.

Remark 5.1. In topological spaces, this kind of compactness is called a sequential
compactness. In metric spaces, these two notions coincide, so we will use it as equivalent
definitions, while we do not intend to prove it in this course.

To recall, in the general topological sense, compactness means the following: for any
open covering tUαu of M, M Ă YαUα , there exists a finite subcovering, that is Dα1, . . . ,αn

such that
M Ă Y

n
i“1Uαi.

Let us emphasize the importance of compactness in finite-dimensional versus infinite-
dimensional spaces. Recall that in finite-dimensional spaces, compact sets are just bounded
and closed. This result simplifies the verification of compactness significantly. However, in
infinite-dimensional spaces, which are of interest in functional analysis, this equivalence
does not hold. Therefore, we must develop and rely on alternative criteria to determine
compactness in metric and normed spaces.

To introduce related concepts, we now provide a useful definition of ε-nets, which form
the foundation of other compactness-related notions.

Definition 5.2. Let pX ,ρq be a metric space, and Y,M Ă X . We say that Y is an ε-net
for M if for any x P M there exists y P Y such that x P Bpy,εq.

In other words, M can be covered by balls of radius ε with centers y P Y :

M Ă YyPY Bpy,εq.

A notion, which is closely related to the previous one, is following:

Definition 5.3. A set M Ă pX ,ρq is called totally bounded if for any ε there exists
a finite ε-net for M.
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This is a generalization of compactness for circumstances in which a set is not
necessarily closed; the compactness itself is a very strong notion, so a slightly weaker one
is useful in functional analysis, as it is preserved for subsets.

Definition 5.4. A set M Ă pX ,ρq is called precompact if its closure M is a compact set.

Notice the subtle difference: precompact sets may not be closed themselves, but their
closures must satisfy the compactness criteria. This makes precompactness a slightly
weaker property than compactness, yet a highly useful one in many areas of analysis.

Remark 5.2. Note that the definition of the precompact set is not based on sequences.
But the sequences represent a powerful tool, considered in metric spaces.

Indeed, let us apply it to the notion of precompact set. In metric space pX ,ρq, for
the set M to be compact, it is necessary that for any txnu8

n“1 Ă M there exists a Cauchy
subsequence. In a complete metric space pX ,ρq, it is also sufficient.

Example: Closed Unit Ball in ℓ2 is Not Compact

Example 5.1. Consider the closed unit ball in ℓ2. This set is obviously bounded and
closed. At first glance, these properties might suggest compactness, but we will show this
is not the case.

Now consider the standard basis elements of ℓ2: teku8
k“1, where ek “ p0, . . . ,0,

k
1,0, . . .q

(the 1 is at the k-th position). It is clear that

ρpek,e jq “ }ek ´ e j} “
?

2, k ‰ j,

so there is no Cauchy subsequence.

This example can be generalized, that is, a unit ball in an infinite-dimensional case is
a typical example of a noncompact set. We will prove it a little later.

Riesz’s Lemma Corollary: Unit Closed Ball is Not Compact in

Infinite-Dimensional Space

Theorem 5.1 (Riesz’s Lemma). Let X be a normed space, and X0 be a nontrivial closed
subspace of X . Then for any ε P p0,1q there exists xε , xε R X0, such that }xε} “ 1 and

distpxε ,X0q ” inf
x0PX0

}xε ´ x0} ě 1 ´ ε.

45



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS

IGOR SHEIPAK

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

Proof. First, take some element x R X0 (such x exists since X0 is nontrivial closed
subspace, therefore, it does not coincide with X). Define

distpx,X0q “: d ą 0

(it is positive since x R X0 and X0 is closed). Then exists y P X0 such that

d ď }x ´ y} ă
d

1 ´ ε
(5.1)

(by the definition of inf). Let us define xε by

xε “
x ´ y

}x ´ y}
.

Then }xε} “ 1. Now let us see what happens to the distance: for any x0 P X0, find the
distance between xε and x0:

}xε ´ x0} “

›

›

›

x ´ y
}x ´ y}

´ x0

›

›

›
“

1
}x ´ y}

›

›

›
x ´ y ´ x0}x ´ y}

›

›

›
,

where y`x0}x´y} P X0. Now find the bound for the expression above. The factor 1{}x´y}

is bounded from below:
1

}x ´ y}
ě

1 ´ ε

d
,

see (5.1). The norm is also bounded from below:
›

›

›
x ´ y ´ x0}x ´ y}

›

›

›
ě d.

Therefore,

}xε ´ x0} ą
1 ´ ε

d
¨ d “ 1 ´ ε,

and this bound is valid for arbitrary x0 P X0, thus, the same bound holds for the infimum,
which completes the proof.

Corollary 5.1. Let X be a normed space, dimX “ 8. Then a unit closed ball Br0,1s is
not compact in X .

Proof. First, take some element x1 P X such that }x1} “ 1. Construct a linear span
X1 :“ xx1y (it is a one-dimensional subspace). X1 closed since it is finite-dimensional. By
Riesz’s Lemma, there exists x2, }x2} “ 1, such that

distpx2,X1q ě 1 ´ ε.

Now define X2 “ xx1,x2y, where }x1 ´x2} ě 1´ε , and so on: we find x1,x2, . . . ,xn such that
}x j} “ 1 and }xi ´x j} ě 1´ε , i ‰ j, and then construct a finite-dimensional (and, therefore,
closed) space Xn “ xx1,x2, . . . ,xny. By the same reasoning, there exists xn`1 such that

distpxn`1,Xnq ě 1 ´ ε;
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this inequality implies that

}xn`1 ´ xk} ě 1 ´ ε, k “ 1,2, . . . ,n.

By induction, we construct an infinite sequence txku8
k“1 Ă Br0,1s such that

}xi ´ x j} ě 1 ´ ε, i ‰ j,

so there is no Cauchy subsequence, which completes the proof.
Now we proceed to criteria that allow one to establish whether a set is precompact or

not.

Hausdorff Criterion for Precompactness

Theorem 5.2 (Hausdorff criterion). Let pX ,ρq be a complete metric space. A set M Ă X

is precompact if and only if M is totally bounded.

Remark 5.3. It can also be shown that in an incomplete space, this condition is a
necessary but not sufficient criterion for precompactness.

Proof.

1) ñ. We will prove the statement by contradiction. Suppose that M is precompact
and is not totally bounded. This means that there exists ε ą 0 for which there does
not exist a finite ε-net.

Let us begin by taking an arbitrary point x1 P M; it does not form an ε-net, therefore,
there exists x2 P M: ρpx1,x2q ě ε . The set tx1,x2u is not an ε-net as well, therefore,
there exists x3 P M with the same property: ρpx3,xiq ě ε , i “ 1,2.

Now, suppose we have already chosen points x1,x2, . . . ,xn P M such that ρpxi,x jq ě ε ,
i ‰ j. The set txiu

n
i“1 still cannot be an ε-net, and therefore, there exists xn`1 P M

such that ρpxn`1,xiq, i “ 1, . . . ,n.

By induction, we construct a sequence txku8
k“1 with property ρpxi,x jq ě ε , i ‰ j,

leading to the conclusion that M is not precompact, which gives a contradiction.

2) ð. Now, assume that M is totally bounded. This part of the proof is also based on
the mathematical induction.

We begin with an arbitrary sequence txku8
k“1 Ă M. We would like to prove that the

set is precompact, so we must show that there exists a Cauchy subsequence
of txku8

k“1. Take ε1 “ 1{2. For M, there exists an ε1-net ty1
1, . . . ,y

1
n1

u (here the
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superscript numerates the step of induction and the subscript numerates the
elements of corresponding net).

Thus,
txku

8
k“1 Ă M Ă Y

n1
i“1Bpy1

i ,ε1q,

where we have a countable sequence on the left-hand side and a finite covering on the
right-hand side. We can say that there exists a ball Bpy1

i1,ε1q containing an infinite
subsequence of txku8

k“1; Denote this sequence by tx1
ku8

k“1.

At the second step, take ε2 “ 1{4. For M, there exists an ε2-net

ty2
1,y

2
2, . . . ,y

2
n2

u.

The sequence tx1
ku8

k“1 belongs to a finite union Y
n2
i“1Bpy2

i ,ε2q. Therefore, exists
a ball Bpy2

i2 ,ε2q containing an infinite subsequence of tx1
ku8

k“1; denote this sequence
by tx2

ku8
k“1.

By induction, one can construct a countable set of subsequences

txku
8
k“1 Ą tx1

ku
8
k“1 Ą tx2

ku
8
k“1 Ą ¨¨ ¨ Ą txm

k u
8
k“1 Ą . . .

such that
ρpxm

k ,x
m
j q ă

1
2m´2 ,

since the entire subsequence txm
k u8

k“1 lies in the ball

B
´

ym´1
im´1

,
1

2m´1

¯

.

We then take the diagonal subsequence, that is, txm
mu8

m“1; it is a Cauchy
subsequence, therefore, M is precompact. Note that in this part of the proof we
used the fact that our space is complete. If the space is incomplete, the property of
precompactness is not equivalent to the possibility to choose a Cauchy
subsequence of any sequence.

Criteria for Precompactness in Specific Normed Spaces

Building on the Hausdorff criterion, we now provide criteria for precompactness in
specific spaces.

Now we see that in a complete space, precompactness and total boundedness, which
is close to a topological property (while it is not exactly topological).

We will need an additional tool:
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Theorem 5.3 (Dini’s Lemma). Let K be a compact set, t fnu8
n“1 be a continuous function

on K, and for any x P K fnpxq Œ f pxq be a continuous function as well. Then fn Ñ
K

f .

Remark 5.4. fnpxq Œ f pxq means that fnpxq approaches f pxq nonincreasingly: fnpxq ě

fn`1pxq for all n P N and x P K.
In calculus, this lemma is usually used to prove that a pointwise limit of a functional

series is uniform.
The direction of monotonicity is not important: one could multiply the sequence by

p´1q to change it.

Proof. Take ε ą 0. For any x P K there exists N “ Npx,εq such that @n ě N: 0 ď

fnpxq ´ f pxq ă ε .
The function fn ´ f is continuous, therefore, there exists a neighborhood Ux of x such

that for any x1 P Ux:
0 ď fnpx1

q ´ f px1
q ă ε.

K “ YxPKUx is a covering of K. By assumption of the lemma, it is compact, therefore,
there exist xi, i “ 1, . . . ,m, such that K “ Ym

i“1Uxi .
Now take M “ maxi Npxi,εq. Thus, for any n ě M and x P K: 0 ď fnpxq ´ f pxq ă ε .
Now we are ready to formulate and prove the criteria for precompactness.

Theorem 5.4. Let 1 ď p ă 8. Set M Ă ℓp is precompact ô M satisfies the following
conditions:

a) M is bounded,

b) @ε Dn “ npεq: @x P M
´

8
ÿ

i“n`1

|xi|
p
¯1{p

ă ε

The second condition means that tails are uniformly small, or, in other words, the
principal parts of our series lie in a finite-dimensional subspace.

Proof. We will use Dini’s Lemma to prove the statement in one direction and the
Hausdorff criterion for the other one.

1) ñ. Consider the closure of M: M is a compact set. The norm } ¨ } : M Ñ R`
0 is

a continuous function, therefore, there exists

max}x}

xPM
“: C ě 0,

that is, for any x P M:
}x} ď C,
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which is exactly the item a).

Now consider the functions fn on M:

fnpxq “

´

8
ÿ

i“n`1

|xi|
p
¯1{p

;

it is clear that fnpxq Œ 0 as n Ñ 8 since it is tail of a converging series, and fn is
continuous since

fnpxq “ }p0,0, . . . ,0,xn`1,xn`2, . . .q}

and } ¨ } is continuous. By Dini’s Lemma, we conclude that fn Ñ
M

0, and, therefore,

fn Ñ
M

0, which is the item b).

2) ð. By b), there exists n “ npεq such that for any x P M:

´

8
ÿ

i“n`1

|xi|
p
¯1{p

ă ε.

Define
xn

“ px1,x2, . . . ,xn,0,0, . . .q P ℓppnq

and
zn

“ p0,0, . . . ,0,xn`1, . . .q, }zn
} ă ε.

We can say that xn P M X ℓppnq: it is bounded by a) and lies in a finite-dimensional
subspace, so txnuxPM is a precompact set. Thus, there exists a finite ε-net y1, . . . ,ym P

ℓppnq of the form
yk

“ pyk
1,y

k
2, . . . ,y

k
nq, k “ 1, . . . ,m.

Any yk can be embedded into ℓp: yk Ñ ryk such that

ryk
“ pyk

1,y
k
2, . . . ,y

k
n,0,0, . . .q P ℓp.

Let us take an arbitrary x P M. How can we prove that the norm }x ´ryk} is small?
Decompose x into xn ` zn and use the triangle inequality:

}x ´ryk
} “ }xn

´ryk
` zn

} ď }xn
´ yk

} ` }zn
}.

We can make the second term small, }zn} ă ε , by choosing an appropriate n; the
first one is small for an appropriate k: Dk such that }xn ´ yk} ă ε . Thus, trykum

k“1 is
a finite 2ε-net of M, therefore, M is precompact by the Hausdorff criterion.

To formulate the theorem on precompact sets in Cra,bs, we will need the following
definition.
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Definition 5.5. A set M Ă Cra,bs is called an equicontinuous family of functions if
for any ε ą 0 there exists δ ą 0: @x,y P ra,bs such that |x ´ y| ă δ and for all f P M:
| f pxq ´ f pyq| ă ε.

Example 5.2. Suppose the set consists of a single function: M “ t f u, f P Cra,bs. It is
equicontinuous since in this case the property of equicontinuity is equivalent to the uniform
continuity.

The same is true if M contains a finite number of functions: M “ t fiu
n
i“1, so it is more

interesting to consider an infinite set of functions.

Remark 5.5. One can define an equicontinuous family M Ă CpKq for a compact metric
space pK,ρq with replacing |x ´ y| by ρpx,yq.

Now we formulate the Arzelà–Ascoli theorem on precompact sets in Cra,bs, and prove
it on the next lecture.

Theorem 5.5 (Arzelà–Ascoli). A set M ĂCra,bs is precompact ô the following conditions
hold:

a) M is bounded,

b) M is an equicontinuous family.
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Lecture 6. Compact and Precompact Sets in Metric

Spaces: Exercises

Proof of the Arzelà–Ascoli Theorem

1) ñ. Suppose M Ă Cra,bs is precompact and try to prove that M is bounded and
forms an equicontinuous family.

As before, the proof in this direction will be based on Dini’s lemma.

First, to prove a), consider the closure of M: M is compact; norm is a continuous
function on M, so there exists max

f PM
“ C, therefore, @ f P M ñ } f } ď C.

To prove b), consider a function Fn on M:

Fnp f q :“ sup
|x´y|ă 1

n

| f pxq ´ f pyq|.

It is clear that we just replaced a continuous parameter δ in the definition of
equicontinuity with a discrete parameter 1{n.

One can see that the sequence of functions Fnp f q approaches 0 from above as n Ñ 8

since f P Cra,bs.

Consider also the functions Fn for different functions, say, f ,g P Cra,bs:
ˇ

ˇ

ˇ
Fnp f q ´ Fnpgq

ˇ

ˇ

ˇ
“ sup

|x´y|ă 1
n

ˇ

ˇ

ˇ
f pxq ´ f pyq

ˇ

ˇ

ˇ
´ sup

|x´y|ă 1
n

ˇ

ˇ

ˇ
gpxq ´ gpyq

ˇ

ˇ

ˇ
.

Now add ´gpxq ` gpxq ´ gpyq ` gpyq to the first supremum and use the triangle
inequality:

sup
|x´y|ă 1

n

ˇ

ˇ

ˇ
f pxq ´ f pyq ´ gpxq ` gpxq ´ gpyq ` gpyq

ˇ

ˇ

ˇ
´ sup

|x´y|ă 1
n

ˇ

ˇ

ˇ
gpxq ´ gpyq

ˇ

ˇ

ˇ
ď

ď

ˇ

ˇ

ˇ
sup

|x´y|ă 1
n

ˇ

ˇ f pxq ´ gpxq
ˇ

ˇ` sup
|x´y|ă 1

n

ˇ

ˇgpxq ´ gpyq
ˇ

ˇ` sup
|x´y|ă 1

n

ˇ

ˇgpyq ´ f pyq
ˇ

ˇ´ sup
|x´y|ă 1

n

ˇ

ˇgpxq ´ gpyq
ˇ

ˇ

ˇ

ˇ

ˇ
.

The second and the fourth terms here are equal, so they cancel out. The first and the
third ones are equal up to the replacement x Ø y, which is legal since the expression

sup
|x´y|ă 1

n

ˇ

ˇgpyq ´ f pyq
ˇ

ˇ

is symmetric with respect to this replacement. Hence we obtain
ˇ

ˇ

ˇ
Fnp f q ´ Fnpgq

ˇ

ˇ

ˇ
ď 2 max

xPra,bs
| f pxq ´ gpxq| “ 2} f ´ g}Cra,bs,
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and, recalling that the norm is a continuous function, we conclude that Fn are
continuous.

Then, by Dini’s lemma, Fn Ñ
M

0, therefore, Fn Ñ
M

0, which is the very condition b)

with parameter δ being replaced by 1{n.

2) ð. Suppose that M is bounded and forms an equicontinuous family, and prove that
M is precompact. The idea is to construct a finite ε-net for an arbitrary ε , and then
use the Hausdorff criterion.

Without loss of generality, we consider only real-valued functions. To generalize our
proof, one can use the decomposition f pxq “ upxq` ivpxq and apply our proof for upxq

and vpxq.

By a), there exists C ą 0 such that @ f P M: max
ra,bs

| f pxq| ď C. By b),

@ε ą 0 Dδ ą 0 : @x,y P ra,bs, |x ´ y| ă δ ñ @ f P M : | f pxq ´ f pyq ă
ε

3
.

Take a subdivision of ra,bs:

T “ ttiun
i“0, a “ t0 ă t1 ă t2 ă ¨¨ ¨ ă tn´1 ă tn “ b,

such that
@i : |ti ´ ti´1| ă δ , i “ 1,2, . . . ,n.

Construct a lattice with ti, i “ 1, . . . ,n, in x-axis and the distance ε{3 from ´C to C

in y-axis, see Fig. 6.1.

So we have a set with a finite number of nodes. Consider the set Y “ tgpxq piecewise
linear functions passing through the nodesu, see an example in Fig. 6.2. The set Y

is finite.

Let us take t P rti, ti`1s, g P Y , and f P Cra,bs. Then

ˇ

ˇ f ptq ´ gptq
ˇ

ˇ ď
ˇ

ˇ f ptq ´ f ptiq
ˇ

ˇ`
ˇ

ˇ f ptiq ´ gptiq
ˇ

ˇ`
ˇ

ˇgptiq ´ gptq
ˇ

ˇ.

The first summand here is ă ε{3 by equicontinuity; the second one is ă ε{3 by
choosing the function g, and the third one is ă ε{3 by the property of the set Y .
Thus,

ˇ

ˇ f ptq ´ gptq
ˇ

ˇ ă ε,

therefore, Y is a finite ε-net for M. Hence, by the Hausdorff criterion, M is
precompact.
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Рис. 6.1. The lattice

Рис. 6.2. An example of piecewise linear function on the lattice
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Theorem on Precompact Sets in Lp

In this section, we formulate a theorem on criteria of precompactness in Lpra,bs

without a proof.

Theorem 6.1. A set M Ă Lpra,bs, 1 ď p ă 8, is precompact ð the following conditions
hold:

a) M is bounded,

b) @ε ą 0 Dδ ą 0: @h, |h| ă δ ñ @ f P M:

´

ż b

a

ˇ

ˇ f px ` hq ´ f pxq
ˇ

ˇ

p dµ

¯1{p
ă ε.

Remark 6.1. The second condition is called equicontinuity in mean. Note also that if
x ` h R ra,bs, then f px ` hq :“ 0.

Discussion of Self-Study Exercises from the Previous Lecture

Now we discuss the homework from Lecture 4.

1) Show that teku8
k“1, ek “ p0, . . . ,0,

k
1,0, . . .q is a basis in ℓp, 1 ď p ă 8 and is not a basis

in ℓ8.

The second part is quite simple: ℓ8 is not separable, so it cannot have a countable
basis.

But ℓp with finite p can have one. Take x P ℓp, x “ px1,x2, . . . ,xn,xn`1, . . .q and consider
the representation

x “

8
ÿ

k“1

xkek.

One can see that this representation is unique since we have fixed coordinates.

Consider the remainder for an approximation with a finite number of e j:

›

›

›
x ´

n
ÿ

k“1

xkek

›

›

›
“

´

8
ÿ

k“n`1

|xk|
p
¯1{p

Ñ 0 as n Ñ 8

by definition of x P ℓp. Therefore, teku8
k“1 is a basis in ℓp.

2) M Ă H with H being a Hilbert space. Prove that
`

MK
˘K

“ xMy.
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We know that MK is a closed linear subspace. By duality, it is clear that
`

MK
˘K

Ą

xMy, so we now have to prove the inverse inclusion. Let us try to obtain two different
representations for H:

H “ xMy ‘
`

xMy
˘K and H “

`

MK
˘K

‘ MK. (6.1)

Here, MK “ xMy
K
; let us prove it. M Ă xMy, and therefore, MK Ą xMy

K
; if x P MK,

which means that px,yq “ 0 @y P M, then px,αy1 ` βy2q “ αpx,y1q ` β px,y2q “ 0

@y1,y2 P M ñ x P xMy
K
. We also know that the orthogonal complement is closed, so

x P xMy
K
.

Therefore, the second terms of decomposition (6.1) coincide. Since this
decomposition is unique, we immediately obtain that the first terms coincide as
well, that is, xMy “

`

MK
˘K.

3) Find an example of a closed Euclidean space H such that H ‰ H0 ‘ HK
0 .

Consider the space H “ C2r´1,1s (a real-valued one) with

p f ,gq “

ż 1

´1
f pxqgpxqdx.

The norm here is given by

} f ´ g}2 “

´

ż 1

´1
| f pxq ´ gpxq|

2 dx
¯1{2

.

The incompleteness of C1r0,1s was discussed on the first lecture. C2r´1,1s is
incomplete as well.

Take
H0 “ t f P C2r´1,1s : f pxq “ 0 for x P r´1,0qu.

In C2r´1,1s, it is a closed subspace. One can see that

HK
0 “ t f P C2r´1,1s : f pxq “ 0 for x P r0,1su.

Now consider a sum of these spaces:

H0 ‘ HK
0 “ t f P C2r´1,1s : f p0q “ 0u ‰ H,

since the sum consists only of functions vanishing at x “ 0.

4) Calculate
ř8

k“1
1
k4 .
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Take L2r´π,πs along with a basis

1
?

2π
,

1
?

π
cosnx,

1
?

π
sinnx, n P N,

and f pxq “ x2. This function is even, so its Fourier series consists only of cosines. It
is clear that

f0 “
1

?
2π

ż

π

´π

x2 dx “
1

?
2π

2x3

3

ˇ

ˇ

ˇ

π

0
“

2π3

3
?

2π
.

Now compute coefficients in cosines:

fn “
1

?
π

ż

π

´π

x2 cosnxdx;

it can be integrated by parts:

1
?

π

ż

π

´π

x2 1
n

dpsinnxq “
1

?
π

x2 sinnx
n

ˇ

ˇ

ˇ

π

´π
´

2
?

πn

ż

π

´π

xsinnxdx,

where the first term vanishes, and we get

2
?

πn2

ż

π

´π

xdpcosnxq “
2

?
πn2 xcosnx

ˇ

ˇ

ˇ

π

´π
´

2
?

πn2

ż

π

´π

cosnxdx,

where the last term vanishes since it is integration of a periodic function over the
period, so we finally obtain

fn “
4πp´1qn

?
πn2 .

Let us use Parseval’s identity. First, find the squared norm:

} f }
2

“

ż

π

´π

x4 dx “
2x5

5

ˇ

ˇ

ˇ

π

0
“

2π5

5
.

Now equate this to the sum of squared Fourier coefficients:

2π5

5
“ f 2

0 `

8
ÿ

n“1

| fn|
2

”
4π6

9 ¨ 2π
`

8
ÿ

n“1

16π

n4 .

Thus,

2π
5
´1

5
´

1
9

¯

“ 16π

8
ÿ

n“1

1
n4 ,

and, simplifying it, we get
8
ÿ

n“1

1
n4 “

π4

90
.

One can calculate
8
ÿ

n“1

1
n2k “

π2k

B2k

using the same basis in L2r´π,πs and the function f “ xk, where B2k is a sequence
somehow related to Bernoulli numbers.
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5) Calculate
ř8

k“1
1

k2`1 .

Take L2r´π,πs, a basis 1?
2π

einx, n P Z, and the function f pxq “ e´x. Now we find

?
2π fn “ p f ,einx

q “

ż

π

´π

e´xe´inx dx “

ż

π

´π

e´p1`inqx dx “
´1

1 ` in
e´p1`inqx

ˇ

ˇ

ˇ

π

´π
,

or, simplifying it,
?

2π fn “
p´1qnpeπ ´ e´πqp1 ´ inq

1 ` n2 ,

i.e.,
?

2π| fn| “
peπ ´ e´πqSqrt1 ` n2

1 ` n2 “
2sinhπ
?

1 ` n2
, n P Z.

Find the norm:

} f }
2

“

ż

π

´π

e´2x dx “ ´
1
2

e´2x
ˇ

ˇ

ˇ

π

´π
“

1
2
`

e2π
´ e´2π

˘

“ 2sinhπ coshπ.

Write down Parseval’s identity:

2sinhπ coshπ “ f 2
0 ` 2

8
ÿ

n“1

| fn|
2,

where the coefficient 2 for sum is taken since for n1 “ ´n we have the same expression
under the sum. Thus,

coshπ “ sinhπ `
2sinhπ

π

8
ÿ

n“1

1
n2 ` 1

,

or, after simplification,

8
ÿ

n“1

1
n2 ` 1

“
1
2

´

π cothπ ´ 1
¯

.

Exercise 6.1. Try to calculate

8
ÿ

n“1

1
n2 ` a2 , a ą 0.

6) H “ W 1
2 r´1,1s,

H0 “ t f P W 1
2 r´1,1s : f pxq “ 0 for x ď 0u.

Find HK
0 .

For g P HK
0 , @ f P H0: p f ,gqW 1

2
“ 0. By the definition of dot product in W 1

2 ,

ż 1

0
f pxqgpxqdx `

ż 1

0
f 1

pxqg1pxqdx “ 0.
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The second integral can be rewritten as
ż 1

0
f 1

pxqg1pxqdx “

ż 1

0
g1pxqd f “ g1

pxq f pxq

ˇ

ˇ

ˇ

1

0
´

ż 1

0
g2pxq f pxqdx,

so we arrive at the equation
ż 1

0
f pxq

´

gpxq ´ g2pxq

¯

dx ` g1p1q f p1q ´ g1p0q f p0q “ 0,

where f p0q “ 0. A sufficient condition for g to satisfy this equation, for example,
can be given by

gpxq ´ g2
pxq “ 0,

g1
p1q “0.

We will seek for solutions of the form

gpxq “ asinhpx ´ 1q ` bcoshpx ´ 1q,

so g1pxq “ acoshpx ´ 1q ` bsinhpx ´ 1q, and g1p1q ” a “ 0. Therefore,

gpxq “

#

bcoshpx ´ 1q for x P r0,1s,

an arbitrary function for x P r´1,0s

with a condition that

gp´0q ´ bcoshp´1q ” bcosh1 ñ b “
gp0q

cosh1
since g must belong to W 1

2 . Hence,

HK
0 “

!

g P W 1
2 r´1,1s : gpxq “

gp0q

cosh1
coshpx ´ 1q, x ě 0,

and an arbitrary rg P W 1
2 r´1,0s, x ď 0

)

.
(6.2)

The only tricky thing here is that we found the function gpxq as a solution of second-
order differential equation, therefore, we assumed that it has 2 derivatives. We have
to show that (6.2) is the entire orthogonal complement.

Take f P W 1
2 r´1,1s and decompose it:

f “ f0 ` f1, f0 P H0, f1 P HK
0 .

One can see that

f1 “

$

&

%

f p0q

cosh1
coshpx ´ 1q, x P r0,1s,

f pxq, x P r´1,0s.

It is also easy to see that this function is continuous at x “ 0.

For f1 of this form,
f0 “ f ´ f1, and f0

ˇ

ˇ

ˇ

r´1,0s
“ 0,

so HK
0 is indeed the entire orthogonal complement.
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Exercises on Precompactness

1) Consider a set
M “ tx P ℓp : |xk| ď aku, 1 ď p ă 8,

where taku8
k“1 is some certain sequence. Prove that M is precompact ô taku8

k“1 P ℓp.

a) ð. In this direction, the proof is simple:

}x} “

´

8
ÿ

k“1

|xk|
p
¯1{p

ď

´

8
ÿ

k“1

ap
k

¯1{p
ă 8.

Also, for @x P M, the tail is small: @ε Dn such that

´

8
ÿ

k“n`11

|xk|
p
¯1{p

ď

´

8
ÿ

k“n`1

ap
k

¯1{p
ă ε,

since ak P ℓp.

b) ñ. Let taku8
k“1 R ℓp. Note that these numbers are nonnegative: ak ě 0.

Therefore,

Sn :“
´

n
ÿ

k“1

ak

¯1{p
Ñ `8 as n Ñ 8.

Consider xn P M:
x “ pa1,a2, . . . ,an,0,0, . . .q P ℓp.

This sequence belongs to ℓp, but }xn} Ñ `8, so the set M is unbounded, which
gives us a contradiction.

2) Study the equicontinuity of the system t fnpxq “ xnu8
n“1 in Cr0,1s.

It is clear that } fn} “ 1, so it is a bounded set. To study the precompactness of this
set, we have to find out only whether it is equicontinuous or not.

Let us take x “ 1 and y “ 1 ´ δ{2, |x ´ y| “ δ{2 ă δ . Calculate

ˇ

ˇ

ˇ
fnpxq ´ fnpyq

ˇ

ˇ

ˇ
“ 1 ´

´

1 ´
δ

2

¯n
,

where
1 ´

δ

2
ă 1 ñ Dn :

´

1 ´
δ

2

¯n
ă

1
2
.

Whence,

Dn :
ˇ

ˇ

ˇ
fnpxq ´ fnpyq

ˇ

ˇ

ˇ
ą

1
2
,

which gives us a contradiction with the property of equicontinuity.
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Self-Study Exercises

1) Consider an ellipsoid in ℓ2:

M “

!

x P ℓ2 :
8
ÿ

i“1

|xi|
2

a2
i

ď 1
)

.

Prove that M is precompact if and only if taiu
8
i“1 P c0.

2) Consider tsinnxu8
n“1. Find out whether it is precompact in Cr0,1s or not.

3) Consider tsinαxuαPr1,2s. Find out whether it is precompact in Cr0,1s or not.

4) Consider

a) M1 “

!

f P C1ra,bs : | f paq| ď c1 and
şb

a | f 1pxq|dx ď c2

)

,

b) M2 “

!

f P C1ra,bs : | f paq| ď c1 and
şb

a | f 1pxq|2 dx ď c2

)

,

c) M3 “

!

f P C1ra,bs :
şb

a

`

| f pxq|2 ` | f 1pxq|2
˘

dx ď c
)

,

where c1, c2, and c are some constants. Study the compactness of these sets.

5) Prove that the unit ball Br0,1s Ă L2r0,1s is not precompact in L1r0,1s (note that
L2r0,1s Ă L1r0,1s).

6) Show that

a) a unit ball Br0,1s Ă C1r0,1s is precompact in Cr0,1s,

b) a unit ball Br0,1s Ă W 1
2 r0,1s is precompact in L2r0,1s.
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Lecture 7. Linear Operators and Functionals in

Normed Spaces

Linear Operators in Normed Spaces. Bounded Operators

Let us begin with the following definition:

Definition 7.1. Let X , Y be linear spaces over one field K “ R or C. A map A : X Ñ Y

is called a linear operator if @α,β P K, x1,x2 P X : Apαx1 ` βx2q “ αAx1 ` βAx2.
If X and Y are normed spaces, a norm of an operator can be also defined:

}A}XÑY :“ sup
XQx‰0

}Ax}Y

}x}X
.

It is easy to verify that this expression indeed defines a norm: it is is nonnegative,
vanishes only for an identically zero operator, it is homogeneous with respect to
multiplication on the elements of the field (up to an absolute value), and the triangle
inequality holds due to the fact that it holds for the norm in Y . Define also some spaces
of operators:

Definition 7.2. LpX ,Y q is the space of all linear operators X Ñ Y (note that linear
operations in this space are well-defined: pA`Bqx “ Ax`Bx and @α P K: pαAqpxq “ αpAxq.

Let A P LpX ,Y q, where X and Y are normed spaces. A is bounded if }A} ă 8 (it is
usually denoted as A P BpX ,Y q).

Consider two additional ways to find the norm: taking only the elements from a unit
sphere or from a unit ball:

}A}1 “ sup
}x}“1

}Ax}, }A}2 “ sup
}x}ď1

}Ax}.

Proposition 7.1. }A} “ }A}1 “ }A}2.

Proof. Note that }A}1 ď }A}2 since t}x} “ 1u Ă t}x} ď 1u, and }A}1 ď }A}, which follows
from sup

x‰0

}Ax}

}x}
if we put here }x} “ 1.

To prove the statement, we have to show the validity of inverse inequalities. Rewrite:

}A} “ sup
x‰0

}Ax}

}x}
,

including }x} into the norm in the numerator:

sup
x‰0

}Ax}

}x}
“ sup

x‰0

›

›

›
A

x
}x}

›

›

›
ď }A}1.
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Further,

}A}2 “ sup
}x}ď1

}Ax} “ }A}2 “ sup
}x}ď1,x‰0

}Ax} “ }A}2 “ sup
}x}ď1,x‰0

}x}}A
x

}x}
},

where the norm of x{}x} is equal to 1, so }A}2 ď }A}1.

Remark 7.1. From the definition of the norm, we can obtain the following inequalities:

}A} ě
}Ax}

}x}
p@x ‰ 0q ñ @x : }Ax} ď }A}}x}.

Usually, the way to find the norm of an operator is following: begin with }Ax}, and use
some classical inequalities to estimate it with }x}:

}Ax} ď ¨ ¨ ¨ ď C ¨ }x},

then the norm of A is bounded from above by C. If the inequalities used on this way are
sharp, then C may be exactly the norm of A.

There are two possible ways to show that an upper bound for the norm is sharp:

1) Find x, }x} “ 1, such that }Ax} “ C, or

2) Find a sequence txnu8
n“1, }xn} “ 1, such that }Axn} Õ C as n Ñ 8;

any of these allows one to conclude that }A} “ C.

Examples: Finding Norms of Operators

Take some ϕ P Cra,bs. Consider an operator of multiplication by the function ϕ :

Aϕ f pxq “ ϕpxq f pxq.

For instance, Aϕ with ϕpxq “ x, called an operator of coordinate, is one of the important
subjects of study in Quantum Mechanics.

Let us find the norm of this operator acting in the following spaces:

a) Aϕ : Cra,bs Ñ Cra,bs,

b) Aϕ : L2ra,bs Ñ L2ra,bs.

In case a),

}A f } “ max
ra,bs

ˇ

ˇϕpxq f pxq
ˇ

ˇ ď max
ra,bs

ˇ

ˇϕpxq
ˇ

ˇ ¨ max
ra,bs

ˇ

ˇ f pxq| “ }ϕ}Cra,bs ¨ } f }Cra,bs,
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therefore, }A} ď }ϕ}Cra,bs. Take f0 ” 1 on ra,bs. For this function, } f0} “ 1 and }A f0} “

}ϕ}Cra,bs, so }A} “ }ϕ}Cra,bs.
For example, on Cra,bs, the operator Ax that acts as A f “ x f pxq has norm }A} “ 1.
In case b),

}A f }
2

“

ż b

a
|ϕpxq f pxq|

2 dx ď max
ra,bs

|ϕpxq|
2
ż b

a
| f pxq|

2 dx “ }ϕ}
2
Cra,bs ¨ } f }

2
L2
.

Thus, }A} ď max
ra,bs

|ϕpxq|. In fact, this bound is sharp. While so, the proof requires to consider

a sequence of functions from L2, since the norm of a constant here is not equal to the
constant itself, but is equal to the length of the interval.

We know that the function ϕ is continuous; therefore, there exists a point x0 P ra,bs

such that |ϕpx0q| “ max |ϕpxq|
ra,bs

. Without loss of generality, we can assume that this is

an interior point of the interval ra,bs; if it is an end of the interval, we can consider a one-
sided neighborhood. For an interior point, we consider a usual neighborhood: consider the
following functions t fnu8

n“1:

fnpxq “

$

&

%

?
n, x P px0 ´

1
2n

,x0 `
1
2n

q,

0, otherwise.

The limit function takes the value of ϕpxq at the point x0, so it is the delta function δx0pxq,
see an example in Fig. 7.1.

Рис. 7.1. Example: f5 for x0 “ 1.

The norm of these function is equal to 1:

} fn}L2 “

´

ż b

a
| fnpxq|

2 dx
¯1{2

“

´

ż x0` 1
2n

x0´ 1
2n

?
ndx

¯1{2
“ 1.

64



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS

IGOR SHEIPAK

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

Now we find the norm of }A fn}:

}A fn} “

´

ż x0` 1
2n

x0´ 1
2n

|ϕpxq|
2ndx

¯1{2
“

´

n
ż x0` 1

2n

x0´ 1
2n

|ϕpxq|
2 dx

¯1{2
; (7.1)

since ϕpxq, along with |ϕpxq|2, is a continuous function, according to the mean value
theorem for integrals, there exists at least one point xn P rx ´ 1{p2nq,x ` 1{p2nqs such that

|ϕpxnq|
2

“
1
n

ż x0` 1
2n

x0´ 1
2n

|ϕpxq|
2 dx.

Plugging this into (7.1), we finally obtain }A fn} “ |ϕpxnq|. Since ϕ is continuous, and the
length of the interval px ´ 1{p2nq,x ` 1{p2nqq approaches zero as n Ñ 8,

}A fn} Ñ |ϕpx0q| “ }ϕ}Cra,bs.

Continuous Operators. Theorem on Equivalence of Boundedness

and Continuity. B(X, Y) is Banach if Y is Banach

Recall the notation:
LpX ,Y q is the space of all linear operators X ÑY and BpX ,Y q is the space of all bounded

linear operators X Ñ Y . If X “ Y , we simply write LpXq and BpXq. Now we introduce the
following kind of linear operators:

Definition 7.3. Let A P LpX ,Y q, where X and Y are normed spaces.

1) A is continuous at point x0 P X , if pxn Ñ xq ñ pAxn Ñ Axq.

2) A is continuous if A is continuous at any point x P X .

Theorem 7.1. Let X and Y be normed spaces, and A P LpX ,Y q. Then the following are
equivalent:

1) A is continuous at a point x0,

2) A is continuous,

3) A is bounded.

Thus, the continuity is a synonym for the boundedness in the context of linear
operators between normed spaces.
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Proof. 2 ñ 1 is obvious. Let us prove 1 ñ 2. Let A be continuous at x0 and xn Ñ x.
Then xn ´ x ` x0 Ñ x0. Applying A, we get

Apxn ´ x ` x0q Ñ Ax0
APLpX ,Y q

ñ Axn ´ Ax ` Ax0 Ñ Ax0,

therefore, Axn Ñ Ax.
Now we prove 3 ñ 2. Let xn Ñ x;

}Axn ´ Ax} “ }Apxn ´ xq} ď }A} ¨ }xn ´ x},

where the first term is finite since A is bounded, and the second one tends to zero.
Therefore, }Axn ´ Ax} Ñ 0, so A is continuous.

The last step of our proof is 2 ñ 3. We will prove it by contradiction. Let A be
unbounded. Then

Dxn : }xn} “ 1 such that }Axn} ě n.

Define
yn :“

xn

n
, }yn} “

1
n

Ñ 0,

so yn Ñ 0, but }Ayn} ě 1, which is contradiction to the continuity at 0.
One can pose the question: when is the space of bounded operators complete? The

answer to this question is provided by the following theorem:

Theorem 7.2. Let X and Y be normed spaces, and Y be Banach. Then BpX ,Y q is Banach.

Proof. Let us consider a Cauchy sequence tAnu8
n“1 in BpX ,Y q. By definition, this

means that
@ε DN “ Npεq : @n,m ě N }An ´ Am} ă ε,

and since the norm in the space of operators is given by supremum, the following is also
true:

@x P X : }Anx ´ Amx} ă ε}x}.

Thus, tAnxu8
n“1 is a Cauchy sequence in Y . Therefore, there exists a limit; the limit

preserves linear operations, so one can define an operator

D lim
nÑ8

Anx “: Ax.

Existence of this limit means the pointwise convergence An Ñ A. Then, in the written
above

@n,n ě N }Anx ´ Amx} ă ε}x}

take the limit as m Ñ 8:
}Anx ´ Ax} ď ε}x},
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and, taking the supremum over the unit sphere in X , we get

}An ´ A} ď ε,

so An Ñ A converges uniformly.
It is easy to see that A is a bounded operator:

}A} “ }A ´ An ` An} ď }A ´ An} ` }An};

the first summand is less than ε for n ě N, and the second one is bounded @n, therefore,
}A} ă 8.

Linear Functionals and Adjoint Spaces

One of the benefits of the previous theorem is that the space of operators from X to
the field is complete:

Definition 7.4. Let X be a normed space over a field K “ R or C. BpX ,Kq “: X˚ is called
an adjoint space to X . An element f P X˚ is called a functional. The norm is X˚ is
given by

} f } “ sup
}x}ď1

| f pxq| “ sup
}x}‰0

| f pxq|

}x}
.

The corollary from the previous theorem:

Corollary 7.1. X˚ is Banach for any normed space X .

Now we will describe the adjoint spaces to some specific normed spaces.

Theorem 7.3. c˚
0 – ℓ1 (here – stands for the isometric isomorphism).

Remark 7.2. What does it mean? For any f P c˚
0, we have a unique y P ℓ1 corresponding

to f , and the formula for the action of the function f on x is the following:

f pxq “

8
ÿ

k“1

xkyk,

moreover, } f }c˚
0

“ }y}ℓ1.

Proof. Let y P ℓ1. We will construct a functional fypxq such that

fypxq “

8
ÿ

k“1

xkyk.
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The functional is obviously linear as the sum is linear. Now let us find the bound for
| fypxq|:

| fypxq| ď

8
ÿ

k“1

|xk||yk| ď sup
kě1

|xk| ¨

8
ÿ

k“1

|yk|,

where the first component is just the norm of x in c0, i.e., }x}c0 and the second one is
}y}ℓ1 , thus,

} fy}c˚
0

ď }y}ℓ1.

Consider xn :“ psgny1,sgny2, . . . ,sgnyn,0,0, . . .q P c0 with an obvious inequality for the
norm: }xn} ď 1. For such a sequence,

| fypxn
q| “

n
ÿ

k“1

|yk| Ñ

8
ÿ

k“1

|yk| as n Ñ 8,

so } fy}c˚
0

“ }y}ℓ1 .
Now we should start from the functional and provide an element of ℓ1. Let f P c˚

0. We

know that ek “ p0,0, . . . ,0,
k
1,0, . . .q is a basis in c0. Define

yk :“ f pekq.

If we take x “ px1,x2, . . . ,xn, . . .q P c0, we know that

n
ÿ

k“1

xkek Ñ x.

f is continuous, therefore,

f
´

n
ÿ

k“1

xkek

¯

Ñ f pxq;

the functional is linear, so, by the definition of yk,

f p

n
ÿ

k“1

xkekq “

n
ÿ

k“1

xkyk,

where
řn

k“1 xkyk Ñ
ř8

k“1 xkyk, so

f pxq “

8
ÿ

k“1

xkyk.

Why y P ℓ1? We know that } f } ă 8, where

} f } “ sup
}x}ď1

| f pxq| ě | f ppsgny1,sgny2, . . . ,sgnyn,0,0, . . .qq| “

n
ÿ

k“1

|yk| @n P N.
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Taking the limit as n Ñ 8,

} f } ě

8
ÿ

k“1

|yk| ñ y P ℓ1.

In the first step of the proof, we showed that } fy} “ }y}.
Consider the following example:

Example 7.1. Find the norm of the functional in c0:

f pxq “

8
ÿ

k“1

xk

2k , } f }´?

Here yk “ 1{2k, so

} f } “

8
ÿ

k“1

1
2k “ 1.

Now we formulate the theorem on the structure of the adjoint space to ℓp.

Theorem 7.4. Let 1 ď p ă 8. Then ℓ˚
p – ℓq, where 1

p ` 1
q “ 1.

Remark 7.3. This means that there is a one-to-one correspondence between f P ℓ˚
p and

y “ py1, . . . ,yk, . . .q P ℓq such that

@x P ℓp : f pxq “

8
ÿ

k“1

xkyk and } f }ℓ˚
p

“ }y}ℓq.

Proof. The scheme is the same as in the previous theorem. Take y P ℓq and construct
a functional

fypxq “

8
ÿ

k“1

xkyk for any x P ℓp.

First, we estimate the absolute value

| fypxq| “

ˇ

ˇ

ˇ

8
ÿ

k“1

xkyk

ˇ

ˇ

ˇ
ď

8
ÿ

k“1

|xkyk|

For this sum, we use the Hölder inequality:

8
ÿ

k“1

|xkyk| ď

´

8
ÿ

k“1

|xk|
p
¯1{p´ 8

ÿ

k“1

|yk|
q
¯1{q

for 1 ă p ă 8, and
8
ÿ

k“1

|xkyk| ď sup
kě1

|yk|

8
ÿ

k“1

|xk|
p
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for p “ 1. In both cases, we obtain

| fypxq| ď }x}ℓp ¨ }y}ℓq.

It is known that the Hölder inequality is sharp; if 1 ă p ă 8, take

xk “ |yk|
q´1 sgnyk.

Since
1
p

`
1
q

“ 1 ñ q “ ppq ´ 1q,

|xk|p “ |yk|q, thus, x P ℓp, and for the functional we obtain

fypxq “

8
ÿ

k“1

|yk|
q,

and, therefore,
| fypxq|

}x}
“

ř8
k“1 |yk|q

´

ř8
k“1 |yk|q

¯1{p
“

´

8
ÿ

k“1

|yk|
q
¯1{q

,

which means that } fy}ℓ˚
p

“ }y}ℓq . For p “ 1, q “ 8, the norm in ℓq is given by

}y} “ sup
kě1

|yk|,

so there are two possibilities:

a) Dk0: |yk0 | “ }y}. Then we take

x “ p0,0, . . . ,0,
k0sgnyk0,0, . . .q, }x}ℓp “ 1,

and f pyq “ |yk0 | “ }y}ℓ8
.

b) Dkn such that |ykn | Ñ }y}. Then take

xn
“ p0,0, . . . ,

knsgnyn,0, . . .q, }xn
}ℓp “ 1,

and then f pxnq “ |ykn | Ñ }y}ℓ8
as n Ñ 8, therefore, } fy} “ }y}ℓ8

.

Now we take a functional f P ℓ˚
p and construct an element y P ℓq. We know that

ek “ p0,0, . . . ,
k
1,0, . . .q, k P N,

is a basis in ℓp, 1 ď p ă 8. Then,

@x “ px1,x2, . . .q P ℓp : x “

8
ÿ

k“1

xkek,
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and the partial sum converges to this element:

8
ÿ

k“1

xkek Ñ x as n Ñ 8.

Define

yk :“ f pekq, thus, f
´

n
ÿ

k“1

xkek

¯

Ñ f pxq,

where the left-hand side, by linearity, is a partial sum of the form

f
´

n
ÿ

k“1

xkek

¯

“

n
ÿ

k“1

xkyk Ñ f
´

8
ÿ

k“1

xkek

¯

as n Ñ 8.

Why y P ℓq? Again, there are two possibilities:

1) 1 ă p ă 8. The functional is bounded, i.e.,

} f } “ sup
x‰0

| f pxq|

}x}
ă 8;

we consider a nonzero functional f ‰ 0, so, obviously y ‰ 0 as well. Take

xn
“ px1,x2, . . . ,xn,0, . . .q, where xk “ |yk|

q´1 sgnyk, k “ 1,2, . . . ,n.

Continue the estimation:

sup
x‰0

| f pxq|

}x}
ě

| f pxnq|

}xn}
“

řn
k“1 |yk|q

´

řn
k“1 |yk|q

¯1{p
“

´

n
ÿ

k“1

|yk|
q
¯

@n P N.

Taking the limit as n Ñ 8, we obtain

} f } ě

´

n
ÿ

k“1

|yk|
q
¯

ñ y P ℓq.

2) p “ 1. In this case, we must show that the sequence y is bounded, i.e., belongs to ℓ8.
Take

xn
“ p0,0, . . . ,0,

n
sgnyn,0, . . .q, }xn

}ℓ1 ď 1,

and f pxnq “ |yn|. Since | f pxnq| ď } f },

@n : |yn| ď } f } ñ y P ℓ8.

Thus, for f “ fy, from the previous step of the proof, we have } fy}ℓ˚
p

“ }y}ℓq .

Corollary 7.2. All spaces ℓp, 1 ď p ď 8, are complete.
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The following theorem, a more general one, claims that the structure of the adjoint
spaces for Lp is similar. We will provide it without a proof:

Theorem 7.5. Let pΩ,M,µq be a measurable space, where µ stands for a σ -additive
measure σ -finite measure, and 1 ď p ă 8. Then

´

LppΩ,µq

¯˚

– LqpΩ,µq,
1
p

`
1
q

“ 1,

where – denotes the isometric isomorphism:
´

LppΩ,µq

¯˚

Q G Ø g P LqpΩ,µq

such that
@ f P Lp : Gp f q “

ż

Ω

f pxqgpxqdµ, }G}L˚
p

“ }g}Lq.
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Lecture 8. Linear Operators and Functionals in Normed

Spaces: Exercises

Discussion of Self-Study Exercises from the Previous Lecture

We begin with a discussion of the homework from Lecture 6.

4) a) M1 “

!

f P C1ra,bs : | f paq| ď c1 and
şb

a | f 1pxq|dx ď c2

)

is not precompact.
An example can be provided by fnpxq “ xn in Cr0,1s or

fn “

´x ´ a
b ´ a

¯n

in Cra,bs. Since fnp0q “ 0, Dc1: | fnp0q| ď c1. These functions are monotonic, so
ż 1

0
f 1
npxqdx “ fnp1q ´ fnp0q “ 1 ñ Dc2 :

ż 1

0
| f 1

npxq|dx ď c2.

Thus, both conditions hold, but t fnu8
n“1 is not an equicontinuous family.

b) M2 “

!

f P C1ra,bs : | f paq| ď c1 and
şb

a | f 1pxq|2 dx ď c2

)

. To find out whether
this set is precompact in Cra,bs or not, we must study its boundedness and
equicontinuity. We know that

f pxq “

ż x

a
f 1

ptqdt ` f paq,

therefore,

| f pxq| ď

ż x

a
| f 1

ptq|dt ` | f paq| ď

ż b

a
| f 1

ptq|dt ` c1,

for which one can apply the Hölder or Cauchy–Bunyakovsky–Schwarz
inequality:

ż b

a
| f 1

ptq|dt ` c1 ď

´

ż b

a
| f 1

ptq|
2 dt

¯1{2?
b ´ a ` c1 ď

?
c2

?
b ´ a ` c1,

so M2 is bounded. Now check its equicontinuity. Let |x ´ y| ă δ . We know that
ˇ

ˇ

ˇ
f pxq ´ f pyq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż y

x
f 1

ptqdt
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ż x

y
| f 1

ptq|dt
ˇ

ˇ

ˇ
,

to which we apply the Cauchy–Bunyakovsky–Schwarz inequality:
ˇ

ˇ

ˇ

ż x

y
| f 1

ptq|dt
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ż x

y
| f 1

ptq|
2 dt

ˇ

ˇ

ˇ

1{2a
|x ´ y| ď

?
c2
a

|x ´ y|,

so the functions in M2 form an equicontinuous family, therefore, M2 is
precompact.
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c) M3 “

!

f P C1ra,bs :
şb

a

`

| f pxq|2 ` | f 1pxq|2
˘

dx ď c
)

. One can show that M3 Ă M2

for some c1, c2. Let us do so. By the Newton–Leibniz formula,

f pxq “

ż x

a
f 1

ptqdt ` f paq,

or, rearranging it,

f paq “

ż x

a
f 1

ptqdt ´ f pxq ñ | f paq| ď

ż x

a
| f 1

ptq|dt `| f pxq| ď

ż b

a
| f 1

ptq|dt `| f pxq|.

Integrating this inequality over ra,bs, we obtain

pb ´ aq| f paq| ď pb ´ aq

ż b

a
f 1

ptqdt `

ż b

a
| f pxq|dx,

and then, using the Cauchy–Bunyakovsky–Schwarz inequality,

pb ´ aq

ż b

a
f 1

ptqdt `

ż b

a
| f pxq|dx ď

?
b ´ a

?
b ´ a

´

ż b

a
| f 1

ptq|
2 dt

¯1{2
`

`
?

b ´ a
´

ż b

a
| f pxq|dx

¯1{2
,

so f paq is bounded:

| f paq| ď
?

b ´ a
?

c `

?
c

?
b ´ a

“: c1.

Now we must show that the derivative is bounded in the L2-sense. By definition
of M3, we have

ż b

a

`

| f pxq|
2

` | f 1
pxq|

2˘dx ď c,

therefore,
ż b

a
| f 1

pxq|
2 dx ď c,

so M3 Ă M2 for c1 as defined above, and c2 “ c, thus, M3 is precompact.

5) Prove that the unit ball Br0,1s Ă L2r0,1s is not precompact in L1r0,1s.

First, we show that L2r0,1s Ă L1r0,1s. By the Cauchy–Bunyakovsky–Schwarz
inequality,

ż 1

0
1 ¨ | f ptq|dt ď

´

ż 1

0
| f ptq|

2 dt
¯1{2

¨

´

ż 1

0
1dt

¯1{2
“ } f }L2,

therefore, f P L2r0,1s ñ f P L1r0,1s.
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Now, for n “ 1, consider
f1 “ χ“

0, 1
2

‰´ χ“ 1
2 ,1
‰,

see Fig. 8.1.

Рис. 8.1. Graph of f1.

For an arbitrary n, we divide the interval r0,1s into pieces of length 1{2n, where the
values 1 and ´1 alternate for fnpxq, i.e.,

fn “ χ“
0, 1

2n

‰´ χ“ 1
2n ,

2
2n

‰` χ“ 2
2n ,

3
2n

‰´ χ“ 3
2n ,

4
2n

‰` . . . ,

see an example in Fig. 8.2.

Рис. 8.2. Graph of fn, n “ 3.

What can we say about the norm of these functions in L2 and in L1?

} fn}L2r0,1s “ } fn}L1r0,1s “ 1,
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since the absolute value of fnpxq equals 1 identically. Now, consider } fn ´ fm}L1r0,1s,
see an example in Fig. 8.3.

Рис. 8.3. Graphs of f0 (green) and f3 (blue).

One can see that } fn ´ fm}L1 “ 1, since half the length of the interval these functions
coincide, so the difference is 0, while in the other half, they differ by 2. Thus, there
is no Cauchy subsequence of fn.

Exercises on Bounded Operators and Functionals

Now, we discuss some examples of bounded operators and functionals and consider
some exercises.

1) Take α “ pα1,α2, . . . ,αn, . . .q P ℓ8, and define

Aαx “ pα1x1,α2x2, . . . ,αnxn, . . .q in ℓ2.

Find the norm }Aα}.

Since we are in ℓ2, it is convenient to write the squared norm. By definition,

}Aαx}
2

“

8
ÿ

k“1

|αkxk|
2.

From this sum, one can take out the supremum of αk:
8
ÿ

k“1

|αkxk|
2

ď sup
kě1

|αk|
2

8
ÿ

k“1

|xk|
2

“ }α}
2
ℓ8

}x}
2
ℓ2 .

Thus, we obtained an upper bound for the norm of the operator:

}Aα} ď }α}ℓ8
.

There are two possibilities:
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a) Dk0: |αk0 “ sup
kě1

|αk|. Then we take

x “ p0,0, . . . ,
k0

sgnαk0,0, . . .q.

For this x,
}Ax} “ |αk0 | ” }α}ℓ8

.

b) Ek0, but Dkn Ñ 8:
|αkn | Ñ sup

kě1
|αk|.

In this case, we consider a sequence

xn
“ p0, . . . ,0,

kn
sgnkn,0, . . .q P ℓ2,

so
}Aαxn

} “ |αkn | Ñ }α}ℓ8
,

therefore, }Aα} “ }α}ℓ8
.

2) In Cr´1,1s, consider the functional F such that

@ f P Cr´1,1s : Fp f q “

ż 0

´1
f ptqdt ´

ż 1

0
f ptqdt.

Find the norm }F}.

We begin with the estimation

|Fp f q| “

ˇ

ˇ

ˇ

ż 0

´1
f ptqdt ´

ż 1

0
f ptqdt

ˇ

ˇ

ˇ
ď

ż 0

´1
| f ptq|dt `

ż 1

0
| f ptq|dt. (8.1)

In Cra,bs, we have a very useful inequality:

@t P ra,bs : | f ptq| ď } f }Cra,bs “ max
ra,bs

| f pxq|.

Using this, we conclude that each of the integrals on the right-hand side is bounded
from above by } f }, so

|Fp f q| ď 2} f }Cra,bs, thus, }F} ď 2.

For what function can equality be achieved? If we take f0 such that

f0pxq “

#

1, x P r´1,0s,

´ 1, x P p0,1s,

77



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS

IGOR SHEIPAK

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

then we obtain the equality Fp f0q “ 2. The problem here is that f0 of the given form
does not belong to Cr´1,1s. We can approximate it by a sequence of continuous
function taking a small neighborhood of zero for a linear function gluing the values
together, for instance, consider the sequence of functions

fnpxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1, x P
“

´ 1,´
1
n

‰

,

´ nx, x P
“

´
1
n
,
1
n

‰

,

´ 1, x P r
1
n
,1
‰

,

see an example in Fig. 8.4.

Рис. 8.4. Graphs of f0 (green) and f5 (red).

Obviously, fn P Cr´1,1s, } fn} “ 1, and fn Ñ f . The functional evaluated at this
element gives Fp fnq “ 2 ´ 1{n Ñ 2 as n Ñ 8. Thus, its norm is indeed equal to 2.

3) Consider in ℓ2 the operators of right and left shifts:

Arx “ p0,x1,x2, . . .q, Aℓ “ px2,x3,x4, . . .q.

What can be said about the norms of these operators?

These operators are closely related to the creation and annihilation operators that
arise in Quantum Mechanics; usually, these operators are considered in two-sided
ℓ2.

It is clear that
@x : }Arx} “ }x}, }Aℓx} ď }x}.
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For Ar, we immediately obtain }Ar} “ 1. For Aℓ, this only guarantees the bound
}Aℓ} ď 1. One can take the second basis vector e2 “ p0,1,0,0, . . .q, and, applying the
operator, get that

Aℓe2 “ e1,

therefore, }Aℓ} “ 1.

Consider these operators in ℓ2pZq:

ℓ2pZq Q x “ p. . . ,x´2,x´1,px0q,x1,x2, . . .q.

By taking an element to the brackets, we point out that it is the center of the
sequence. ℓ2pZq is a Hilbert space with the norm and the dot product defined by

}x} “

´

8
ÿ

k“´8

|xk|
2
¯1{2

, px,yq “

8
ÿ

k“´8

xkyk.

In this space, }Ar} “ }Aℓ} “ 1:

Arx “ p. . . ,x´2,px´1q,x0, . . .q, Aℓx “ p. . . ,x0,px1q,x2, . . .q,

so these two are examples of the unitary operators.

4) Let g P Cra,bs be some certain function. Consider the functional Fg in Cra,bs defined
by the formula

Fgp f q “

ż b

a
f pxqgpxqdx @ f P Cra,bs.

Evedently, it is a linear functional. What is the norm of Fg?

First, we will provide a bound for @ f P Cra,bs in terms of } f }Cra,bs:

ˇ

ˇ

ˇ
Fgp f q

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ż b

a
f pxqgpxqdx

ˇ

ˇ

ˇ
ď

ż b

a
| f pxqgpxq|dx;

the following step is quite simple, we just take out the norm of f :
ż b

a
| f pxqgpxq|dx ď max

ra,bs
| f pxq|

ż b

a
|gpxq|dx.

The conjecture is that }Fg} “ }g}L1 . For f pxq “ sgngpxq, Fgp f q “
şb

a |gpxq|dx, but
f pxq R Cra,bs. Even though, one can approximate it by a continuous family, for
example, as in the following. Let ε ą 0. Consider

fεpxq “

#

ε sgngpxq, if |gpxq| ě ε,

gpxq, if |gpxq| ă ε.
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It is a continuous function, and } fε}Cra,bs “ ε (if g ı 0). Consider

rfεpxq ”
fεpxq

ε
“

$

&

%

sgngpxq, if |gpxq| ě ε,

gpxq

ε
, if |gpxq| ă ε;

obviously, }rfε} “ 1. Now evaluate the functional Fg at this function:

Fgprfεq “

ż b

a

rfεpxqgpxqdx “

ż

x: |gpxq|ěε

|gpxq|dx `
1
ε

ż

x: |gpxq|ăε

g2
pxqdx.

Since the integrand of the second integral is positive, we can bound the sum from
below by the first integral, that is,

Fgprf0q ě

ż

x: |gpxq|ěε

|gpxq|dx.

Taking the limit as ε Ñ 0, we come to

Fgprfεq ě

ż b

a
|gpxq|dx,

therefore,

}Fg}pCra,bsq˚ “

ż b

a
|gpxq|dx ” }g}L1ra,bs.

Another way to find the norm of this functional is following. First, give a uniform
approximation of g with polynomials pn, using the Weierstrass approximation
theorem. Second, approximate the sign of the polynomial pn by a continuous
function fn, and evaluate the functional Fg at the function fn.

5) Consider a functional f in c (recall that this is the space of converging sequences:

x “ px1,x2, . . . ,xn, . . .q P c ô D lim
nÑ8

xn “ a,

where a “ apxq, and }x} “ sup
kě1

|xk|):

f pxq “

8
ÿ

k“1

p´1qkxk

2k .

Find the norm } f }.

Once again, first we estimate the functional in terms of }x}:

| f pxq| “

ˇ

ˇ

ˇ

8
ÿ

k“1

p´1qkxk

2k

ˇ

ˇ

ˇ
ď

8
ÿ

k“1

|xk|

2k ď sup
kě1

|xk| ¨

8
ÿ

k“1

1
2k “ }x}c. (8.2)
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We have obtained that } f } ď 1. The natural conjecture is that } f } “ 1. If we analyze
the first inequality in (8.2), that is,

ˇ

ˇ

ˇ

8
ÿ

k“1

p´1qkxk

2k

ˇ

ˇ

ˇ
ď

8
ÿ

k“1

|xk|

2k ,

we see that the equality is achieved for

x “ p´1,1,´1, . . . ,p´1q
n, . . .q,

which is not an element of c. One can take a sequence

xn
“ p´1,1,´1,1, . . . ,´1,1,0,0, . . .q P c0 Ă c, }xn

} “ 1,

which has 2n nonzero coordinates. Evaluating the functional at this sequence, we
get

f pxq “

2n
ÿ

k“1

1
2k Ñ 1 as n Ñ 8,

therefore, } f } “ 1.

6) Consider an operator

pA f qpxq “

ż n

a
Kpx, tq f ptqdt;

the function Kpx, tq is called an integral kernel of the operator A.

Let Kpx, tq P Cra,bs2. Consider this operator on the space Cra,bs:

A : Cra,bs Ñ Cra,bs.

Note that this is a continuous analog of the matrix operator. What does it mean?

Let A “ pai jq
n
i, j“1, x “ px1,x2, . . . ,xnq. Then

pAxq j “

n
ÿ

i“1

ai jxi.

Replacing j Ñ t, ai j Ñ Kpx, tq, and
ř

Ñ
ş

, we obtain Kpx, tq f ptqdt.

Now, find the norm of A.

First, we would like to obtain a bound for A f in terms of } f }:

}A f } “ max
ra,bs

ˇ

ˇ

ˇ

ż b

a
Kpx, tq f ptqdt

ˇ

ˇ

ˇ
ď max

ra,bs

ż b

a
|Kpx, tq f ptq|dt ď max

ra,bs
| f ptq| ¨

ż b

a
|Kpx, tq|dt.

Our conjecture is that }A} “
şb

a |Kpx, tq|dt.
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We know that the function Kpx, tq is continuous; therefore,
şb

a |Kpx, tq|dt is continuous.
Therefore,

Dx0 P ra,bs :
ż b

a
|Kpx0, tq|dt “ max

xPra,bs

ż b

a
|Kpx, tq|dt.

Consider problem 4 with gptq “ Kpx0, tq P Cra,bs, where we have constructed rfε :

Fprfεq Ñ

ż b

a
|gptq|dt.

Now, take the family rfε from problem 4 for the function gptq “ Kpx0, tq. Then

}A}Cra,bsÑCra,bs “ max
xPra,bs

ż b

a
|Kpx, tq|dt.

Self-Study Exercises

1) Show that c˚ – ℓ1 ‘C (– ℓ1). The symbol – stands for the isometric isomorphism

c˚
Q f Ø py,αq, ,y P ℓ1, α P C,

and

f pxq “ αx0 `

8
ÿ

k“1

xkyk, } f } “ |α | `

8
ÿ

k“1

|yk|.

2) Consider in ℓ3 the functional

f pxq “

8
ÿ

k“1

xk

k4{3 .

Find the norm } f }.

3) In Cr´1,1s, consider the functional

Fp f q “

ż 1

´1
|x| f pxqdx ` 2 f

´

´
1
2

¯

´ f
´1

4

¯

.

Find the norm }F}.

4) Consider

pA f qpxq “

ż b

a
Kpx, tq f ptqdt,

a) Kpx, tq P Cra,bs2, A : L1ra,bs Ñ L1ra,bs. Find the norm }A}.

b) Kpx, tq P Cra,bs2, A : L1ra,bs Ñ Cra,bs. Find the norm }A}.

c) Kpx, tq P L2ra,bs2, A : L2ra,bs Ñ L2ra,bs. Find the bound C for the norm: }A} ďC.
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5) Consider an operator

pA f qpxq “

ż x

0
f ptqdt

a) in Cr0,1s: find the norm }A}.

b) in L2r0,1s: find a sharp bound C, }A} ď C.
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Lecture 9. The Hahn–Banach Theorem and the

Corollaries

The Hahn–Banach Theorem

Theorem 9.1 (Hahn–Banach). Let X be a linear space over a field K (R or C), and
p : X Ñ r0,`8q be a seminorm. Let X0 be a nontrivial subspace, and f0 be a linear
functional on X0 such that

@x P X0 : | f0pxq| ď ppxq.

Then there exists a linear functional f on X such that

f
ˇ

ˇ

ˇ

X0
“ f0, @x P X : | f pxq| ď ppxq.

It is a general formulation of this theorem. For us, it will be convenient to use
a particular case, formulating the theorem for a normed space.

Theorem 9.2 (The Hahn–Banach Theorem for normed space). Let X be a normed space
over a field K (R or C), X0 be a nontrivial subspace, and f0 P X˚

0 . Then there exists a linear
functional f P X˚ such that

f
ˇ

ˇ

ˇ

X0
“ f0, } f } “ } f0}.

Remark 9.1. This theorem is an obvious corollary of the previous one, as one plugs
ppxq “ } f0} ¨ }x}.

Why do we need X0 to be nontrivial? A trivial subspace is either t0u or the entire X .
In the first case, f0 ” 0, so its extension is zero functional. In the second one, we already
have a functional on the entire space, so its extension is f ” f0.

For simplicity, we will prove the theorem for a separable space, while it is valid
otherwise as well.

Proof.

1) Suppose K “ R. There exists x1 R X0. Consider a subspace

X1 “ xX0,x1y “ tx “ x0 ` tx1, x0 P X0, t P Ru.

We are going to construct an extension of f0 to this subspace: f1 P X˚
1 such that

f1pxq “ f0px0q ` t f1px1q ” f0px0q ` t ¨ α,
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where f1px1q ” α P R. We need to verify that } f } “ } f0}; to obtain the same norm,
one must choose α appropriately. Let x1,x2 P X0. Consider

f0px1
q ` f0px2

q “ f0px1
` x2

q ď ppx1
` x2

q “ ppx1
´ x1 ` x2

` x1q,

and use the triangle inequality for p:

ppx1
´ x1 ` x2

` x1q ď ppx1
´ x1q ` ppx2

` x1q,

so we have
f0px1

q ` f0px2
q ď ppx1

´ x1q ` ppx2
` x1q.

Now we rearrange this inequality in such a way that x1 is on the left-hand side and
x2 is on the right-hand side:

f0px1
q ´ ppx1

´ x1q ď ´ f0px2
q ` ppx2

` x1q @x1,x2
P X0. (9.1)

Now, take the supremum on the left-hand side and the infimum om the right-hand
side:

A :“ sup
x1PX0

´

f0px1
q ´ ppx1

´ x1q

¯

, B :“ inf
x2PX0

´

´ f0px2
q ` ppx2

` x1q

¯

.

As (9.1) holds for any x1, x2, for A and B we have A ď B. Take A ď α ď B. We have
to verify that | f pxq| ď ppxq. Consider f1pxq “ f0px0q ` tα ; let t ą 0:

f0px0q ` tα ď f0px0q ` tB;

B is an infimum, so, taking the expression under the inf, we will increase the bound;
take a specific element: x2 “ x0{t. Then

f0px0q ` tB ď f0px0q ` t
´

´ f0

´x0

t

¯

` p
´x0

t
` x1

¯¯

;

f0 is a linear functional on X0, so one can take out 1{t, which cancels out f0px0q:

f0px0q ` t
´

´ t f0px0q ` p
´x0

t
` x1

¯¯

“ t p
´x0

t
` x1

¯

.

p is a seminorm, so one can take out a positive number; t is positive, therefore,

t p
´x0

t
` x1

¯

“ ppxq,

which means
f1pxq ď ppxq @x P X1;
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the same bound can be obtained by taking a minus inside the functional:

´ f1pxq “ f1p´xq ď pp´xq “ | ´ 1| ¨ ppxq ” ppxq ñ f1pxq ě ´ppxq,

and, finally,
| f1pxq| ď ppxq ô } f1} “ } f0}.

For negative t, the proof is similar with α being replaced by A.

By definition of separability, we have a countable dense subset txku8
k“1, txku8

k“1 “ X .
Thus, one can construct a chain of subspaces

X0 Ĺ X1 Ĺ X2 Ĺ ¨¨ ¨ Ĺ Xn Ĺ . . .

by extension with one element each. Without loss of generality, assume that

tx1,x2, . . . ,xnu Ă Xn.

Then, by definition of set operations,

X8 :“ Y
8
n“1Xn.

This set may not coincide with X , but, since txku8
k“1 is dense in X , we have

X8 “ X .

By induction, one can construct functionals

f2 P X˚
2 , f3 P X˚

3 , . . . , fn P X˚
n , . . .

such that @n: } fn} “ } f0}; on X8, define

f8pxq “ lim
nÑ8

fnpxq;

this functional is well-defined since @x P X Dn0: x P Xn0 , so f8pxq “ fn0pxq.

For further developments, we need the following auxiliary statement:

Statement 9.1. Let X , Y be normed spaces, and Y be a Banach space. Let X0 Ă X ,
X0 “ X , be a nontrivial subspace, and A0 P BpX0,Y q. Then

D!A P BpX ,Y q : }A0} “ }A}.
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Proof. The difference between extensions of operators and functionals is that to
define an extension of an operator, one must require that it is defined on a dense
subset.

Now, take x P XzX0; it is a limit point of X0, therefore,

Dxn P X0 : xn Ñ x.

Estimate the norm

›

›A0xn ´ A0xm
›

› ď }A0}}xn ´ xm} Ñ 0 as n,m Ñ 8,

i.e., the sequence A0xn is Cauchy along with xn; Y is a complete space, thus,

D lim
nÑ8

A0xn.

What can we say about this operator? A0 is linear, lim preserves linear operations,
so this expression depends linearly on x, and one can define

Ax :“ lim
nÑ8

A0xn.

It is clear that this construction is well-defined: the sequence xn Ñ x is not unique,
but if we take x1

n Ñ x, then, by combining the elements of the sequences like

x1, x1
1, x2, x1

2, . . . , xn, x1
n, . . . ,

we see that
A0x1, A0x1

1, A0x2, A0x1
2, . . . , A0xn, A0x1

n, . . . ,

is a Cauchy sequence, so the limit is unique. The norm is preserved due to the fact
that it is continuous, so

}Ax} “ }
nÑ8

A0xn} ď }
nÑ8

A0} ¨ }xn} “ }A0} ¨ }x},

and since A
ˇ

ˇ

X0
“ A0, the norm is the same.

Now, let us return to the proof of the Hahn–Banach theorem. We have f8 on X8,
X8 “ X , and } f8} “ } f0}. Using the auxiliary statement, we conclude that D! f P X˚

with } f } “ } f8} “ } f0}.

Thus, we completed the proof for real separable Hilbert spaces. What if it is
complex?
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2) Suppose K “ C. In this case, we proof is based on Linear Algebra. We have f0 P X˚
0 ,

with complex X0. Consider a realification of X0: XR
0 , i.e., the space where only

multiplication by real numbers is allowed. As for the functional, we decompose
it into

f0pxq “ Re f0pxq ` i Im f0pxq ” ϕ0pxq ` i Im f0pxq.

Thus, we have a real functional ϕ0pxq on a real subspace XR
0 , so one can construct

an extension ϕpxq by step 1 on the space XR:

ϕ

ˇ

ˇ

ˇ

XR
0

“ ϕ0 and |ϕ0pxq| ď | f0pxq| ď ppxq.

The imaginary part can be in fact recovered from the real one. Why? We would like
to construct a functional

f pxq “ ϕpxq ` i Im f pxq. (9.2)

Recall that in XR
0 , there are all the elements of X0, but we allow multiplication only

by real numbers; this means that ix belongs to XR
0 along with x, so, for

f pixq “ ϕpixq ` i Im f pixq,

by linearity, one can take the right-hand side of (9.2) with a factor i, that is,

i f pxq “ iϕpxq ´ Im f pxq,

therefore, Im f pxq “ ϕpixq, and the entire functional takes the form

f pxq “ ϕpxq ´ iϕpxq.

Now, for f , we must check the preserving of the bound. Let f pxq “ reiθ . Then
e´iθ f pxq “ f pe´iθ xq is real. Therefore, for non-real f pxq, the same bound as for
f pe´iθ xq is valid, where f pe´iθ xq “ r P R; for this, we obtain

| f pxq| “ |e´iθ f pxq| “ | f pe´iθ xq| “ |ϕpxq| ď ppxq,

which means that } f } “ } f0}.

Corollaries of the Hahn–Banach Theorem

Why is the Hahn–Banach theorem so important? In fact, for the space Lp with
0 ă p ă 1, which is a quasi-Banach space (but not a Banach space due to the lack of
subadditivity in its quasi-norm), the Hahn–Banach theorem does not apply in its usual
form. Here, only the zero functional exists as a continuous linear functional, since Lp, p ă 1,
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fails the norm structure required for the extension theorem, highlighting the theorem’s
necessity for Banach spaces.

The Hahn–Banach theorem is fundamental in Functional Analysis due to its important
corollaries as well. We will consider some of them.

Corollary 9.1. Let X , X ‰ t0u, be a normed space. Then

@x ‰ 0 D fx P X˚ : } fx} “ 1, fxpxq “ }x}.

Proof. Consider X0 “ xxy “ ty “ αx, α P Cu, and X0 Q f0 “ α}x}. It is obvious that
f0pxq “ }x}. The Hahn–Banach theorem allows one to construct an extension of a bounded
functional, so we have to check the boundedness of f0:

| f0pyq|

}y}
“

|α |}x}

|α |}x}
“ 1.

By the Hahn–Banach theorem, construct an extension fx of f0.

Corollary 9.2. Let X , X ‰ t0u, be a normed space. Then

@x,y P X , x ‰ y, ñ D f P X˚, } f } “ 1, f pxq ‰ f pyq.

This means that weak topology on the normed space is Hausdorff.
Proof. Consider z “ x ´ y ‰ 0. By the previous corollary,

D fz P X˚, } fz} “ 1, fzpzq “ }z} ‰ 0.

By the linearity, 0 ‰ fzpzq “ fzpxq ´ fzpyq.
So we have enough functionals to distinguish the elements of X .
Before formulation of the next corollary, let us look what we have. We have X , a normed

space, and
X Ñ X˚

Ñ X˚˚.

In the case dimX ă 8, we know that there is a canonical isomorphism

X – X˚˚.

If dimX “ 8, we are only able to construct a canonical embedding X ãÑ X˚˚. This means
the following. Let x P X , f P X˚, and F P X˚˚. We can take x and associate to it a functional
Fx P X˚˚ such that

Fxp f q “ f pxq.

In the finite-dimensional case, it is a bijection; in the infinite-dimensional one, this is not
the case.
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Corollary 9.3. The canonical embedding X ãÑ X˚˚ is an isometry.

Proof. By the definition of the canonical embedding,

}Fx} “ sup
} f }“1

|Fxp f q| “ sup
} f }“1

| f pxq| ď sup
} f }“1

} f } ¨ }x} “ }x}.

We have an inequality only at a single step; at the other steps, there are equalities. Recall
that, by the first corollary, there exists fx, } fx} “ 1, such that fxpxq “ }x}. Therefore, due
to this property, this inequality is sharp, and equality can be achieved for fx.

Reflexive Spaces

Definition 9.1. A normed space X is called reflexive if the canonical embedding X ãÑ X˚˚

is bijection.

Note that it is sufficient to require that the embedding be a surjection. As we have
already learned, it is obviously is injection since it preserves the norm.

Example 9.1. Consider the following examples:

1) All finite-dimensional spaces are reflexive.

2) c˚
0 – ℓ1, ℓ˚

p – ℓq for 1 ď p ă 8, 1{p ` 1{q “ 1. In particular, ℓ˚
1 – ℓ8, so c˚˚

0 – ℓ8,
therefore, c0 is not reflexive.

3) If 1 ă p ă 8, then 1 ă q ă 8, and ℓp – ℓ˚˚
p since ℓp is dual to ℓq, and vice versa.

Corollary 9.4. Let X be reflexive. Then

@ f P X˚
Dx P X : }x} “ 1 and f pxq “ } f }.

Proof. The proof requires only corollary 9.1; it claims that

@ f P X˚, f ‰ 0 DF P X˚˚ : }F} “ 1 and Fp f q “ } f }.

By the definition of reflexive space, to F “ Fx P X˚˚, there corresponds x P X , which is in
fact the same: x “ Fx; therefore, Fp f q “ f pxq, which completes the proof.

Now, we have description for ℓp – ℓq, L˚
ppΩ,µq “ LqpΩ,µq, and c˚

0 – ℓ1. We have also
the space of continuous functions; it would be nice to describe the adjoint space to Cra,bs

as well.
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Adjoint Space to Cra,bs

First, we state the result, and then provide all the necessary constructions.

Theorem 9.3.
´

Cra,bs

¯˚

– BV 0ra,bs.

Let f be defined on ra,bs. Let T “ ttkun
k“1 be a partition of ra,bs:

a “ t0 ă t1 ă ¨¨ ¨ ă tn “ b.

By definition, a variation of f pxq on T is

VT f :“
n
ÿ

k“1

| f ptkq ´ f ptk´1q|.

A total variation is the supremum with respect to T :

V b
a f :“ supT VT f .

We say that f P BV ( f is a function of bounded variation) on ra,bs if V b
a f ă 8.

For instance, if function f is monotonic, than V b
a f “ | f pbq ´ f paq|; if f P C1ra,bs, one

can rewrite

VT f “

n
ÿ

k“1

| f ptkq ´ f ptk´1q| “

n
ÿ

k“1

| f ptkq ´ f ptk´1q|

tk ´ tk´1
ptk ´ tk´1q Ñ

ż b

a
| f 1

ptq|dt,

so f P C1ra,bs ñ f P BV ra,bs.
BV ra,bs is a normed and complete space; the norm can be given by

} f } “ V b
a f ` | f paq|.

What is BV0? It is an additional normalization of functions from BV , which we are to
point out:

BV0ra,bs :“ tg P BV ra,bs, gpaq “ 0 and @x P pa,bq : gpx ´ 0q “ gpxqu.

Now, we are ready to discuss Theorem 9.3. To any G P

´

Cra,bs

¯˚

, there corresponds
g P BV0ra,bs such that the action of G is a Riemann–Stieltjes integral of f of the form

Gp f q “

ż b

a
f ptqdg.

The Riemann–Stieltjes integral can be represented as
ż b

a
f ptqdg “

ÿ

k

f ptkq
`

gptkq ´ gptk´1q
˘

;

91



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS

IGOR SHEIPAK

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

a function of bounded variation can be represented as a difference of two increasing
functions; any increasing function continuous from the left generates a σ -additive measure.

To construct a functional G, it is sufficient to consider a regular BV , not BV0, but in that
case there is no isomorphism of the spaces. For example, take t˚ P pa,bq and Gp f q “ f pt˚q.
It is a linear functional. Then the function g P BV0ra,bs is

gpxq “

#

0, x P r0, t˚s,

1, x P pt˚,1s,

see Fig. 9.1, while one could include t˚ to the right interval with gpt˚q “ 1 and gpt˚ ´

0q “ 0, and both functions would be fine. To exclude these extra options and establish
an isomorphism, one should require the functions from BV0 to be continuous either from
the left or from the right.

Рис. 9.1. Graphs of gpxq.

It is also clear that
›

›G
›

›

pCra,bsq˚ “ V b
a g ”

›

›g
›

›

BV0ra,bs
.
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Lecture 10.
`

Cra,bs
˘˚. Norms of Functionals

Discussion of Self-Study Problems from the Previous Lecture

We begin with discussion of the homework from Lecture 8.

1) c˚ – ℓ1 ‘C such that

c˚
Q f Ø py,αq, y “ py1,y2, . . .q P ℓ1, α P C.

It is clear that ℓ1 ‘C – ℓ1, and one could redefine α to be y0, so

f pxq “

8
ÿ

k“1

xkyk ` x0α ”

8
ÿ

k“0

xkyk, } f } “ }y}ℓ1 ` |α | ” }tyku
8
k“0}ℓ1; (10.1)

in fact, c˚ distinguishes from c˚
0 by a one-dimensional space, so it is convenient to

write it with α as well.

Take x P c; then

D lim
nÑ8

xn “ a, and for e0 “ p1,1,1, . . .q : x ´ ae0 P c0.

For this element, Dy “ py1,y2, . . .q P ℓ1 ” c˚
0:

f px ´ ae0q “

8
ÿ

k“1

pxk ´ aqyk, } f } “ }y}ℓ1.

Expanding f px ´ ae0q by linearity, one can rewrite it as

f pxq ´ a f pe0q “

8
ÿ

k“1

xkyk ´ a
8
ÿ

k“1

yk,

so we obtain

f pxq “

8
ÿ

k“1

xkyk ` a
´

f pe0q ´

8
ÿ

k“1

yk

¯

;

comparing it with (10.1), we see that x0 :“ a. Note that the sum of yk here converges
since y P ℓ1. With α of the form

α “ f pe0q ´

8
ÿ

k“1

yk,

we obtain (10.1); one can easily see that } f } “ }y}ℓ1 ` |α |. First, we will provide
an upper bound:

| f pxq| “

ˇ

ˇ

ˇ

8
ÿ

k“1

xkyk ` x0α

ˇ

ˇ

ˇ
ď sup

kě1
|xk|

8
ÿ

k“1

|yk| ` |x0||α0| ď }x}c

´

}y}ℓ1 ` α

¯

.
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To demonstrate that this upper bound is, in fact, sharp, we will evaluate the
functional at the elements of the sequence

xn
“ psgny1, sgny2, . . . , sgnyn, sgnα, sgnα, sgnα, . . .q, }xn

} ď 1.

For f pxnq, we have

f pxn
q “

n
ÿ

k“1

|yk| ` sgnα ¨

8
ÿ

k“1

yk ` |α |,

where
n
ÿ

k“1

|yk| Ñ

8
ÿ

k“1

|yk|, sgnα ¨

8
ÿ

k“1

yk Ñ 0 as n Ñ 8,

where the second one holds since the left-hand side is a tail of a converging series.
Thus,

f pxn
q Ñ }y}ℓ1 ` α.

2) Find the norm of the functional

f pxq “

8
ÿ

k“1

xk

k4{3 P ℓ˚
3.

By the theorem on isometric isomorphism, ℓ˚
p – ℓq, 1{p ` 1{q “ 1, and since p “ 3,

q “ 3{2. The norm of f is

} f }ℓ˚
3

” } f }ℓ3{2
“

´

8
ÿ

k“1

´ 1
k4{3

¯3{2¯2{3
“

´

8
ÿ

k“1

1
k2

¯2{3
“

´

π2

6

¯2{3
.

3) Find the norm of the functional

Fp f q “

ż 1

´1
|x| f pxqdx ` 2 f

´

´
1
2

¯

´ f
´1

4

¯

P
`

Cr´1,1s
˘˚
.

It is more interesting to consider the functional with x instead of |x|:

Fp f q “

ż 1

´1
x f pxqdx ` 2 f

´

´
1
2

¯

´ f
´1

4

¯

P
`

Cr´1,1s
˘˚
.

The answer would be the same since at the first step, one takes the integrand under
the absolute value. Now, obtain an upper bound:

|Fp f q| ď

ż 1

´1
|x|| f pxq|dx ` 2

ˇ

ˇ

ˇ
f
´

´
1
2

¯
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
f
´1

4

¯
ˇ

ˇ

ˇ
ď } f }

´

ż 1

´1
|x|dx ` 3

¯

“ 4} f },

since in Cr´1,1s, the norm is the maximum, and, therefore, the value at any specific
point is bounded by the maximum from above.
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The next step is to analyze the formula of the functional in order to determine for
which element the equality in the upper bound can hold. It is convenient to take f0

such that } f0} “ 1. One can take

f0 “

$

’

’

’

’

’

&

’

’

’

’

’

%

sgnx, x P
“

´ 1,1
‰

, x R

!

´
1
2
,
1
4

)

,

1, x “ ´
1
2
,

´ 1, x “
1
4
,

see Fig. 10.1.

Рис. 10.1. Graphs of f0pxq.

This function is not continuous on r´1,1s. It is not a problem, since we can construct
a sequence of continuous functions fn that approximate the given discontinuous
function by connecting the discontinuities in small neighborhoods of the points of
discontinuity, for instance, like this:

fn “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

sgnx, x P
“

´ 1,1
‰

z

´´

´
1
2

´
1
n
,´

1
2

`
1
n

¯

Y

´

´
1
n
,
1
n

¯

Y

´1
4

´
1
n
,
1
4

´
1
n

¯¯

´ 2n
ˇ

ˇ

ˇ
x `

1
2

ˇ

ˇ

ˇ
` 1, x P

´

´
1
2

´
1
n
,´

1
2

`
1
n

¯

,

nx, x P

´

´
1
n
,
1
n

¯

,

2n
ˇ

ˇ

ˇ
x ´

1
4

ˇ

ˇ

ˇ
´ 1, x P

´1
4

´
1
n
,
1
4

`
1
n

¯

,

see Fig. 10.2. It is clear that Fp fnq Ñ 4, since fn Ñ f as n Ñ 8.
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Рис. 10.2. Graphs of f0pxq.

4) Consider

pA f qpxq “

ż b

a
Kpx, tq f ptqdt,

a) Kpx, tq P Cra,bs2, A : L1ra,bs Ñ L1ra,bs. Find the norm }A}.

b) Kpx, tq P Cra,bs2, A : L1ra,bs Ñ Cra,bs. Find the norm }A}.

c) Kpx, tq P L2ra,bs2, A : L2ra,bs Ñ L2ra,bs. Find the bound C for the norm: }A} ďC.

Now, begin with the item a).

a) First, as usual, we obtain an upper bound:

}A f } “

ż b

a

ˇ

ˇ

ż b

a
Kpx, tq f ptqdt

ˇ

ˇdx ď

ż b

a

ż b

a
|Kpx, tq| ¨ | f ptq|dt dx.

The functions f ptq, Kpx, tq are integrable. To continue the estimation, we use
Fubini’s theorem

ż b

a

ż b

a
|Kpx, tq| ¨ | f ptq|dt dx ď

ż b

a
| f ptq|

ˇ

ˇ

ˇ

ż b

a
Kpx, tqdx

ˇ

ˇ

ˇ
dt ď

ď max
tPra,bs

´

ż b

a
|Kpx, tq|dx

¯

¨

ż b

a
| f ptq|dt “ max

tPra,bs

´

ż b

a
|Kpx, tq|dx

¯

} f }L1,

where the first factor is a candidate for being the norm of A:

}A}L1ÑL1 ď max
tPra,bs

´

ż b

a
|Kpx, tq|dx

¯

.
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Is this bound sharp? Is there a function for which the equalilty can be achieved?

Kpx, tq is a continuous function, so, after the integration with respect to x, we
obtain a continuous function in variable t; therefore,

Dt0 P ra,bs : max
tPra,bs

´

ż b

a
|Kpx, tq|dx

¯

“

ż b

a
|Kpx, t0q|dx.

Suppose that t0 is an interior point of ra,bs to consider two-sided neighborhoods
of it (otherwise, neighborhoods are one-sided). We will integrate it with fnptq

of the form fnptq “ nχrt0´1{p2nq,t0`1{p2nqs, see Fig. 10.3.

Рис. 10.3. Graphs of f7pxq.

One can see that } fn} “ 1 in L1ra,bs (it is so-called delta-sequence since it tends
to the delta-function). Substitute it to }A fn}:

}A fn} “

ż b

a

ˇ

ˇ

ˇ

ż t0` 1
2n

t0´ 1
2n

nKpx, tqdt
ˇ

ˇ

ˇ
dx

It looks like one could use the mean value theorem for integrals:

}A fn} “

ż b

a
|Kpx, tnq|dx, tn P

”

t0 ´
1

2n
, t0 `

1
2n

ı

.

As n Ñ 8, tn Ñ t0, and
ż b

a
|Kpx, tnq|dx Ñ

ż b

a
|Kpx, t0q|dx,

so

}A} “

ż b

a
|Kpx, t0q|dx ” max

tPra,bs

´

ż b

a
|Kpx, tq|dx

¯

.
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b) In this item, we use the similar approach:

}A f } “ max
xPra,bs

ˇ

ˇ

ˇ

ż b

a
Kpx, tq f ptqdt

ˇ

ˇ

ˇ
ď max

xPra,bs

ż b

a
|Kpx, tq| ¨ | f ptq|dt ď

ď max
x,tPra,bs

|Kpx, tq|

ż b

a
| f ptq|dt ” max

x,tPra,bs
|Kpx, tq|} f }L1,

where the the first factor is a candidate for being the norm of }A}. Since
Kpx, tq P Cra,bs2,

Dpx0, t0q : |Kpx0, t0q| “ max
x,tPra,bs

|Kpx, tq|,

where we take the maximum with respect to x due to the fact that the image
space, Cra,bs, has such a norm, while the maximum in t can be achieved using
a delta-sequence, so example for which the upper bound gives the equality, is
the same as in the previous item. Therefore,

}A} “ max
x,tPra,bs

|Kpx, tq|.

c) In this item, the problem was stated as follows: find an upper bound for }A},
A : L2ra,bs Ñ L2ra,bs with Kpx, tq P L2ra,bs2, instead of the exact value. To
eliminate the square roots, we will work with the squared norm:

}A f }
2

“

ż b

a

ˇ

ˇ

ˇ

ż b

a
Kpx, tq f ptqdt

ˇ

ˇ

ˇ

2
dx ď

ż b

a

´

ż b

a
|Kpx, tq| ¨ | f ptq|dt

¯2
dx.

We have to transform this integral to take out the squared norm of f . Let us
use the Cauchy–Bunyakovsky–Schwarz inequality:

ż b

a

´

ż b

a
|Kpx, tq| ¨ | f ptq|dt

¯2
dx ď

ż b

a

´

ż b

a
|Kpx, tq|

2 dt ¨

ż b

a

ż b

a
| f ptq|

2 dt
¯

dx “

“}Kpx, tq}
2
L2ra,bs2} f }

2.

Thus,
}A} ď }K}L2ra,bs2 .

5) Consider

pA f qpxq “

ż x

0
f ptqdt

a) in Cr0,1s:

}A f } “ max
xPr0,1s

ˇ

ˇ

ˇ

ż x

0
f ptqdt

ˇ

ˇ

ˇ
ď max

xPr0,1s

ż x

0
| f ptq|dt ď } f }.

For the function f ” 1, A f “ x and max |A f | “ 1, therefore, }A} “ 1.
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b) in L2r0,1s. First, it is convenient to transform the operator to the integration
with fixed limits:

ż x

0
f ptqdt “

ż 1

0
Kpx, tq f ptqdt.

What can we say about the function Kpx, tq? In fact,

Kpx, tq “ χxět ”

#

1, 0 ď t ď x ď 1,

0, 0 ď x ă t ď 1,

and this is an example of so-called triangle kernels, see Fig. 10.4.

Рис. 10.4. Regions where Kpx, tq takes the values 0 and 1.

Using the results of 4c), we see that

}A} ď }K}L2ra,bs2 “
1

?
2
.

(Spoiler: In fact, the norm is less than this.)

Adjoint Space to C[a,b]

Theorem 10.1.
´

Cra,bs

¯˚

– BV0ra,bs “ tg P BV ra,bs, gpaq “ 0, @x P pa,bq : gpx ´ 0q “ gpxqu,

such that
´

Cra,bs

¯˚

Q G Ø g P BV0ra,bs : Gp f q “

ż b

a
f ptqdgptq, and }G} “ }g}BV0.
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Let us comment on a minor issue. Why does g need to be continuous from the left
only on the interval pa,bq , and why is it not required to be continuous at the endpoints?
At the point a, there is no left-sided neighborhood in ra,bs. For the point b, the answer
will appear later.

Note also that for the spaces ℓp, Lp, c0, and c, the theorems on the isometric
isomorphism of the adjoint space to some nice space make it more simple to find the
norm of the functional in practice. Unfortunately, this is not true for pCra,bsq˚; in this
space, it is easier to find the norm of the functional by definition.

Proof.

1) ð. Let g P BV0ra,bs. Construct

Gp f q “

ż b

a
f ptqdgptq

and try to estimate it:

|Gp f q| ď

ż b

a
| f ptq| |dgptq| ď } f }

ż b

a
|dgptq| “ } f }V b

a g,

since by definition of the Riemann–Stieltjes integral, it is the limit of the sum with
respect to all partitions of ra,bs:

ÿ

k

|gptkq ´ gptk´1q|,

therefore, }G} ď }g}. At this step, we will not try to obtain the equalilty of the
norms, since one can do it at the second step, where we are to construct a function
from BV0 starting from a functional. As for now, it is sufficient to understand that
to each function g from BV0, there corresponds a functional G P pCra,bsq˚.

2) Suppose that G P pCra,bsq˚. Let us use the Hahn–Banach theorem. Recall that
Cra,bs Ă L8ra,bs, with the same norm: in L8, we have a supremum-norm, which
coincides with the maximum for continuous functions. In L8,

} f }L8
“ inf

µpEq“0
sup

ra,bszE
| f pxq|.

Then, by the Hahn–Banach theorem, G can be extended to rG in the entire L8. We
can apply rG to discontinuous functions, for instance,

rG
´

χra,tq

¯

, where χra,tq “

#

1, x ă t,

0, x ě t.
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This is a function of t. We claim that this is the function we need:

rG
´

χra,tq

¯

“: gptq.

Further,
rG
´

χrt1,t2q

¯

“ rG
´

χra,t2q ´ χra,t1q

¯

“ gpt2q ´ gpt1q.

Let T “ ttkun
k“0, a “ t0 ă t1 ă ¨¨ ¨ ă tn´1 ă tn “ b be some partition of ra,bs. Construct

the function

fT pxq “

#

sgn
`

gptkq ´ gptk´1q
˘

χrtk´1,tkq, k ă n,

sgn
`

gpbq ´ gptn´1q
˘

, x P rtn´1,bs.

One can write this function in the following way:

fT pxq “

n
ÿ

k“1

sgn
`

gptkq ´ gptk´1q
˘

χrtk´1,tkq, } fT }L8
ď 1,

where for k “ n, the last interval (in the subscript of χ) is closed: rtn´1,bs. The
functional rG is linear, so

rGp fT q “

n
ÿ

k“1

|gptkq ´ gptk´1q|,

and } rG} ě | rGp fT q| “ VT g (@T ). Taking the supremum over all partitions, we obtain

} rG} ě V b
a g,

where, by the Hahn–Banach theorem, }G} “ } rG}, so we obtain the inverse inequality
for the norms.

It is clear that gpaq “ 0.

We must also show that the action of G is integration with dg. Consider the integral
ż b

a
fT dg “

n
ÿ

k“1

ż tk

tk´1

sgn
`

gptkq ´ gptk´1q
˘

dg “

n
ÿ

k“1

sgn
`

gptkq ´ gptk´1q
˘

ż tk

tk´1

dg,

where
ż tk

tk´1

dg “ gptkq ´ gptk´1q,

so
ż b

a
fT dg “ VT g.

Thus, one can see that

rGp fT q “

ż b

a
fT dg,
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since we obtain the same result on the left- and right-hand sides. Since both sides
are linear in their arguments fT , one can evaluate the functional at the linear
combination of the functions of this kind

rG
´

ÿ

k

ck fTk

¯

“
ÿ

k

ck rGp fTkq “
ÿ

ck

ż

fTk dg “

ż

´

ÿ

k

ck fTk

¯

dg

for some number of partitions Tk. One can see that any continuous function can be
approximated in terms of step functions with any given accuracy, for instance,

x «
rxns

n
,

see Fig. 10.5.

Рис. 10.5. Approximation of f pxq “ x with rxns

n , n “ 30.

For any f P Cra,bs, define fn :“ f prxns{nq. It is obvious that fn Ñ f (pointwise).
Then,

rGp fnq “

ż

fn dg,

where the left-hand side converges to Gp f q and the right-hand side converges to
ş

f dg.

Consider an example from the homework:

Fp f q “

ż 1

´1
|x| f pxqdx ` 2 f

´

´1
2

¯

´ f
´1

4

¯

. (10.2)
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If we are to find the norm of the functional F , then we can rewrite it as

Fp f q “

ż 1

´1
f pxqdg

and then find the total variation of g. Recall that

α f pt0q “

ż

f dg

with g as depicted in Fig. 10.6.

Рис. 10.6. Graphs of gpxq.

Further, rewrrite (10.2) as

Fp f q “

ż 0

´1
´x f pxqdx `

ż 1

0
x f pxqdx ` 2 f

´

´1
2

¯

´ f
´1

4

¯

.

The function g that corresponds to F is as in Fig. 10.6.
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Рис. 10.7. Graphs of gpxq.

Computing the total variation of this function is not very convenient, so it is easier to
find the norm of F by definition.

Self-Study Problems

1) Let X be a normed space and X0 Ă X be a nontrivial closed subspace. Let x R X0,
and

distpx,X0q :“ inf
x0PX0

}x ´ x0} “ d ą 0.

Show that
D f P X˚, } f } “ 1 : f pxq “ d, f

ˇ

ˇ

ˇ

X0
“ 0.

2) Let X be a Banach space. Prove that if X˚ is separable, then X is separable as well.

3) f pxq “ xα sin 1
x . For which α does f belong to BV r0,1s?

4) Consider

M “

!

f P Cr0,1s :
ż 1

0
f pxqdx “ 0

)

.

Find distp1,Mq.

5) Let X be a normed space, X0 “ Ker f , f P X˚. Prove that distpx,Ker f q “
| f pxq|

} f }
.
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Lecture 11. To be recorded
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Lecture 12. Reproducing Kernels and Weak

Convergence: Exercises

Discussion of Self-Study Problems from the Previous Lecture

We begin with discussion of the homework from Lecture 10.

1) Let X be a normed space and X0 Ă X be a nontrivial closed subspace. Let x R X0,
and

distpx,X0q :“ inf
x0PX0

}x ´ x0} “ d ą 0.

Show that
D f P X˚, } f } “ 1 : f pxq “ d, f

ˇ

ˇ

ˇ

X0
“ 0.

f pxq “ d is a hint for constructing a functional. We will construct an extension of
this functional to the space X1 “ xx,X0y “ ty “ x0 ` αx, x0 P X0, α P Cu such that

f1pyq “ f1px0 ` αxq “ f1px0q ` α f1pxq “ αd,

as f1px0q ” f px0q “ 0. For the norm of that functional, if α ‰ 0, we have

} f1}X˚
1

“ sup
y‰0

| f pyq|

}y}
“ sup

x0‰0

|α |d
}x0 ` αx}

“ sup
x0‰0

d
}

x0
α

` x}
“

d
inf

x0‰0
}

x0
α

` x}
“

d
d

“ 1.

Then, f is an extension of f1 obtained by the Hahn–Banach theorem.

2) Let X be a Banach space. Prove that if X˚ is separable, then X is separable as well.
By the definition of a separable space,

Dt fku
8
k“1 : t fku8

k“1 “ X˚.

Then one can claim that

@k P N : Dxk P X , }xk} “ 1, | fkpxkq| ě
} fk}

2
.

(Since the norm is the supremum over the unit sphere, there exists elements that
gives at least half the norm.)

Consider

X0 “

!

x “

N
ÿ

k“1

ckxk, n P N, ck P Q for R, or αk ` iβk, αk,βk P Q for C
)

.
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It is a countable set. Let us show that X0 “ X by contradiction.

Let X0 ‰ X ; then it is a closed nontrivial subspace. By the previous problem,

D f P X˚, } f } “ 1 : f
ˇ

ˇ

ˇ

X0
“ 0.

Since t fku8
k“1 “ X˚, there exists a subsequence t fknu8

n“1 such that

fkn Ñ f .

Further,

} f ´ fkn} ě |p f ´ fknqpxknq} “ | fknpxknq| ě
} fkn}

2
Ñ

1
2
,

and, since the norm is a continuous function,

fkn Ñ f ñ } fkn} Ñ } f }.

We showed that the distance between f and fkn tends to 1{2 and fkn Ñ f , which is
incompatible. Therefore, X0 “ X .

3) f pxq “ xα sin 1
x . For which α does f belong to BV r0,1s?

The idea is simple if one depicts these functions. For α ą 1, there is a pair of
parabolas that bound the function from above and below, see Fig. 12.1.

Рис. 12.1. f pxq (green) is bounded by a pair of parabolas (red).
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If α ă 0, the function is not bounded, and, therefore, have an infinite total variation.
If α P p0,1s, then there are two parabolas that bound the function and have reverse
convexity, see Fig. 12.2.

Рис. 12.2. f pxq (green) is bounded by a pair of parabolas (red).

In this case, the oscillation is larger, and the total variation is infinite. We will show
it now.

Take
x1

n “
1

π

2 ` 2πn
, x2

n “
1

´π

2 ` 2πn
, n “ 1,2, . . . ,

and calculate the variation for these points (it is less than the total variation).
Denote the partition in these points by T ; then

VT f “

8
ÿ

n“1

1
`

π

2 ` 2πn
˘α `

1
p´π

2 ` 2πnqα
“ 8.

For the case α ą 1, unfortunately, these points do not represent the maximums and
minimums of f . Let us find them. Solve f 1pxq “ 0:

αxα´1 sin
´1

x

¯

´ xα´2 cos
´1

x

¯

“ 0 ô tan
´1

x

¯

“
1

αx
.

Substituting t “ 1{x, we arrive at tan t “ t{α . In Fig. 12.3, one can see that tn — π

2 `πn

for large n, and, therefore, for xn, we have a similar series (although in this case, it
is a series of asymptotic values).
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Рис. 12.3. Graphs of tan t (blue) and t{α (orange).

For these values, the series converges, so the function has finite variation.

4) In Cr0,1s, consider

X0 “

!

f P Cr0,1s :
ż 1

0
f ptqdt “ 0

)

.

Find distp f0,X0q, f0pxq ” 1.

The next problem provides a way to an solve this one. Take a functional

Fp f q “

ż 1

0
f ptqdt, F P pCr0,1sq

˚.

Then X0 “ Ker f , so

distp f0,X0q “
|Fp f0q|

}F}
“ 1.

Let us show it:
ˇ

ˇ

ˇ

ż 1

0
f ptqdt

ˇ

ˇ

ˇ
ď

ż 1

0
| f ptq|dt ď } f }.

For f0pxq ” 1, Fp f q “ 1. Therefore, our previous calculation is confirmed, and the
answer is 1. In the derivations, we used the results of the next problem, so now we
must solve it as well.

5) Let X be a normed space, X0 “ Ker f , f P X˚. Prove that distpx,Ker f q “
| f pxq|

} f }
.

Consider x˚ R X0; then

distpx˚,X0q “
f px˚q|

} f }
.

Now, write out two inequalities. First, | f px˚q| “ | f px˚ ´ x0q| @x0 P X0. Then

| f px˚
´ x0q| ď } f } ¨ }x˚

´ x0} ô }x˚
´ x0} ě

| f px˚q

} f }
.
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Now we must obtain the inverse inequality. Take ε ą 0; Dz:

| f pzq| ě
} f }

1 ` ε
.

From this, we construct another element: Dw such that f pwq “ 1:

w “
z

f pzq
, }w} ď

1 ` ε

} f }
.

Consider y “ x ´ w f pxq, and evaluate the functional f at this element:

f pyq “ f px ´ w f pxqq “ f pxq ´ f pwq f pxq “ f pxq ´ f pxq “ 0 ñ y P X0.

Now find the distance between y and x:

}y ´ x} “ }w} ¨ | f pxq| ď 1 ` ε
| f pxq|

} f }
.

Taking the infimum with respect to y, we obtain

distpx,X0q ď }y ´ x} “ }w} ¨ | f pxq| ď p1 ` εq
| f pxq|

} f }
.

In the limit as ε Ñ 0, we obtain the inverse inequality, so

distpx,X0q “
| f pxq|

} f }
.

Exercises on Reproducing Kernels and Weak Convergence

1) In W 1
2 r´1,1s “ t f P ACr´1,1s, f 1 P L2r´1,1su, consider the functional

Fp f q “ f paq, a P r´1,1s.

Find

a) ga: Fp f q “ p f ,gaqW 1
2
,

b) Reproducing kernel Kpa,bq “ pga,gbq,

c) }F}.

For simplicity, consider the problem for the Sobolev space over K “ R, since here
one can omit the annoying conjugation that does not affect the core idea of the
solution, although complicates the calculations.

Consider

Fp f q “ p f ,gaq ” p f ,gq “

ż 1

´1
f pxqgpxqdx `

ż 1

´1
f 1

pxqg1
pxqdx
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(we will omit the index a keeping it in mind). Let us assume that g has the second
derivative. The whole idea of evaluation the function at some point through the
integration is based on th integration by parts. So, we decompose the second integral
into two

ż 1

´1
f 1

pxqg1
pxqdx “

ż a

´1
f 1

pxqg1
pxqdx `

ż 1

a
f 1

pxqg1
pxqdx

and integrate by parts, assigning the derivatives to g instead of f :

´ f g1
ˇ

ˇ

ˇ

a

´1
´

ż a

´1
f pxqg2

pxqdx ` f g1
ˇ

ˇ

ˇ

1

a
´

ż 1

a
f pxqg2

pxqdx “

“ f paqg1
paqpa ´ 0q ´ f p´1qg1

p´1q ` f p1qg1
p1q ´ f paqg1

pa ` 0q´

´

ż a

´1
f pxqg2

pxqdx ´

ż 1

a
f pxqg2

pxqdx.

Here, we write the left and right limits for g1pa ˘ 0q, since no one guaranties that
this function is continuous: g1 P L2, so there may be points of discontinuity. On the
interval p´1,aq, one must take the left limit, while on pa,1q we take the right one.

From all this calculation, we should obtain just f paq. What is the condition for
the function g? The integral part must disappear; at the points ˘1, it must have
vanishing derivative, for the nonintegral terms to disappear as well. Thus,

gpxq ´ g2
pxq “ 0 for x P r´1,as and ra,1s,

and also
g1

p1q “ 0, g1
p´1q “ 0, g1

pa ` 0q ´ g1
pa ´ 0q “ 1.

For this differential equation, exponential functions are often taken as a basis. It is
more convenient to take the hyperbolic sine and cosine in this case (for the boundary
conditions that we have here). The hyperbolic sine vanishes at 0; so one could take
the hyperbolic cosine with the shifted argument:

´Acoshpx ` 1q, Bcoshpx ´ 1q.

For these functions, the boundary condition at ˘1 are automatically met. Additional
condition, for the function g to belong to W 1

2 r´1,1s (and, therefore, to ACr´1,1s),
is gpa ´ 0q “ gpa ` 0q. Thus,

´Acoshpa ` 1q “ Bcoshpa ´ 1q ” Bcoshp1 ´ aq, ´1 ď a ď 1.

For instance, we can take

B “
Acoshpa ` 1q

coshp1 ´ aq
.
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Now, plug it into the condition for the jump of the derivative:

Asinhpa ` 1q ´ Bsinhpa ´ 1q “ 1 ô Asinhpa ` 1q ´
Acoshpa ` 1q

coshp1 ´ aq
sinhpa ´ 1q “ 1,

or, equivalently,

Apsinhpa ` 1qcoshp1 ´ aq ` coshpa ` 1qsinhp1 ´ aqq

coshp1 ´ aq
“ 1,

therefore, after applying the formulas of sum for hyperbolic functions, we obtain

A “
coshp1 ´ aq

sinh2
, and B “

coshpa ` 1q

sinh2
.

Finally, we have the complete data:

gpxq “

$

’

&

’

%

coshp1 ´ aqcoshpx ` 1q

sinh2
, x P r´1,aq,

coshpa ` 1qcoshpx ´ 1q

sinh2
, x P ra,1s.

To write down the reproducing kernel, take ga and gb (recall that we have omitted
the index a in g “ ga that denotes the point at which we take the value of f ), and
then

Kpa,bq “ pgb,gaq.

We know that, by Riesz representation theorem,

}F} “ }ga} “
a

pga,gaq “
a

gapaq “

c

coshpa ` 1qcoshpa ´ 1q

sinh2
.

Now, put here a “ 0. Then

}g0} “

d

cosh2 1
sinh2

“

d

cosh2 1
2sinh1cosh1

“
?

coth12.

2) Consider in Cr0,1s the set of functions fnptq “ tn. What can we say about the
convergence?

Consider the functional

Ft0p f q “ f pt0q ”

ż 1

0
f ptqdg

for the step function with a step of height 1 at t “ t0. Let us evaluate it at the
sequence fn:

Ft0p fnq “ tn
0 Ñ 0 “

#

0, t0 P r0,1q,

1, t “ 1.

For weak convergence, we should have Ftp f q as the right-hand side, if fn á f . But the
function on the right-hand side is discontinuous, so fn ­á f , and, therefore, fn Û f .
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3) Consider the same set of functions, but now in pLpr0,1sq˚ – Lqr0,1s for 1 ď p ă 8.

a) First, suppose that 1 ă p ă 8. Then, working with fn as with functions
from Lqr0,1s, we get

} fn}Lq “

´

ż 1

0
tnq dt

¯1{q
“

´ 1
nq ` 1

¯1{q
Ñ 0 as n Ñ 8.

Thus, we have weak and ˚-weak convergence.

b) Now suppose that p “ 1. In this case, } fn}L8
“ 1 since the supremum is 1. It

is not obvious if fn converges to any function from L8r0,1s. Let us begin with
the weakest convergence – ˚-weak convergence. It means that

fn P pL1q
˚.

How to evaluate this at some function? Like that:

fnpgq “

ż 1

0
tngptqdt. (12.1)

The integrand tngptq converges to zero: tngptq Ñ 0 (almost everywhere). Further,
provide an upper bound

|tngptq| ď |gptq| P L1.

By Lebesgue’s dominated convergence theorem, for fn Ñ f a.e. with a bound
Dg P L1: | fn| ď g, f P L1 and

lim
nÑ8

ż

fn dµ “

ż

lim
nÑ8

fn dµ ”

ż

f dµ.

Therefore, we have weak convergence to zero: fn
˚

á 0. Note that fn Ñ
Ω

f means

that DA, µpAq “ 0 such that @x P ΩzA: fnpxq Ñ f pxq. Taking the limit inside the
integral in (12.1), we obtain

fnpgq “

ż 1

0
lim

nÑ8
fngptqdt Ñ 0.

Thus, we have ˚-weak convergence to the zero functional: fn
˚

Ñ 0.

To study the weak convergence, one must take the functionals from the second
dual space F P L˚˚

1 “ L˚
8, and this problem is nontrivial since the structure of

this space is quite complicated. Although, to prove that the weak convergence
is violated, one can take a single functional.

All fnptq “ tn are continuous. Note that we are considering fn as an element
of L8. So, it is convenient to take the functional of evaluating at a point, that
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is, Ft0p fnq “ fnpt0q in Cr0,1s, and construct its extension to the entire L8 using
the Hahn–Banach theorem:

Ft0p fnq ÝÑ rFt0p fnq “ tn
0 Ñ

#

0, t0 P r0,1q,

1, t0 “ 1,

and the limit is not equal to rFp0q.

Self-Study Exercises

1) Consider the space
˝

W
1

2r0,1s “ t f P W 1
2 r0,1s : f p0q “ f p1q “ 0u (the Sobolev space

with Dirichlet boundary conditions). Due to the boundary conditions, it is possible
to prove that

p f ,gq “ ˝

W
1

2

ż 1

0
f 1

pxqg1
pxqdx.

For a P p0,1q, consider Fap f q “ f paq.

a) Find g “ ga such that f paq “ p f ,gaq.

b) Find the norm }Fa}.

2) In the Bergman space

AL2pDq “

!

f P Ap|z| ă 1q :
ĳ

x2`y2ă1

| f pzq|
2 dxdy ă 8, z “ x ` iy

)

,

dot product is given by

p f ,gq “

ĳ

|z|ă1

f pzqgpzqdxdy.

a) Check that tzku8
k“0 is an ONS. Note that the power series for AL2-functions

uniformly converge on any compact set:

f pzq “

8
ÿ

k“0

akzk.

From the uniform convergence, one can derive the convergence in the integral
sense, so it is the way to see that this space is complete.

b) Consider the functional Fz0p f q “ f pz0q. Find the norm }Fz0}. Note that near the
boundary, the behavior of an analytic function may be quite bad, and one can
see it through this functional.
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c) Try to find the reproducing kernel.

3) Consider fnptq “ sinpπntq in Cr0,1s. Study the convergence with respect to norm
and weak convergence.

4) Consider fnptq “ sinpπntq in pLpr0,1sq˚. Study the convergence with respect to norm
and weak convergence.

5) Consider Ar, Aℓ, and Aα in ℓ2. Find the adjoint operators.

6) Consider

pA f qpxq “

ż b

a
Kpx, tq f ptqdt

in L2ra,bs. Find the adjoint operator.

7) Consider

pA f qpxq “

ż x

0
f ptqdt

in L2r0,1s. Find the adjoint operator.
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Lecture 13. Adjoint, Self-Adjoint, and Normal

Operators. Hellinger–Toeplitz Theorem

Banach Adjoint Operators

Linear Algebra usually deals with Hilbert adjoint operators, which we are to discuss
a little later. Now we begin with the definition of the Banach adjoint operator.

Definition 13.1. Let X , Y be Banach spaces, and A P BpX ,Y q. An adjoint operator
A1 : Y ˚ Ñ X˚ is an operator such that

@ f P Y ˚
@x P X pA1 f qpxq :“ f pxq.

Remark 13.1. Banach adjoint satisfies the following properties:

1) A1 P LpY ˚,X˚q.

2) A1 P BpY ˚,X˚q. Moreover, norm of the operator coincides with the norm of its adjoint.
We will prove that.

Statement 13.1. }A1} “ }A}.

Proof. By definition:
}A1

} “ sup
} f }“1

}A1 f };

pA1 f q is a functional, so we use the norm of the adjoint space:

sup
} f }“1

}A1 f } “ sup
} f }“1

sup
}x}“1

|pA1 f qpxq|,

which can be rewritten as

sup
} f }“1

sup
}x}“1

|pA1 f qpxq| “ sup
} f }“1

sup
}x}“1

| f pAxq|

by definition of A1. Then, one can write the upper bound:

sup
} f }“1

sup
}x}“1

| f pAxq| ď sup
} f }“1

sup
}x}“1

} f } ¨ }Ax} “ }A}. (13.1)

There is only one place where we have an inequality. To prove the equality, we will use
the first corollary of the Hahn–Banach theorem:

@x ‰ 0 D f P X˚ : } f } “ 1, f pxq “ }x}.
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For A ‰ 0 (note that A “ 0 is trivial to consider), there exists x such that Ax ‰ 0. For this
x, there exists a functional f P Y ˚ with unit norm such that f pAxq “ }Ax}. Then, for this
functional, we obtain an equality in (13.1), so }A1} “ }A}.

Consider an example of finding the adjoint operator. Typical examples of Banach
adjoint operators arise in such spaces as ℓp, p ‰ 2, and Cra,bs.

Example 13.1. Consider

A : Cr0,2s Ñ Cr0,2s, pA f qpxq “

#

f pxq, x P r0,1s,

f p1q, x P p1,2s,

and see Fig. 13.1.

Рис. 13.1. f pxq (green) and pA f qpxq (red).

What is the adjoint operator? To answer this question, it is important to choose
an appropriate language for description of action of the adjoint operator. It acts in the
dual space, so we must construct an operator

A1 : pCr0,2sq
˚

Ñ pCr0,2sq
˚, pCr0,2sq

˚
Q G ÞÑ W P pCr0,2sq

˚.

By Riesz’s theorem, these spaces are isometrically isomorphic BV0r0,2s:

Gp f q “

ż 2

0
f ptqdg, pCr0,2sq

˚
Q G Ø g P BV0r0,2s,

W phq “

ż 2

0
hptqdw, pCr0,2sq

˚
Q W Ø w P BV0r0,2s.

Thus, we can describe the action of A1 on functions from BV0r0,2s. We start with A1G “ W :

pA1Gqp f q “ W p f q “

ż 2

0
f ptqdwptq,
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where, by the definition of the adjoint operator,

pA1Gqp f q “ GpA f q “

ż 2

0
pA f qptqdgptq “

ż 1

0
f ptqdgptq ` f p1q

ż 1

0
dgptq,

which gives

pA1Gqp f q “

ż 1

0
f ptqdgptq ` f p1q

`

gp2q ´ gp1 ` 0q
˘

.

Now we must obtain the image of g under A1. It is clear that wptq “ gptq for t P r0,1s, since
we have the integration from 0 to 1. Then, we have an evaluation at the point 1: f p1q; so,
the second term can be represented in terms of the step function with step gp2q ´ gp1 ` 0q.
Further, between t “ 1 and t “ 2, the function must be constant since there is no integration
term over this interval. Thus, we obtain

wptq “

#

gptq, t P r0,1s,

gp2q ´ gp1 ` 0q ` gp1q, t P p1,2s,

see Fig. 13.2.

Рис. 13.2. gptq (green) and wptq (red).

This is the complete description of A1.

Hilbert Adjoint Operators

Definition 13.2. Let H be a Hilbert space, A P BpHq. Define A˚ : H Ñ H by

pAx,yq “ px,A˚yq.
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A˚ is called an adjoint operator of the operator A.

Why does this equality define an operator? It is quite simple to explain in Linear
Algebra, where one can introduce a basis, write the operator A in the matrix form, then
write down this equality and see that it defines an operator A˚ with a matrix, which
is obtained from A by conjugate transpose. Unfortunately, this cannot be generalized to
infinite-dimensional spaces. For separable spaces, one can try to describe this construction
using infinite-dimensional matrices, though it cannot be applied to nonseparable spaces.

To prove that the adjoint operator is well-defined, one should use Riesz’s theorem. For
given A and fixed y, consider the left-hand side as a functional: f pxq “ pAx,yq. It is linear,
and

| f pxq| ď }Ax} ¨ }y} ď }A} ¨ }x} ¨ }y},

therefore, f is bounded. Thus, due to Riesz’s theorem, there exists z P H such that
f pxq “ px,zq, so we see that

pAx,yq “ px,zq.

The dot product is sesquilinear with respect to the second argument, but y and z are both
second arguments, so z depends on y linearly; let us substitute a linear combination of y j

to the second argument:

pAx,αy1 ` βy2q “ αpAx,y1q ` β pAx,y2q “ αpx,z1q ` β px,z2q “ px,αz1 ` β z2q.

Therefore, this construction defines a linear operator, and we put, by definition, z :“ A˚y.

Lemma 13.1. Let A P BpHq, where H is a Hilbert space. Then

}A} “ sup
}x}“}y}“1

|pAx,yq|.

Proof.

1) In one direction, we simply write the upper bound

|pAx,yq| ď }Ax} ¨ }y} ď }A} ¨ }x} ¨ }y},

from which, taking the supremum over two unit spheres, we obtain

sup
}x}“}y}“1

|pAx,yq| ď }A}.

2) In the other direction, we can consider the supremum over a part of the unit
sphere }y} “ 1:

sup
}x}“}y}“1

|pAx,yq| ě sup
}x}“1,Ax‰0,y“Ax{}Ax}

´

Ax,
Ax

}Ax}

¯

“ sup
}x}“1,Ax‰0

}Ax} “ }A},
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where the last equality is indeed an equality since the vectors x such that Ax “ 0 do
not contribute to the supremum.

One can see that the order of arguments in the dot product have no influence on the
value of |pAx,yq|, therefore,

Theorem 13.1 (Corollary). }A} “ }A˚}.

Self-Adjoint Operators

Definition 13.3. An operator A is called self-adjoint if A “ A˚.

This notion is quite important, especially in Quantum Mechanics, where observables
are some self-adjoint operators, and the values of the observable are points of the spectrum
of the corresponding self-adjoint operator.

One can see that self-adjoint operators can be defined only in Hilbert spaces, since
the Banach adjoint acts in the dual space. There is also a minor difference between the
Banach and Hilbert adjoint operators. Let us multiply the original operator by a constant.
Then

pαAq
1
“ αA1, pαAq

˚
“ αA˚.

It is similar to substitution of variables for the tensor field, where the vector and functional
components change with respect to different laws.

Example 13.2. 1) In ℓ2, consider the operators Aℓ, Ar. It is clear that A˚
r “ Aℓ,

A˚
ℓ “ Ar. Moreover, for a bounded operator A,

A˚˚
“ A,

which is not exactly true in the case of unbounded A.

2) In ℓ2, consider Aαx “ pα1x1, . . . ,αnxn, . . .q, α P ℓ8. The adjoint operator is A˚
α “ Aα

since

pAαx,yq “

8
ÿ

k“1

αkxkyk “

8
ÿ

k“1

xkαkyk “ px,A˚yq.

One can see that Aα is self-adjoint iff the sequence α is real-valued.

Definition 13.4. Let U : H Ñ H. U is called a unitary operator if

1) U is bijection,

2) @x,y P H: pUx,Uyq “ px,yq.
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For example, Ar is not unitary since it is not a bijection. Although, in two-sided ℓ2,
that is ℓ2pZq, both Ar and Aℓ are unitary.

Jumping ahead, a bijective bounded operator has a bounded inverse. One can see that

pUx,Uyq “ px,U˚Uyq “ px,yq,

where the equality holds for any x and y. so U˚U “ I; therefore, U´1 “ U˚.
The inverse operator for Aα , αk ‰ 0 @k, is A1{α . Therefore, for Aα to be unitary, it is

necessary that αk “ 1{αk, which means |αk| “ 1: αk “ eiθk .
Now, let us move on to projections. Let X be a Banach space and X0 Ă X be a closed

subspace. Suppose that there exists X1 (note that it is not unique) such that X “ X0 ‘ X1

(note that X1 is closed as well). Then, any x P X can be decomposed into x “ x0 ` x1,
x j P X j.

Definition 13.5. P is a projection operator onto X0 along X1 if Px “ x0.

This is a geometric definition of the projection. One can also give an algebraic one in
the following way:

P2
“ P,

so the projection is an idempotent operator.
Let us provide an example where X1 is not unique. Consider X “ R2, X0 “ xp1,0qy.

Then one can see that X1 “ xp0,1qy and X 1
1 “ xp1,1qy are both closed, and, for both of

them, the sums are direct: X “ X0 ‘ X1 “ X0 ‘ X 1
1.

We can consider this construction in a Hilbert space as well. A Hilbert space has
an additional geometric structure, represented by orthogonality. So, it is possible to
consider orthogonal projections.

Theorem 13.2. Let H be a Hilbert space, and H “ H0 ‘ H1, where Hi are closed. Let P

be a projection onto X0 along X1. Then

H0 K H1 ô P “ P˚.

Proof. Note that P2 “ P since P is a projection. Note also that I ´ P is a projection
onto H1 along H0:

x “ x0 ` px ´ x0q “ Px ` pI ´ Pqx.

We will first prove the theorem in ð direction. Let Px “ x0 P H0, pI ´ Pqy “ y1 P H1. We
have to prove that px0,y1q “ 0. px0,y1q can be rewritten as pPx,pI ´ Pqyq, and then we use
that P is self-adjoint:

`

Px,pI ´ Pqy
˘

“
`

x,PpI ´ Pqy
˘

“
`

x,pP ´ P2
qy
˘

“ 0,
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since P ´ P2 “ 0. In ñ direction, the proof is also simple. We must verify that P can be
taken from the first argument to the second one in pPx,yq. By the definition of P,

pPx,yq “ px0,yq “ px0,y0 ` y1q

and, since px0,y1q “ 0, px1,y0q “ 0,

px0,y0 ` y1q “ px0,y0q “ px0 ` x1,y0q “ px,Pyq.

Normal Operators

Definition 13.6. Let H be a Hilbert space, A P BpHq. A is normal if A˚A “ AA˚.

Example 13.3. 1) A “ A˚ ñ A is normal.

2) U˚ “ U´1 ñ U is normal.

3) Aα in ℓ2 is normal:
A˚

αAα “ AαA˚
α “ A|α|2.

4) Ar, Aℓ are not normal:

A˚
r Ar “ AℓAr “ I, ArA˚

r “ ArAℓ “ PeK
1
,

where PeK
1

x “ p0,x2,x3, . . .q.

Properties of normal operators are quite close to ones for self-adjoint operators. There
is an analogy of some sort: a self-adjoint operator is similar to multiplication by a real-
valued function, while a normal operator is similar to multiplication by a complex-valued
one.

Theorem 13.3 (Properties of Normal Operators). 1) If A is normal, then @λ P C:
A ´ λ I is normal.

2) If A is normal, then @x P H: }Ax} “ }A˚x}.

Proof. Property 1 is obvious. Let us prove property 2:

}Ax}
2

“ pAx,Axq “ pA˚Ax,xq “ pAA˚x,xq “ pA˚x,A˚xq “ }A˚x}
2.
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Quadratic Form Associated to an Operator

Definition 13.7. Let A P BpHq, where H is a Hilbert space. The form pAx,xq is called
a quadratic form associated to an operator A.

For an arbitrary operator, this form is quite useless, though it has a lot of applications
in case the operator is self-adjoint. It is clear that for A “ A˚ the form pAx,xq is real-valued
@x P H since pAx,xq “ px,Axq “ pAx,xq.

Recall that the norm of an operator can be represented in the form of supremum of
|pAx,yq| over two unit spheres. For self-adjoint operators, one can find the norm via taking
supremum of the quadratic over a single sphere:

Theorem 13.4. Let A “ A˚ in a Hilbert space H. Then

}A} “ sup
}x}“1

|pAx,xq|.

Proof. Denote the right-hand side by C:

C :“ sup
}x}“1

|pAx,xq|.

1) For any bounded operator A,

|pAx,xq| ď }Ax} ¨ }x} ď }A} ¨ }x}
2,

therefore, C ď }A}.

2) For A “ A˚, consider two quadratic forms, with x ˘ y:
´

Apx ` yq,x ` y
¯

´

´

Apx ´ yq,x ´ y
¯

“ pAx,xq`pAx,yq ` pAy,xq ` pAy,yq´

´pAx,xq`pAx,yq ` pAy,xq ´ pAy,yq “

“ 2pAx,yq ` 2pAy,yq “ 4RepAx,yq,

thus,

RepAx,yq “
1
4

!´

Apx ` yq,x ` y
¯

´

´

Apx ´ yq,x ´ y
¯)

.

Let us try to estimate an absolute value of this expression:

|RepAx,yq| ď
1
4

!
ˇ

ˇ

ˇ

´

Apx ` yq,x ` y
¯
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

´

Apx ´ yq,x ´ y
¯
ˇ

ˇ

ˇ

)

.

It is clear that |pAx,xq| ď C}x}2, where C is the supremum of the left-hand side over
the unit sphere. Therefore,

|RepAx,yq| ď
C
4
`

}x ` y}
2

` }x ´ y}
2˘,
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and, due to the parallelogram law for the dot product, this implies

|RepAx,yq| ď
C
2
`

}x}
2

` }y}
2˘. (13.2)

Now we must choose y in an appropriate way. First, its norm must be equal to the
norm of x, for the right-hand side to be equal to C}x}2. Second, we want pAx,yq to
be real. Taking

y “
Ax

}Ax}
}x},

we see that }y} “ }x}, and inequality (13.2) becomes

}Ax}}x} ď C}x}
2,

therefore, }Ax} ď C}x}. Taking the supremum over the unit sphere, we obtain

}A} ” sup
}x}“1

}Ax} ď C.

Boundedness and Weak Boundedness of Sets in Normed Spaces

Consider the so-called uniform boundedness principle, which will be necessary in
further developments.

Theorem 13.5 (Banach–Steinhaus). Let X be a Banach space and Y be a normed space.
Let tAαuαPΛ be a family of bounded operators, Aα P BpX ,Y q, and @x P X : }Aαx} ď cpxq with
cpxq independent of α. Then

sup
αPΛ

}Aα} ă 8.

Although the proof of this theorem is not very difficult, we will omit it.
A bounded set M Ă X , where X is a normed space, can be defined as follows:

DC ą 0 : @x P M }x} ď C.

A set M is called a weakly bounded set, if

@ f P X˚ : @x P M : | f pxq| ď Cp f q.

Note that the bound on the right-hand side depends only on f and is independent of x P M.
A surprising fact is that there is no difference between these two concepts:

1) It is obvious that a bounded set is weakly bounded:

| f pxq| ď } f } ¨ }x} ď C ¨ } f } ” rCp f q.
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2) In the opposite direction,

Statement 13.2. A weakly bounded set is bounded.

Proof. Consider a family of functionals Fx : X˚ Ñ C, x P M, Fx P X˚˚. The action of
these functionals is defined by the canonical embedding:

@ f P X˚ : Fxp f q “ f pxq.

By Corollary 3 of the Hahn–Banach theorem,

}Fx} “ }x},

therefore, @x P M Fx is bounded. By weak boundedness of M, one can write

|Fxp f q| ” | f pxq| ď Cp f q,

where the right-hand side is independent of x. By the Banach–Steinhaus theorem,
we conclude

sup
xPM

}Fx} ă 8,

where the left-hand side is equal to }x}, so M is bounded.

Hellinger–Toeplitz Theorem

Consider typical operators from Quantum Mechanics, more precisely, the position and
momentum operators. An interesting fact is that these operators are unbounded in L2.
In further lectures, we will see that symmetric unbounded operators must have some
domain (a subset of the entire Hilbert space where it is well-defined). For now, consider
the position operator

A : L2pRq Ñ L2pRq, pA f qpxq “ x f pxq.

For f P L2pRq, the function x f pxq may not belong to L2pRq, so one must define domain of
the operator A:

DpAq “ t f P L2pRq : x f P L2pRqu.

Now, it is time to formulate the following theorem:

Theorem 13.6 (Hellinger–Toeplitz). Let H be a Hilbert space, A P LpHq, and @x,y P H:

pAx,yq “ px,Ayq.

Then A is bounded.
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Note that in example above, A is symmetric since x is a real-valued function:

pA f ,gq “

ż

R
x f pxqgpxqdx “

ż

R
f pxqxgpxqdx “ p f ,Agq.

This operator is also unbounded. Therefore, due to the Hellinger–Toeplitz theorem, it
cannot be defined on the entire space L2pRq, so it has some domain.

Proof (of the Hellinger–Toeplitz Theorem) by contradiction. Let A be unbounded.
Then

Dxn : }xn} “ 1, }Axn} ě n.

Consider functionals
fnpxq “ pAx,xnq.

One can see that | fnpxq| “ |px,Axnq| ď }x} ¨ }Axn}, therefore, fn is bounded: } fn} ď }Axn}

(while the bound depends on n). Using the symmetry of A, we can obtain another bound:

| fnpxq| “ |pAx,xnq| ď }Ax} ¨ }xn} “ }Ax}

with a bound independent of n. Then, by the Banach–Steinhaus theorem, this family is
uniformly bounded:

sup
n

} fn} ă 8.

At the same time,

fn

´ Axn

}Axn}

¯

“

´ Axn

}Axn}
,Axn

¯

“ }Axn} ě n.

Therefore, the family is not bounded, which gives us a contradiction.
In further, when we will proceed to studying unbounded operators with more depth,

we will consider the operator
A f “ ´i f 1,

f P L2r0,1s. This operator is unbounded since, being applied to sinπnx, }sinnx} “
?

2, it
gives }Asinπnx} “ πn

?
2. What is the domain of this operator? The most natural one is

the Sobolev space:
DpAq “

␣

f P W 1
2 r0,1s, f p0q “ f p1q “ 0

(

.

Consider the following dot product:

pA f ,gq “

ż 1

0
´i f 1

pxqgpxqdx “ ´i f pxqgpxq

ˇ

ˇ

ˇ

1

0
`

ż 1

0
i f pxqg1pxqdx “ p f ,Agq.

In fact, this operator is not self-adjoint since the condition f p0q “ f p1q “ 0 is very
restrictive, and the domain of the self-adjoint operator must be broader.
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Lecture 14. Adjoint Operators: Exercises

Discussion of Self-Study Problems from the Previous Lecture

We will begin with discussion of the self-study problems from Lecture 12.

1) Consider the space
˝

W 1
2 r0,1s “ t f P W 1

2 r0,1s : f p0q “ f p1q “ 0u (the Sobolev space
with Dirichlet boundary conditions). Consider a functional Fap f q “ f paq, a P p0,1q.
By Riesz’s theorem, f paq “ p f ,gaq. The aim is to find the function ga, to find the
norm of Fa, and to find the reproducing kernel.

Note that

p f ,gaq “

ż 1

0
f 1

pxqg1
apxqdx.

The idea is to use the integration by parts. The catch is that, in this case, the
existence of higher derivatives of the function ga is required. Nevertheless, it is the
only simple way to find ga, so we will try it anyway. First, decompose the integral
into the sum of two, and then integrate by parts, taking the boundary conditions
into account:

ż 1

0
f 1

pxqg1
apxqdx “

ż a

0
f 1

pxqg1
apxqdx `

ż 1

a
f 1

pxqg1
apxqdx “

“ f paqg1
apa ´ 0q´

ż a

0
f pxqg2

apxqdx ´ f paqg1
pa ` 0q ´

ż 1

a
f pxqg2

apxqdx.

Thus, we must impose the following conditions for ga:

g2
apxq “

#

0, x P r0,aq,

0, x P pa,1s,
g1

apa ´ 0q ´ g1
apa ` 0q “ 1, gapa ´ 0q “ gapa ` 0q.

where the conditions for the second derivative are considered independently on given
intervals (ga is expected to be piecewise linear). Let us substitute ga of the form

gapxq “

#

Ax, x P r0,aq,

Bp1 ´ xq, x P pa,1s.

This function automatically satisfies the boundary conditions. The conditions for ga

and g1
a allows one to find A and B. Substituting the continuity condition, we get

Aa “ Bp1 ´ aq ñ B “
Aa

1 ´ a
.

The condition for the first derivative, with g1
apa ´ 0q “ A and g1

apa ` 0q “ ´B, gives

A ` B “ 1, ô A `
Aa

1 ´ a
“ 1,
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so A “ 1 ´ a, B “ a. Whence, we finally obtain

gapxq “

#

xp1 ´ aq, x P r0,aq,

ap1 ´ xq, x P ra,1s,

where the value x “ a is included into the second interval (note that ga is continuous,
so, in fact, it does not matter where to include it).

By Riesz’s theorem, }Fa} “ }ga}. So,

}Fa} “ }ga} ”
a

pga,gaq “
a

gapaq “
a

ap1 ´ aq.

The greatest possible value of this norm is 1{2.

By definition,
Kpa,bq “ pgb,gaq “ gbpaq.

For convenience, we write out the formula for gb:

gbpxq “

#

xp1 ´ bq, x P r0,bq,

bp1 ´ xq, x P rb,1s,

and, using this, write Kpa,bq:

Kpa,bq “

#

ap1 ´ bq, a ă b,

bp1 ´ aq,a ą b.

This is exactly the reproducing kernel of this space. With this kernel, one can
consider another Hilbert space, where dot product has the kernel function as weight.

2) In the Bergman space

AL2pDq “

!

f P Ap|z| ă 1q :
ĳ

x2`y2ă1

| f pzq|
2 dxdy ă 8, z “ x ` iy

)

,

dot product is given by

p f ,gq “

ĳ

|z|ă1

f pzqgpzqdxdy.

It is a Hilbert space.

a) Consider tzku8
k“0.

pzk,zn
q “

ĳ

x2`y2ă1

zkzn dxdy z“reiϕ
“

ż 1

0

ż 2π

0
rk`n`1eipk´nqϕ dr dϕ.
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The integral of eipk´nqϕ with respect to ϕ over the period is equal to 0 for k ‰ n.
Thus,

pzk,zn
q “

$

&

%

0, k ‰ n,
π

n ` 1
,k “ n,

where, for k “ n, we have the squared norm of zn, so

en “

c

n ` 1
π

zn

is an orthonormal basis: it is a closed system with pei,e jq “ δi j, and Taylor
series for any analytic function converges uniformly to this function on any
compact subset of the given domain.

b) Consider the expansion

f pzq “

8
ÿ

k“0

akzk.

Multiplying and dividing each term by the norm of zk, we obtain the Fourier
series with respect to the system teku8

k“1:

f pzq “

8
ÿ

k“0

ak

c

π

k ` 1
ek,

and then, write out the Fourier series for g:

gpzq “

8
ÿ

k“0

bkek.

Consider the point evaluation functional:

Fp f q “ f pz0q.

By Riesz’s theorem,

Fp f q “ f pz0q “ p f ,gq “

8
ÿ

k“0

ak

c

π

k ` 1
bk;

one can see that, due to the convergence of series for f ,

8
ÿ

k“0

ak

c

π

k ` 1
bk “

8
ÿ

k“0

akzk
0.

From this, we can obtain that

bk “

c

k ` 1
π

zk
0.
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By Parseval’s identity,
}F}

2
“ }g}

2,

so

}F} “

g

f

f

e

1
π

8
ÿ

k“0

pk ` 1q|z0|2k.

We will calculate the sum using the substitution |z0|2 “ t ă 1 (note that the
series converges uniformly in the unit ball):

8
ÿ

k“0

pk ` 1q|z0|
2k

“

´

8
ÿ

k“0

tk`1
¯1

“

´ t
1 ´ t

¯1

“
1

p1 ´ tq2 .

Therefore,

}F} “
1

?
πp1 ´ |z0|2q

.

One can see that as we are approaching the boundary, the norm of F tends
to infinity. This is exactly why, in complex analysis, it is often necessary for
a function to be not only analytic within a circle but also continuous all the
way to the boundary.

c) Let us try to find the reproducing kernel Kpz,wq “ pgw,gzq. Let

gw “

8
ÿ

k“0

ckek, gz “

8
ÿ

k“0

bkek.

Then

Kpz,wq “ pgw,gzq “

8
ÿ

k“0

ckbk “

8
ÿ

k“0

k ` 1
π

pzwq
k,

since

bk “

c

k ` 1
π

zk, ck “

c

k ` 1
π

wk.

Further,
8
ÿ

k“0

k ` 1
π

pzwq
k

“
1
π

8
ÿ

k“0

pk ` 1qpzwq
k.

Then, using the same trick with zw “ t, t ă 1, we obtain

Kpz,wq “
1
π

´

8
ÿ

k“0

tk`1
¯1

“
1

πp1 ´ zwq
.
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Exercises on Adjoint Operators

Let us find the adjoint operator for a multiplication operator:

Exercise 14.1. Aϕ : L2ra,bs Ñ L2ra,bs, where ϕ P L8ra,bs is a certain function, and
pAϕ f qpxq “ ϕpxq f pxq.

1) Find A˚
ϕ .

2) When is it a self-adjoint operator?

3) When is it unitary?

1) To find A˚
ϕ , we will use the definition:

pAϕ f ,gq “

ż b

a
ϕpxq f pxqgpxqdx “

ż b

a
f pxqϕpxqgpxqdx,

thus,
A˚

ϕg “ ϕpxqgpxq “ Aϕ .

2) It is clear that this operator is self-adjoint iff the function ϕ is real-valued almost
everywhere: (Aϕ “ A˚

ϕ ” Aϕ) ô (ϕ “ ϕ a.e.).

3) Similarly, Aϕ is unitary iff |ϕpxq| “ 1 a.e.

Note also that the multiplication operator is normal in L2 for any ϕ P L8.
Consider a slightly more difficult problem:

Exercise 14.2. Aϕ : Cr0,1s Ñ Cr0,1s, pAϕ f qpxq “ f p0q ¨ x `
şx

0 f ptqdt.
Find the Banach adjoint operator A1.

Recall that A1 : pCr0,1sq˚ Ñ pCr0,1sq˚. As before, we will describe the action of this
operator on the space BV0r0,1s instead of pCr0,1sq˚, since there is a one-to-one
correspondence between the functions from these spaces.

For convenience, decompose A into A1 ` A2, where

pA1 f qpxq “ f p0q ¨ x, pA2 f qpxq “

ż x

0
f ptqdt.

It is clear that pA ` Bq1 “ A1 ` B1, and similarly, for Hilbert adjoint operators, pA ` Bq˚ “

A˚ ` B˚. For the composition of operators, we have

pA1A2 . . .Anq
˚

“ A˚
nA˚

n´1 . . .A
˚
1.pA1A2 . . .Anq

˚
“ A˚

nA˚
n´1 . . .A

˚
1.pA1A2 . . .Anq

˚
“ A˚

nA˚
n´1 . . .A

˚
1.
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First, we will find A1
1:

A1
1 : G1 ÞÑ W1, pA1

1,G1qp f q “ W1p f q “

ż 1

0
f dw1.

By definition,

G1pA1 f q “

ż 1

0
f p0qt dg1

Comparing the right-hand sides of these equalities, we can guess the action of the operator.
Let us first equate the right-hand sides:

f p0q

ż 1

0
t dg1 “

ż 1

0
f dw1.

One can see that w1 is a step function, see Fig. 14.1.

Рис. 14.1. Graph of w1ptq.

The value of this jump is equal to f p0q.
Now let us find out how A2 acts. One can see that

pA1
2G2qp f q “ W2p f q “

ż 1

0
f ptqdw2,

and, on the other hand,

pA1
2G2qp f q “ G2pA2 f q “

ż 1

0

´

ż x

0
f ptqdt

¯

dg2.
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Comparing these two formulas, we can see what is the action of A2. Integrating the last
equality by parts, we get

ż 1

0

´

ż x

0
f ptqdt

¯

dg2 “

ż 1

0
f ptqdt ¨ g2pxq

ˇ

ˇ

ˇ

1

0
´

ż 1

0
f pxqg2pxqdx “

“

ż 1

0
f ptqdt ¨ g2p1q ´

ż 1

0
f pxqg2pxqdx,

where t can be replaced with x inside the integral:
ż 1

0
f ptqdt ”

ż 1

0
f pxqdx ñ

ż 1

0
f ptqdt ¨ g2p1q ´

ż 1

0
f pxqg2pxqdx ”

”

ż 1

0
f pxqdx ¨ g2p1q ´

ż 1

0
f pxqg2pxqdx,

so one can rewrite it as a single integral
ż 1

0
f pxqdx ¨ g2p1q ´

ż 1

0
f pxqg2pxqdx “

ż 1

0
f pxqd

´

g2p1qx ´

ż 1

0
gptqdt

¯

.

This implies that

w2pxq “ g2p1qx ´

ż x

0
g2ptqdt.

Thus, finally,

A1g “ w1 ` w2 “ gp1qx ´

ż x

0
gptqdt `

ż 1

0
t dg ¨ χp0,1s.

Self-Study Exercises

1) In L2r0,1s, consider

pA f qpxq “

ż x

0
Kpx, tq f ptqdt.

Find A˚. The answer must be written as pA˚gqpxq.

2) Apply the results of the previous problem to the following operator in L2r0,1s

pA f qpxq “

ż x

0
f ptqdt

to find A˚.

3) In Cr0,1s, consider

pA f qpxq “ x2 f p0q ` x
ż 1

0
f ptqdt ` f p1q.

Find A1.
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4) Let AB ´ BA “ I in a Banach space X . (Consider, e.g., A “ d{dx, B f “ x f , then
AB ´ BA “ I.) Prove that at least one of operators A, B is unbounded.

The results of this exercise demonstrate that Quantum Mechanics is a complicated
field of study, as it inevitably deals with unbounded operators. For example,
a relation of this kind, up to a constant factor, holds for the position and
momentum operators. This relation is known as the Heisenberg uncertainty
principle in Quantum Mechanics.
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Lecture 15. Compact Operators. Inverse Operator

Compact operators. Set of Compact Operators CpX ,Y q.

Properties of Compact Operators

Definition 15.1. Let X , Y be Banach spaces, and A P BpX ,Y q. A is called compact if,
for any bounded set M Ă X , the image AM “ tAx, x P Mu is precompact in Y .

Recall that in infinite-dimensional spaces, there exist bounded sets that are not
precompact; the unit ball is the standard example of such a set. Compact operators,
in contrast, have the remarkable property of “compressing” bounded sets, transforming
them in a way that resembles the behavior of sets in finite-dimensional spaces, even though
the setting remains infinite-dimensional.

Note that in finite-dimensional spaces, all operators are compact. This is one of the
examples below:

Example 15.1. 1) dimX , dimY ă 8; given some norm, all operators become compact.

2) If dimY ă 8 and A P BpX ,Y q, then A is compact.

Before considering the next example, recall the definitions of range and rank of
an operator:

RnA :“ ty P Y : Dx P X s.t.y “ Axu, rkA :“ dimRnA.

3) Let A P BpX ,Y q and rkA ă 8. Then A is compact.

The condition that A is bounded is necessary; there are examples of unbounded
operators of rank 1.

Sometimes, the definition of a compact operator given above is not convenient, since,
to establish that A is compact, one must show that it makes any bounded set compact.
To resolve this issue, the following theorem can be employed.

Theorem 15.1. Let X , Y be Banach spaces, A P BpX ,Y q. Then A is compact iff the set
ABX r0,1s, Bxr0,1s “ tx P X : }x} ď 1u, is precompact in Y .

Proof. In direction ñ, the proof is obvious: claims that A is compact, we see that
BX r0,1s is a particular compact set.

Thus, our aim is to prove the inverse. Let M be a bounded set in X . This means that

DR ą 0 : @x P M }x} ď R pM Ă BX r0,Rsq.
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As ABX r0,1s is precompact, due to the Hausdorff criterion, @ε ą 0 there exists a finite ε-net
y1,y2, . . . ,ym for ABX r0,1s. The idea of the proof is to construct an ε-net for the image of
an arbitrary bounded set M. This set lies inside the ball of radius R; then Ry1,Ry2, . . . ,Rym

is an εR-net for AM:

@x P M Di : }Ax ´ Ryi} “ R
›

›

›
A

x
R

´ yi

›

›

›
ă Rε,

since }x{R} ă 1.

Definition 15.2. CpX ,Y q is the space of all compact operators from X to Y .

Now let us discuss the properties of compact operators.

Theorem 15.2. Let X , Y be Banach spaces, and A, B P CpX ,Y q. Then

αA ` βB P CpX ,Y q.

This means that the space of compact operators is a linear supspace of the space of
bounded operators.

Proof. Let y1,y2, . . . ,ym be an ε-net for ABX r0,1s and z1,z2, . . . ,zn be an ε-net for
BBX r0,1s. The idea is to prove that tαyi ` β z ju

m,n
i, j“1 is a net for pαA ` βBqBX r0,1s.

@x P BX r0,1s,

}pαA ` βBqx ´ pαyi ` β z jq} ď |α |}Ax ´ yi} ` |β |}Bx ´ z j},

and Di: }Ax ´ yi} ă ε , D j: }Bx ´ z j} ă ε ; therefore,

|α |}Ax ´ yi} ` |β |}Bx ´ z j} ă p|α | ` |β |qε,

so tαyi ` β z ju
m,n
i, j“1 is an p|α | ` |β |qε-net for pαA ` βBqBX r0,1s.

Theorem 15.3. Let X , Y , Z, and W be Banach spaces, and A P CpX ,Y q, B P BpY,Zq,
C P BpW,Xq. Then

BA P CpX ,Zq, AC P CpW,Y q.

In other words, this means that the composition of a bounded and a compact operator
(in any order) is compact.

From the Algebra course, it is known that the space of bounded operators forms
an algebra. Naturally, the space of compact operators is a subalgebra of it, as established
in the previous theorem. Moreover, this theorem implies that the space of compact
operators forms a two-sided ideal within the algebra of bounded operators, provided that
the operators act in the same space.
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Proof. Consider the set ABX r0,1s; by the property of compact operators, it is
a precompact set in Y . Thus, @ε ą 0 there exists a finite ε-net y1,y2, . . . ,ym for ABX r0,1s.
Then, one can claim that By1,By2, . . . ,Bym is }B}ε-net for pBAqpBX r0,1sq. Why so? Let
}x} ď 1, x P X . Consider

}BAx ´ Byi}Z ď }B} ¨ }Ax ´ yi},

and there exists i P t1,2, . . . ,mu such that }Ax ´ yi} ă ε ; therefore,

}BAx ´ Byi}Z ă }B} ¨ ε.

The proof for AC is simpler. CBW r0,1s is a bounded set, since C is bounded. Then
ApCBW r0,1sq is a precompact set in Y .

Theorem 15.4. Let X , Y be Banach spaces, tAnu8
n“1, An P CpX ,Y q @n, and An Ñ A with

respect to norm. Then A P CpX ,Y q.

Proof. Take ε ą 0. We know that DN “ Npεq: @n ě N }An ´ A} ă ε . Now, take some
n ě N. Then AnBX r0,1s is precompact in Y , so there exists a finite ε-net y1,y2, . . . ,ym. Let
us find out where A maps the elements y1, . . . ,ym. Take x P X , }x} ď 1; then

}Ax ´ yi} “ }Ax ´ Anx ` Anx ´ yi} ď }Ax ´ Anx} ` }Anx ´ yi} ď }A ´ An} ¨ }x} ` }Anx ´ yi},

where }x} ď 1, so }A ´ An} ¨ }x} ď ε , and Di: }Anx ´ yi} ă ε , so

}Ax ´ yi} ď 2ε.

The following is a concise formulation of these theorems, provided the operators act
in a single space.

Theorem 15.5. CpXq is a closed two-sided ideal in BpXq.

Let us give an example of an ideal in the space of n ˆ n-matrices. Let

Mn Q A “

¨

˚

˚

˝

a11 . . . a1n
... . . . ...

an1 . . . ann

˛

‹

‹

‚

and B P Mn such that

B “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

b11 . . . b1n
...

...
...

bp j´1q,1
... bp j´1q,n

0 . . . 0

bp j`1q,1
... bp j`1q,n

...
...

...
bn1 . . . bnn,

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚
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i.e., b jk “ 0 (@k). One can see that the space of the matrices of that form is a left ideal:
in BA, the j-th row vanishes as well.

Now, recall what a bounded operator does to a weakly convergent sequence.

Remark 15.1. Let X , Y be Banach spaces, A P BpX ,Y q, and xn á x in X . Then Axn á Ax

in Y .
To demonstrate this, one can take an arbitrary f P Y ˚ and prove that f pAxnq Ñ f pAxq.

The left-hand side is

f pAxnq “ pA1 f qpxnq, where A1 f “ g P X˚, A1 : Y ˚
Ñ X˚.

Thus, since gpxnq Ñ gpxq, where g “ A1 f , we get pA1 f qpxq “ f pAxq on the right-hand side.

That is, a bounded operator preserves the weak convergence. In fact, a compact
operator makes the convergence stronger:

Theorem 15.6. Let X , Y be Banach spaces, A P CpX ,Y q, and xn á x in X . Then

Axn
}¨}
Ñ Ax.

Proof by contradiction. Let Axn ­Ñ Ax. Then

Dc ą 0 Dnk Ñ 8 : }Axn ´ Ax} ě c.

We know that xnk á x (and also Axnk á Ax, since A is bounded); therefore, txnku is weakly
bounded. Due to the Banach–Steinhaus theorem, the set txnku is bounded, thus, tAxnku is
precompact, that is,

Dnk j Ñ 8 : Axnk j
Ñ y P Y,

and, simultaneously,
Axnk j

á Ax.

Additionally, we have
Axnk j

á y,

since the convergence with respect to norm implies the weak convergence. If y ‰ Ax, then,
due to the corollary of the Hahn–Banach theorem,

D f P Y ˚ : f pyq ‰ f pAxq.

This gives us a contradiction, since

Axnk j
á y and Axnk j

á Ax.
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Therefore, y “ Ax. This is the final contradiction between the condition }Axnk ´ Ax} ě c

and Axnk j
Ñ Ax, since nk j is a subsequence of nk.

There are examples of bounded operators that turn weak convergence into norm
convergence, but are not compact; so this theorem is not a criterion for the compactness
of an operator. However, if the space if reflexive, this becomes a criterion.

Example: Integral Operators in Cra,bs and L2ra,bs

Why compact operators are important? They arise in many applications, including
Mathematical Physics, where they appear as inverse to differential operators.

Now, we consider the following integral operator

pA f qpxq “

ż b

a
Kpx,yq f pyqdy.

Theorem 15.7. If Kpx,yq P Cra,bs2, then A P CpCra,bsq.

Note that this is a sufficient condition, but not a criterion. However, it is quite close
to necessary condition: Kpx,yq must be continuous on ra,bs2 except for a finite number of
continuous curves that are graphs of continuous functions.

Proof. We have to prove that the image of the unit ball is a precompact set. Consider
ABCra,bsra,bs ” At f P Cra,bs : } f } ď 1u. Due to the Arzelà–Ascoli theorem, this set must
be bounded and uniformly equicontinuous.

First, we show that A is bounded:

max
ra,bs

|pA f qpxq| “ max
ra,bs

ˇ

ˇ

ˇ

ż b

a
Kpx, tq f ptqdt

ˇ

ˇ

ˇ
ď max

ra,bs

ż b

a

ˇ

ˇ

ˇ
Kpx, tq

ˇ

ˇ

ˇ
| f ptq|dt,

where | f ptq| ď } f } ď 1, so

max
ra,bs

ż b

a

ˇ

ˇ

ˇ
Kpx, tq

ˇ

ˇ

ˇ
| f ptq|dt ď max

ra,bs

ż b

a

ˇ

ˇ

ˇ
Kpx, tq

ˇ

ˇ

ˇ
dt,

therefore, the image of the ball is bounded as well.
Now, prove the equicontinuity. Take ε ą 0. Note that any continuous function on

a compact set is uniformly continuous, so is Kpx, tq on ra,bs2:

Dδ ą 0 @px1, t1q, px2, t2q P ra,bs
2, |x1 ´ x2| ` |t1 ´ t2| ă δ ñ |Kpx1, t1q ´ Kpx2, t2q| ă ε.

Let us consider |pA f qpx1q ´ pA f qpx2q| and try to estimate it, given |x1 ´ x2| ă δ :

|pA f qpx1q ´ pA f qpx2q| “

ˇ

ˇ

ˇ

ż b

a
Kpx1, tq f ptqdt´

ż b

a
Kpx2, tq f ptqdt

ˇ

ˇ

ˇ
ď

ď

ż b

a

ˇ

ˇ

ˇ
Kpx1, tq ´ Kpx2, tq

ˇ

ˇ

ˇ
| f ptq|dt,
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where |Kpx1, tq ´ Kpx2, tq| ă ε and | f ptq| ď } f }, so

|pA f qpx1q ´ pA f qpx2q| ă εpb ´ aq,

therefore, ABCra,bsra,bs forms an equicontinuous family. Thus, due to the Arzelà–Ascoli
theorem, ABCra,bsra,bs is precompact, so A is a compact operator.

Theorem 15.8. If Kpx,yq P L2ra,bs2, then A P CpL2ra,bsq.

This time, the sufficient condition is far from being the necessary one.
Proof. The idea is to construct operators An, An

}¨}
Ñ A, such that An P CpL2ra,bsq.

The construction is simple: let tϕiu
8
i“1 be an orthonormal basis in L2ra,bs, then

tψi jpx, tq :“ ϕipxqϕ jptqu
8
i, j“1

is an orthonormal basis in L2ra,bs2. The function Kpx, tq can be expanded into the Fourier
series

Kpx, tq “

8
ÿ

i, j“1

ci jψi jpx, tq.

Consider a partial sum

Knpx, tq “

n
ÿ

i, j“1

ci jψi jpxq,

and the corresponding operator An:

pAn f qpxq “

ż b

a
Knpx, tq f ptqdt.

One can see that each of An is of finite rank:

pAn f qpxq “

ż b

a

n
ÿ

i, j“1

ci jϕipxqϕ jptq f ptqdt “

n
ÿ

i, j“1

ϕiptq ¨

´

n
ÿ

i, j“1

ż b

a
ϕ jptq f ptqdt

¯

,

so the image consists of linear combinations of ϕi, therefore, rkAn ď n. Further,

}An} ď }Kn}L2ra,bs2 ñ An P CpL2ra,bsq.

Now, let us try to estimate }An ´ A}:

pAn ´ Aq f “

ż b

a

`

Knpx, tq ´ Kpx, tq
˘

f ptqdt,

so
}An ´ A} ď }Kn ´ K}L2ra,bs2 Ñ 0 as n Ñ 8,

therefore, A P CpL2ra,bsq.
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Inverse Operator

Let X , Y be linear spaces, A P LpX ,Y q.

Definition 15.3. An operatorA´1
ℓ : Y Ñ X such that A´1

ℓ A “ IX is called a left inverse of
an operator A. A´1

r : Y Ñ X such that AA´1
r “ IY is called a right inverse of an operator A.

Note that, e.g., a left inverse is not unique, and, moreover, it may be nonlinear; we
will provide some examples of nonlinear inverse operators a bit later.

One can see that if there exists a left inverse, then the operator A is injective (KerA “

t0u); if there exists a right inverse, then A is surjective (RnA “ Y ). Thus, if there are left
and right inverse, the operator is a bijection; moreover, left and right inverse coincide
(A´1

ℓ “ A´1
r ). Let us show it: consider A´1

ℓ AA´1
r . The compositions of operators are

associative, so, inserting brackets in different ways, we get

pA´1
ℓ AqA´1

r “ A´1
r , A´1

ℓ pAA´1
r q “ A´1

ℓ .

If DA´1
ℓ , A´1

r , then it is denoted as A´1and is unique.

Example 15.2. In ℓ2, consider

Aℓx “ px2,x3, . . .q.

One can see that the image of p1,0,0, . . .q vanishes, so Aℓ has a nontrivial kernel, and,
therefore, the operator is not injective. However, the image of Aℓ is the entire space (one
can reconstruct the preimage of any y P ℓ2 by shifting it to the right), so Aℓ is surjective.
The right inverse is Ar:

AℓAr “ I.

It is not a left inverse:
ArAℓ “ PeK

1
,

since the first coordinate in the image is always zero (so the composition is a projection
onto eK

1 ). Obviously, for the operator Ar, an operator Aℓ is a left inverse.
For Aℓ, there are other options of the right inverse operator. Consider, for instance,

the following one:
Bax “ pa,x1,x2, . . .q,

which is not even linear. Then AℓBa “ I for any a. We will show that a two-sided inverse
cannot be nonlinear.

Theorem 15.9. Let A PLpX ,Y q, where X , Y are linear spaces. If DA´1, then A´1 PLpY,Xq.
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Proof. Let us apply the inverse to a linear combination:

A´1
pαy1 ` βy2q “ A´1

pαAx1 ` βAx2q,

where y j “ Ax j, D!x j, since A is bijective. A is linear, so one can rewrite it as

A´1
pαAx1 ` βAx2q “ A´1Apαx1 ` βx2q,

and then, collapsing A´1A “ I, we get

A´1Apαx1 ` βx2q “ αx1 ` βx2 “ αA´1y1 ` βA´1y2,

so, by writing the beginning and the end of the chain of equalities, we obtain

A´1
pαy1 ` βy2q “ αA´1y1 ` βA´1y2,

which confirms the linearity of A´1.
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Lecture 16. Exercises on Compact and Inverse

Operators

Discussion of Self-Study Problems form the Previous Lecture

We begin with considering some of the self-study problems from Lecture 14.

3) In Cr0,1s, consider

pA f qpxq “ x2 f p0q ` x
ż 1

0
f ptqdt ` f p1q.

Find A1.

We know that A1 : pCr0,1sq˚ Ñ pCr0,1sq˚:

pCr0,1sq
˚

Q G ÞÑ W P pCr0,1sq
˚, A1G “ W.

For the functionals G, W from the dual space to Cr0,1s, there are functions g,w P

BV0r0,1s that are in one-to-one correspondence with G and W respectively. Thus, to
describe the action of A1, it is sufficient to construct a function w that corresponds
to a given function g.

By definition,

pA1Gqp f q “ W p f q “

ż 1

0
f ptqdw,

and, on the other hand, pA1Gqp f q “ GpA f q, so

pA1Gqp f q “

ż 1

0

´

x2 f p0q ` x
ż 1

0
f ptqdt ` f p1q

¯

dgpxq.

Let us first simplify it:
ż 1

0

´

x2 f p0q ` x
ż 1

0
f ptqdt ` f p1q

¯

dgpxq “

“ f p0q

ż 1

0
x2 dgpxq `

ż 1

0
f ptqdt ¨

ż 1

0
xdgpxq ` f p1q

ż 1

0
dgpxq.

The integral of x with respect to dgpxq is independent of t; thus, one can include it
as a constant factor to dt:

f p0q

ż 1

0
x2 dgpxq`

ż 1

0
f ptqdt ¨

ż 1

0
xdgpxq ` f p1q

ż 1

0
dgpxq “

“ f p0q

ż 1

0
x2 dgpxq`

ż 1

0
f ptqd

´

ż 1

0
xdgpxq ¨ t

¯

` f p1q
`

gp1q ´ gp0q
˘

,
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where gp0q “ 0.

Now, we must establish the behavior of wptq. It is equal to 0 at t “ 0; further, as
we have f p0q in the expression, it must have a step at t “ 0 ` 0 of height

ş1
0 x2 dgpxq.

Next, the function wptq is linear until t “ 1 ´ 0. As we have the evaluation of f ptq at
t “ 1 in the expression, there is a jump of height gp1q. See Figure 16.1.

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Рис. 16.1. Graph of wptq.

Here is a complete description of wptq:

wptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0, t “ 0,
ż 1

0
x2 dg ` t

ż 1

0
xdg, t P p0,1q,

ż 1

0
x2 dg ` t

ż 1

0
xdg ` gp1q, t “ 1.

4) Let AB ´ BA “ I in a Banach space X . (Consider, e.g., A “ d{dx, B f “ x f , then
AB ´ BA “ I.) Prove that at least one of operators A, B is unbounded.

First, consider ABn ´ Bn “ nBn´1. For n “ 1, it is the given relation AB ´ BA “ I. Let
us try to derive the formula for n “ 2:

AB2
´ B2A “ AB ¨ B ´ B ¨ BA “ pI ` BAqB ´ B ¨ BA “ B ` BpAB ´ BAq “ 2B.
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Now, we will prove it by induction. Suppose the equality holds for k “ n:

ABn
“ nBn´1

` BnA.

Consider it for k “ n ` 1:

ABn`1
´ Bn`1A “ ABnB ´ Bn`1A “

“pnBn´1
` BnAqB ´ Bn`1A “ nBn

` Bn
pAB ´ BAq “ pn ` 1qBn,

which completes the proof.

Due to this relation,

}nBn´1
} “ }ABn

´ BnA} ď }AB} ¨ }Bn´1
} ` }Bn´1

} ¨ }BA},

and, dividing by }Bn´1}, we obtain

n ď }AB} ` }BA} ď 2}A} ¨ }B}

for any n P N, so at least one of these operators is unbounded.

Exercises on Compact Operators

1) In ℓ2, consider a multiplication operator

Aαx “ pα1x1,α2x2, . . .q, α P ℓ8.

We claim that
Aα P Cpℓ2q ô α P c0 (i.e. lim

kÑ8
αk “ 0).

To solve exercises on compact operators, one should remember the criteria for
precompactness in different spaces. In ℓ2, the criterion is the following: M Ă ℓ2 is
precompact iff

a) M is bounded,

b) @ε ą 0 Dn @x P M:
´

8
ÿ

k“n`1

|xk|
2
¯1{2

ă ε.

The second condition means that the tails are uniformly small, or, in other words,
the set is “almost finite-dimensional”.

ñ. For the operator to be compact, we must require that the image of the unit ball
is compact. Consider the basis elements

ek “ p0, . . . ,0,
k
1,0, . . .q P Bℓ2r0,1s.

145



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS

IGOR SHEIPAK

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

Their images tAeku8
k“1 must form a precompact set. One can see that

Aek “ p0, . . . ,0,αk,0, . . .q.

There must exist n P N such that for k ě n ` 1: |αk| ă ε , so αk Ñ 0.

ð. Let αk Ñ 0. We must check that the image of ABℓ2r0,1s under the action of
corresponding operator is precompact.

Take x P ℓ2 with }x} ď 1. Then

}Ax} “

´

8
ÿ

k“1

|αkxk|

¯1{2
ď sup

kě1
|αk|

´

8
ÿ

k“1

|xk|

¯1{2
,

and, since α P ℓ8, ABℓ2r0,1s is bounded.

Now, let us verify that the tails of the elements of the image are uniformly small.
Consider a partial sum

´

8
ÿ

k“n`1

|αkxk|

¯1{2
.

Since α P c0,
@ε ą 0 Dn : @k ě n ` 1 |αk| ă ε.

Then
´

8
ÿ

k“n`1

|αkxk|

¯1{2
ă ε

´

8
ÿ

k“n`1

|xk|

¯1{2
ă ε,

since }x} ď 1.

2) Consider

pA f qpxq “

ż x

0
f ptqdt

a) in Cr0,1s,

b) in L2r0,1s (later).

The operator can be written as

pA f qpxq “

ż x

0
f ptqdt “

ż 1

0
Kpx, tq f ptqdt,

where

Kpx, tq “

#

1, t ă x,

0, t ą x
P L2r0,1s

2.
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We will prove that A P CpL2r0,1sq using a theorem from the previous lecture. For
Cr0,1s, we cannot use the corresponding theorem, since Kpx, tq is discontinuous.
However, one can show it in a straightforward way.

Let f P Cr0,1s, } f } ď 1:

}A f } “ max
xPr0,1s

ˇ

ˇ

ˇ

ż x

0
f ptqdt

ˇ

ˇ

ˇ
ď max

xPr0,1s

ż x

0
| f ptq|dt ď

ż 1

0
} f }dt “ 1,

so the image of the unit ball is bounded. Now, we will check the equicontinuity:

ˇ

ˇpA f qpxq ´ pA f qpyq
ˇ

ˇ “

ˇ

ˇ

ˇ

ż x

y
f ptqdt

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ż x

y
| f ptq|dt

ˇ

ˇ

ˇ
ď |y ´ x|,

since | f ptq| ď } f }. So, for |y ´ x| ă ε , it is sufficient to take δ “ ε .

3) Consider Aℓ, Ar in ℓ2. Are these operators compact?

These operators are not compact. Let us prove it. Take the standard basis teku8
k“1.

Then Arteku8
k“1 “ teku8

k“2, and }ek ´ em} “
?

2, k ‰ m; therefore, there is no Cauchy
subsequence. For Aℓ, the situation is similar: Arteku8

k“1 “ teku8
k“1. Recall that these

operators are adjoint to each other. In the next section, we will consider the relation
between the notions of compactness and adjointness.

Relation Between Notions of Compact and Adjoint Operators

Theorem 16.1 (without a proof). Let X , Y be Banach Spaces. Then

A P CpX ,Y q ô A1
P CpY ˚,X˚

q.

The idea of the proof is to use the Arzelà–Ascoli theorem.
The following theorem on Hilbert adjoint operators is not as difficult to prove as the

previous one:

Theorem 16.2. Let A P BpHq, where H is a Hilbert space.
If A˚A is compact, then A is compact.
If AA˚ is compact, then A˚ is compact.

Proof. Since the statements of the theorem are symmetric, we will prove only the first
one. We must show that ABHr0,1s is precompact.

Take a sequence tyku8
k“1 in ABHr0,1s. By the definition of ABHr0,1s,

@k Dxk, }xk} ď 1 : yk “ Axk.
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Consider the set tA˚Axku8
k“1. It is precompact, since A˚A is a compact operator, therefore,

there exists a Cauchy subsequence tA˚Axknu8
n“1. Now, let us use these indices for the image

of A:
}ykn ´ ykm}

2
“
`

Apxkn ´ xkmq,Apxkn ´ xkmq
˘

“
`

A˚Apxkn ´ xkmq,xkn ´ xkm

˘

ď

ď }A˚Apxkn ´ xkmq} ¨ }xkn ´ xkm},

where }xkn ´xkm} ď 2 and }A˚Apxkn ´xkmq} Ñ 0 as kn,km Ñ 8. Thus, we have found a Cauchy
subsequence, so the operator is compact.

Corollary 16.1. A P CpHq ô A˚ P CpHq.

Proof. The composition of a bounded operator and a compact operator is compact.
Suppose that A is compact. Then AA˚ is compact, and, due to the theorem, A˚ is compact.
If A˚ is compact, then we take a compact A˚A, so A is compact.

Let us continue solving the exercises.

3) Let X be a Banach space, dimX “ 8, and A be a compact operator Then there is
no bounded A´1.

We will prove it by contradiction. Let there exists A´1 P BpXq; then AA´1 “ I. Since
A is compact and A´1 is bounded, AA´1 is a compact operator; but the identity
operator in an infinite-dimensional space is not compact since the unit ball is not
a precompact space.

4) Let ϕ P Cra,bs be some certain function. Consider

pAϕ f qpxq “ ϕpxq f pxq.

Then
Aϕ P CpCra,bsq ô ϕpxq ” 0.

This is the simplest example of a compact operator. The proof in ð is obvious. Let
us prove the inverse by contradiction using the Arzelà–Ascoli theorem.

Let Dx0: ϕpx0q ‰ 0; without loss of generality, suppose ϕpx0q ą 0. Then Dδ ą 0, c ą 0:
ϕpxq ą c for x P px0,x0 ` δ q or x P px0 ´ δ ,x0q. Let x0 ‰ b, and take 1{n ă δ . Consider
a sequence fn, } fn} “ 1, see Fig. 16.2.

148



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS

IGOR SHEIPAK

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

Рис. 16.2. Graph of fnpxq.

tA fnu8
n“1 is precompact, therefore, it is equicontinuous; let us estimate

ˇ

ˇ

ˇ

´

A fn

¯´

x0 `
1
n

¯

´

´

A fn

¯

px0q

ˇ

ˇ

ˇ
ě c,

since
´

A fn

¯

px0q “ 0 and
´

A fn

¯´

x0 ` 1
n

¯

ą c, which contradicts to the equicontinuity.

Note that in L2ra,bs we will prove the same (more precisely, that multiplication
operator is compact iff the corresponding function vanishes almost everywhere) later
using the properties of spectrum.

Exercises on Inverse Operators

1) In Cr0,1s, consider

pA f qpxq “

ż x

0
f ptqdt.

Is there a right or a left inverse?

Consider the operator B, B f “ f 1. It is obvious that BA “ I, so A´1
ℓ “ B.

Is there a right inverse? If there exists a right inverse C, AC “ I, then A must be
surjective. One can see that

RnA “ tg P C1
r0,1s, gp0q “ 0u,

so the operator is not surjective, since RnA ‰ Cr0,1s.
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2) Let X be a Banach space. Prove that if C : X Ñ X , }C} ă 1, then DpI ˘Cq´1.

If we imagine that C is just a number, not an operator, then

1
1 ´C

“

8
ÿ

k“0

Ck.

We claim that
pI ´Cq

´1
“ I `C `C2

`C3
` . . . .

First, we have to explain why this sum converges. Consider, for n ą m,

Sn “

n
ÿ

k“0

Ck, }Sn ´ Sm} “

›

›

›

n
ÿ

k“m`1

Ck
›

›

›
ď

n
ÿ

k“m`1

}Ck
} ď

}C}m`1

1 ´ }C}
.

As m Ñ 8, it decreases to 0; therefore, Sn is a Cauchy sequence. Thus, since BpX ,Y q

is a Banach space when Y is Banach, there exists a limit element

S “ lim
nÑ8

Sn.

Let us expand the expression for Sn in pI ´CqSn:

pI ´CqSn “ I `C`C2
`¨¨ ¨`Cn

´C´C2
´¨¨ ¨´Cn

´Cn`1
“ I ´Cn`1

Ñ I as n Ñ 8,

Similarly, pI `Cq´1 “ I ´C `C2 ´ ¨¨ ¨ ` p´1qnCn ` . . . .

Self-Study Exercises

1) In L2r0,1s, consider the Hardy operator

pA f qpxq “
1
x

ż x

0
f ptqdt.

a) Prove that A is bounded.

b) Prove that A is not compact.

Hint: item a) can be solved by definition. To solve item b), one can use the property
of compact operator from Lecture 15: a compact operator maps a weakly converging
sequence to a sequence converging with respect to norm. So, the aim is to find
an appropriate weakly converging sequence. Note that the operator seems to be bad
at x “ 0.

2) In some space, construct an operator A such that A2 “ 0 and A is not compact.
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3) Consider A in ℓ2 defined as an infinite matrix A „ pai jq
8
i, j“1, pAxqi “

ř8
j“1 ai jx j. Prove

that
8
ÿ

i“1

8
ÿ

j“1

|ai j|
2

ă 8 ñ A P Cpℓ2q.

4) Consider the differential operator A f “ f 1 in Cr0,1s with domain DpAq “ C1r0,1s.
Prove that there exists a right inverse, but it is not unique.

5) Consider

pA f qpxq “ f pxq ´

ż x

0
f ptqdt

a) in Cr0,1s.

b) in L2r0,1s.

Find the inverse operator. The answer must not involve infinite sums.
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Lecture 17. Spectrum of a Bounded Operator.

Classification of Points in the Spectrum

Banach Bounded Inverse Theorem

Let us continue to discuss inverse operators and property of invertibility. We begin
with the Banach Bounded Inverse theorem:

Theorem 17.1 (Banach Bounded Inverse Theorem, without a proof). Let X , Y be Banach
spaces, A P BpX ,Y q. Then

DA´1
P BpY,Xq ô A is a bijection.

It is clear that a bijection has an inverse map; it is also clear that an invertible map
is a bijection. The most difficult part of this theorem is that the inverse is bounded.
Moreover, under weaker assumptions, i.e. that X and Y are just some normed space (not
complete), one can construct counterexamples.

Spectrum, Resolvent Set, and Resolvent

Definition 17.1. Let λ P C, A P BpXq, where X is a Banach space. We say that λ is
a point of spectrum of the operator A (λ P σpAq) if A ´ λ I is not a bijection.

The study of operator spectra is crucial for numerous applications. In particular, in
Quantum Mechanics, to each observable there corresponds a self-adjoint operator, and
any measured value of the observable in an experiment must lie within the spectrum of
that operator.

The complement to σpAq is resolvent set:

Definition 17.2. ρpAq “ CzσpAq is called a resolvent set.

If λ P ρpAq, there exists a bounded inverse Rλ pAq “ pA ´ λ Iq´1 P BpXq (called
a resolvent).

If A is not bijective, there are two possibilities; it can be not injective or not surjective.
Thus, there are different points in the spectrum.

Classification of Points in the Spectrum

Let us consider the following possibilities for λ P σpAq:
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1) A is not an injection: KerpA ´ λ Iq ‰ t0u:

Dx ‰ 0 : pA ´ λ Iqx “ 0 ô Ax “ λx.

Such λ and x are called an eigenvalue and an eigenvector of A respectively. All
eigenvalues form a point spectrum, which we denote by σppAq.

2) A is an injection but not a surjection: KerpA ´ λ Iq “ 0 and RnpA ´ λ Iq ‰ X .

a) RnpA ´ λ Iq “ X (the image is dense). Such λ is called a point of the
continuous spectrum; we denote λ P σcpAq.

b) RnpA ´ λ Iq ‰ X (the image is not dense). Such λ is called a point of the
residual spectrum; we denote λ P σrpAq.

Thus, the whole complex plane is decomposed into two disjoint sets, C “ σpAq \ ρpAq,
and the spectrum is decomposed into three components: σpAq “ σppAq \ σcpAq \ σrpAq.

Properties of the Spectrum

Prior to studying the properties of the spectrum, we shall present the theorem on the
stability of invertibility.

Theorem 17.2. Let X be a Banach space, A P BpXq, and DA´1 P BpXq. Let B P BpXq such
that

}B} ă
1

}A´1}
.

Then DpA ` Bq´1 P BpXq.

This means that a small (in some sense) perturbation does not affect the invertibility
of an operator.

Proof. Let us recall that if }C} ă 1 then DpI ˘Cq´1.
Now, consider A ` B “ ApI ` A´1Bq; this representation is valid since A is invertible.

The inverse operator to a composition is a composition of inverse in the inverse order,
i.e., pA1A2q´1 “ A´1

2 A´1
1 , so

`

ApI ` A´1Bq
˘´1

“ pI ` A´1Bq´1A´1. There exists an inverse
to A, so we have to prove that there exists an inverse to pI ` A´1Bq. Due to

}B} ă
1

}A´1}
,

}A´1B} ď }A´1} ¨ }B} ă 1, therefore, there exists an inverse to A ` B of the form

pA ` Bq
´1

“ pI ` A´1Bq
´1A´1

“ pI ´ A´1B ` A´1BA´1B ´ . . .qA´1.
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Theorem 17.3. σpAq is a closed set (ρpAq is open).

Proof. We will prove the second statement, so σpAq, being a complement to ρpAq,
would be automatically closed.

Let λ0 P ρpAq, so A ´ λ0I is invertible, and suppose λ belongs to some neighborhood
of λ0:

|λ ´ λ0| ă
1

}pA ´ λ0Iq´1}
.

We are to prove that A ´ λ I is invertible as well.
First, decompose the operator:

A ´ λ I “ pA ´ λ0Iq ´ pλ ´ λ0qI,

where the first one is invertible and the second one is a small perturbation:

}pλ ´ λ0qI} “ |λ ´ λ0| ă
1

}pA ´ λ0Iq´1}
.

Then, due to the theorem above, there exists an inverse to A ´ λ I, so λ P ρpAq.
As a side result, let us write the following representation for the inverse to A ´ λ I “

pA ´ λ0Iq
`

I ´ pλ ´ λ0qRλ0pAq
˘

:

pA ´ λ Iq
´1

“
`

I ´ pλ ´ λ0qRλ0pAq
˘´1Rλ0pAq “

8
ÿ

k“0

pλ ´ λ0q
kRk`1

λ0
pAq;

this expression defines an analytic function of λ (an operator-valued geometric series),
which converges for

|λ ´ λ0| ă
1

}pA ´ λ0Iq´1}
.

Theorem 17.4 (Spectrum Localization). Let X be a Banach space and A P BpXq. Then

σpAq Ă tλ P C : |λ | ď }A}u.

Thus, spectrum of A lies within a disk of radius }A}.
Proof. An equivalent formulation of the theorem is the following: if |λ | ą }A} then

λ P ρpAq. We will prove exactly this statement.
Suppose |λ | ą }A}. Then

A ´ λ I “ ´λ

´

I ´
1
λ

Aq; (17.1)

denote C :“ A{λ , and calculate its norm:

}C} “

›

›

›

1
λ

A
›

›

›
“

}A}

|λ |
ă 1.

154



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS

IGOR SHEIPAK

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

Thus, (17.1) is invertible, and the inverse has the form

pA ´ λ Iq
´1

“ ´
1
λ

8
ÿ

k“0

1
λ k Ak, (17.2)

which completes the proof.
Note that representation (17.2) looks similar to the Laurent series. In fact, it is a well-

known formula called a Neumann series for the resolvent.
Thus, for λ P C such that

|λ ´ λ0| ă
1

}Rλ0pAq}
, λ0 P ρpAq,

we have the following representation for the resolvent:

Rλ pAq “

8
ÿ

k“0

pλ ´ λ0q
kRk`1

λ0
pAq,

and, for large λ , i.e., when |λ | ą }A}, the Neumann series (17.2) becomes valid.

Theorem 17.5. Let X be a Banach space, A P BpXq. Then σpAq ‰ H.

Note that the assumption that A is bounded is crucial: an unbounded operator may
have an empty spectrum. However, there are examples of bounded operators, spectrum
of which consists of a single point (for instance, A “ 0 and A “ I).

Proof by contradiction. Suppose that σpAq “ H; then ρpAq “ C. Thus, the
resolvent Rλ pAq is an analytic function on entire C. One can see that

}Rλ pAq} Ñ 0 as |λ | Ñ 8

due to the expansion into Neumann series. Therefore, it is bounded. Then, by Liouville’s
theorem from the course of Complex Analysis, Rλ pAq is constant. Moreover, due to the
estimation above, Rλ vanishes at infinity, so Rλ pAq “ 0, which is a contradiction to the
invertibility of A ´ λ I (note that the inverse must be invertible as well).

There is another way to demostrate that the resolvent is continuous and analytic.

Theorem 17.6 (The First Hilbert Identity). Resolvent of an operator A satisfies the
relation

RµpAq ´ Rλ pAq “ pµ ´ λ qRλ pAqRµpAq, (17.3)

where λ , µ P ρpAq.
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Proof. Consider the equality

pA ´ λ Iq ´ pA ´ µIq “ pµ ´ λ qI

and multiply it by Rλ pAq on the left and RµpAq on the right. Then we obtain equality (17.3).

This identity has a profound corollaries. For instance, it is clear that the resolvent of
the same operator taken at different points of the resolvent space commute:

Rλ pAqRµpAq “ RµpAqRλ pAq,

since, when swapping λ and µ in (17.3), one must change the signs on the left- and on
right-hand sides, so the identity preserves; it can be seen clearly from the symmetry of
the following expression

Rλ pAqRµpAq “
RµpAq ´ Rλ pAq

µ ´ λ
,

µ ‰ λ , with respect to transposition λ Ø µ .
Let us consider the limit µ Ñ λ in (17.3); then, since pµ ´ λ q Ñ 0 on the right-hand

side, the left-hand side approaches zero as well:

RµpAq ´ Rλ pAq, µ Ñ λ ,

which means that the resolvent Rλ pAq is continuous with respect to λ . Considering the
limit

lim
µÑλ

RµpAq ´ Rλ pAq

µ ´ λ
“ R2

λ
pAq,

we get the resolvent has a complex derivative (independent of the direction on the complex
plane).

Spectrum of the Adjoint Operator

At times, determining the spectrum of an operator proves to be a difficult task, while
the spectrum of its adjoint can be described with relative ease. Hence, it becomes essential
to understand the relationship between the spectrum of an operator and that of its adjoint.
For applications, the relationship between the spectra of Hilbert adjoint operators is of
greater importance; however, we will also discuss the situation involving Banach adjoint
operators.

Theorem 17.7. Let H be a Hilbert space, A P BpHq. Then

λ P σpAq ô λ P σpA˚
q.
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In a Banach space, the relation is somewhat different:

Theorem 17.8 (without a proof). Let X be a Banach space, A P BpXq. Then

λ P σpAq ô λ P σpA1
q.

Proof of Theorem 17.7.
Let us first note that the operations of taking the inverse and taking the adjoint

commute:
pA´1

q
˚

“ pA˚
q

´1,

if the inverse exists (which is not always true, as opposed to the existence of the adjoint):
consider

pAA´1
q

˚
“ pA´1

q
˚A˚

“ I, pA´1Aq
˚

“ A˚
pA´1

q
˚

“ I,

then we see that pA´1q˚ “ pA˚q´1.
Further, let us formulate the statement of the theorem in the equivalent form:

λ P ρpAq ô λ P ρpA˚
q.

Suppose that λ P ρpAq; then DpA ´ λ Iq´1. Moreover, there exists
´

pA ´ λ Iq
´1
¯˚

“ pA˚
´ λ Iq

´1,

which means that λ P ρpA˚q.
Now, recall that we have the classification of points in the spectrum. Let us find out

what happens to this classification when taking the adjoint.

Theorem 17.9. Let H be a Hilbert space, A P BpHq. If λ P σrpAq, then λ P σppA˚q.

Remark 17.1. In Banach spaces, λ P σrpAq ñ λ P σppA1q.

Proof. Suppose that λ P σrpAq. Then, by definition of the residual spectrum, the image
of the operator is not dense in H:

RnpA ´ λ Iq Ĺ H.

This space is nontrivial; thus, there exists a nonzero vector that is orthogonal to it:

Dx ‰ 0 : x K RnpA ´ λ Iq,

which means that
@y P H :

`

x,pA ´ λ Iqy
˘

“ 0.
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Using the definition of the adjoint operator, we rewrite it as
`

pA˚
´ λ Iqx,y

˘

“ 0 @y P H.

Since the vector pA˚ ´ λ Iqx is orthogonal to each y P H, it is zero, therefore,

A˚x “ λx,

so λ P σppA˚q.

Theorem 17.10. Let H be a Hilbert space, A P BpHq. If λ P σppAq, then λ P σppA˚q Y

σrpA˚q.

Remark 17.2. In Banach spaces, λ P σppAq ñ λ P σppA1q Y σrpA1q.

Proof. First, note that due to Theorem 17.7, if λ P σppAq then λ P σpA˚q. Hence, it is
sufficient to prove that λ does not belong to the continuous spectrum of A˚. By definition,
if λ P σppAq then Dx ‰ 0: Ax “ λx, therefore,

@y P H :
`

pA ´ λ Iqx,y
˘

“ 0.

Then, by the definition of the adjoint operator,

@y P H :
`

x,pA˚
´ λ Iqy

˘

“ 0,

which means that Dx ‰ 0: x K RnpA˚ ´ λ Iq, therefore, x K RnpA˚ ´ λ Iq, so the image of
A˚ ´ λ I is not dense in H; that is, λ R σcpA˚q.

Example 17.1. In ℓ2, consider the left- and right-shift operators:

Arx “ p0,x1,x2, . . .q, Aℓx “ px2,x3, . . .q.

What are the spectra of Ar, Aℓ? These operators are adjoint to each other; it is more
convenient to study their spectra simultaneously.

First, let us try to find the point spectrum of Ar:

Arx “ λx ô

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 “ λx1,

x1 “ λx2,

. . .

xn “ λxn`1,

. . . .

In the first row, we have the product of two numbers that is equal to zero. This means that
either λ or x1 is equal to 0.
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1) Suppose λ “ 0. Then, the entire column of right-hand sides is zero, therefore, each
coordinate is equal to zero: xk “ 0 @k “ 1,2, . . . . Therefore, x is not an eigenvector,
since an eigenvector must be nonzero.

2) Suppose x1 “ 0, λ ‰ 0. Then, solving each equation one by one, we obtain x2 “ 0,
x3 “ 0, . . . , so x is not an eigenvector again; thus, σppArq “ H.

Now, consider the eigenequation for Aℓ:

Aℓx “ λx ô

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

x2 “ λx1,

x3 “ λx2,

. . .

xn`1 “ λxn,

. . . .

Note that, since the operator is linear, one can seek for solutions (eigenvectors) up to
a constant factor. As above, condidering x1 “ 0, we obtain that x2 “ x3 “ ¨¨ ¨ “ 0. However,
e.g., for λ “ 0, the eigenequation for Aℓ has a solution:

Aℓe1 “ 0.

Let us proceed as follows: setting x1 “ 1, we obtain x2 “ λ , x3 “ λ 2, . . . ; since x must
belong to ℓ2, we must reqire that

8
ÿ

k“1

|λ |
2pk´1q

ă 8.

Thus, t|λ | ă 1u Ă σppAℓq.
What do we know about the norms of these operators? Since }A} “ }A˚}, the norms of

Aℓ and Ar coincide. The norm of Ar is equal to 1, therefore, the same is true for Aℓ:

}Ar} “ }Aℓ} “ 1.

The spectrum belongs to the disk of radius equal to the norm of the operator (which is 1

in our case). Since the spectrum is a closed set, we obtain

σpArq “ σpAℓq “ t|λ | ď 1u.

Further, due to Theorem 17.9, the residual spectrum of Aℓ is empty: σrpAℓq “ H. Using
Theorem 17.10 and the facts that σppAℓq “ t|λ | ă 1u, σppArq “ H, we establish that
σrpArq “ t|λ | ă 1u.
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The spectrum is closed; therefore, the only option for the boundary of the unit disk is
to belong to the continuous spectrum:

σcpArq “ σcpAℓq “ t|λ | “ 1u.

The results can be summarized in a table:

Ar Aℓ

σp H |λ | ă 1

σc |λ | “ 1 |λ | “ 1

σr |λ | ă 1 H

Spectrum of a Normal Operator

Recall that a normal operator is an operator that commutes with its adjoint; Aℓ and
Ar above serve as examples of nonnormal ones.

Let us formulate the following theorem regarding the structure of spectrum of a normal
operator:

Theorem 17.11. Let A be a normal operator in a Hilbert space H. Then σrpAq “ H.

Proof by contradiction. Suppose that λ P σrpAq. Then λ P σppA˚q, therefore,

Dx ‰ 0 : A˚x “ λx.

Recall that for a normal A, A ´ λ I is also normal; further,

}Ax} “ }A˚x}.

Let us take the vector apply this operatot to x:

}pA ´ λ Iqx} “ }pA˚
´ λ Iqx},

where the right-hand side is zero, since x is an eigenvector of A˚ corresponding to λ . Thus,

}pA ´ λ Iqx} “ 0,

therefore, λ P σppAq, which is a contradiction to our assumption λ P σrpAq (note that the
discrete and residual spectrum do not intersect).

Recall that self-adjoint, unitary, and multiplication operators are normal. Therefore,
they all have empty residual spectrum.
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Spectrum of a Self-Adjoint Operator

We already know that for A “ A˚, the residual specrum is empty: σrpAq “ H.
In Linear Algebra, all symmetric operators have purely real (discrete) spectrum. In the

infinite-dimensional setting, for self-adjoint operators, the spectrum is also real, however,
it may be a disjoint union of the point and continuous spectra.

Lemma 17.1. Let X be a Banach space, Y be a normed space, A P BpX ,Y q, and

Dc ą 0 @x P X : }Ax} ě c}x}.

Then RnA is closed.

Remark 17.3. Why is it important to study the spectrum? Assume that for some λ , we
have proved

}pA ´ λ Iqx} ě c}x}. (17.4)

Therefore, λ cannot belong to the continuous spectrum, since due to the lemma the image
of A ´ λ I is closed (while, for λ to belong to the continuous spectrum, the image and its
closure must be different sets).

Note also that bound (17.4) implies that A is injective.

Proof. Suppose that y is a limit point of RnA; then

Dyn P RnA, yn Ñ y.

By definition, Dxn: Axn “ yn. Let us rewrite inequality (17.4) in the following way:

}xn ´ xm} ď
1
c

}yn ´ ym}.

yn Ñ y, so it is a Cauchy sequence, therefore, xn is also Cauchy. Since X is Banach, the
limit point belongs to X : xn Ñ x P X . Since the operator is continuous (which is equivalent
to that it is bounded), Axn Ñ Ax. Thus, Ax “ y, so y P RnA, which means that the image
is closed.

Theorem 17.12. Let A “ A˚ P BpHq, where H is a Hilbert space. Then

σpAq Ă R.

Proof.
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1) Suppose that λ P σppAq. Then

Dx ‰ 0 : Ax “ λx.

Let us take the dot product of this equality with the same vector:

pAx,xq “ pλx,xq “ λ }x}
2.

Rewriting the left-hand side, we obtain

px,Axq “ px,λxq “ λ }x}
2,

therefore, λ }x}2 “ λ }x}2, }x} ‰ 0, so λ “ λ .

2) Suppose that λ P σcpAq, λ “ α ` iβ , β ‰ 0, and consider

}pA´λ Iq}
2

“
`

pA´αI ´iβ Iqx,pA´αI ´iβ Iqx
˘

“ }pA´αIqx}
2
`iβ

`

pA´αIqx,x
˘

´iβ
`

x,pA´αIqx
˘

`|β |
2
}x}

2.

Since pA´αIq˚ “ A˚ ´αI “ A´αI, the second and the third term cancel each other.
Thus, we arrive at the bound

}pA ´ λ Iq} ě |β |}x}.

Due to the lemma above, the image of A ´ λ I is closed, therefore, λ R σcpAq, which
is a contradiction to our assumption. Therefore, σcpAq Ă R.

3) For A “ A˚, σrpAq “ H.

Spectral Radius

Furthermore, we can say that for A “ A˚, the spectrum belongs to the interval:
σpAq Ă r´}A},}A}s. However, this estimation is not quite sharp: e.g., consider A “ I; for
this operator, we obtain σpIq Ă r´1,1s, while in fact σpIq “ t1u. To resolve this issue, we
will use a new notion.

Definition 17.3. Let X be a Banach space and A P BpXq. The spectral radius of A is
defined as

rpAq “ max
λPσpAq

|λ |.

The theorem on spectrum localization implies the following inequality:

rpAq ď }A}.
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One can see that this inequality is not sharp. Consider, for instance, a Jordan matrix of
the form

A “

˜

0 1

0 0

¸

.

For this operator, we have rpAq “ 0, since σpAq “ t0u, while }A} ą 0, since the operator is
nonzero.

However, for normal (and, therefore, for self-adjoint) operators the spectral radius
coincides with the norm:

Theorem 17.13 (Gelfand’s Spectral Radius Formula, without proof).

rpAq “ lim
nÑ8

}An
}

1{n.

Remark 17.4. Applying the Cauchy–Hadamard theorem, which determines the radius of
convergence for power series, to the resolvent in the form of Neumann series

Rλ pAq “ ´
1
λ

8
ÿ

k“0

Ak

λ k , |λ | ě }A},

like for numerical series
ř

k akzk, for which

1
R

“ lim
nÑ8

n
a

|an|,

then we obtain the statement of the theorem. While for numerical series, the upper limit
is considered, for the operator-valued series the limit always exists due to the
submultiplicative inequality }An`k} ď }An} ¨ }Ak}.
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Lecture 18. Exercises on Spectra of Operators

Discussion of Self-Study Problems form the Previous Lecture

We begin with considering some of the self-study problems from Lecture 16.

5) Consider

pA f qpxq “ f pxq ´

ż x

0
f ptqdt “ pI ´Cq f

a) in Cr0,1s.

b) in L2r0,1s.

Find the inverse operator. The answer must not involve infinite sums.

First, if }C}, we can write out the inverse operator in the form

pI ´Cq
´1

“

8
ÿ

k“0

Ck.

For L2r0,1s, }C} ď }K}L2ra,bs2 , where, in out problem,

Kpx, tq “

#

1, t ă x,

0, t ą x,

therefore,
}Kpx, tq} “ 1{

?
2.

However, in Cr0,1s (as has been previously proved), the norm of C is not small:

}C f } “ max
xPr0,1s

ˇ

ˇ

ˇ

ż x

0
f ptqdt

ˇ

ˇ

ˇ
ď max

xPr0,1s

ˇ

ˇ

ˇ

ż x

0
| f ptq|dt

ˇ

ˇ

ˇ
,

where | f ptq| ď } f } “ 1, thus, }C f } ď 1; for f ptq ” 1, we have

}C f } “ max
xPr0,1s

ˇ

ˇ

ˇ

ż x

0
f ptqdt

ˇ

ˇ

ˇ
“ max

xPr0,1s
x “ 1,

so the bound is sharp, and }C} “ 1.

Further, even though the bound }C} ă 1 does not hold, we can employ the expansion
of pI ´Cq´1 into series, since it is fine if the bound holds for some power of C, meaning
that the series converges if

Dn0 @n ě n0 : }Cn
} ă 1.
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Let us estimate the norms of powers of C. Beginning with the second power, we get

pC2 f qpxq “

ż x

0

´

ż t

0
f psqds

¯

dt;

here, we integrate with respect to s and t such that 0 ă s ă t ă x. Let us change the
order of integration, so that we would integrate with respect to t first:

ż x

0

´

ż t

0
f psqds

¯

dt “

ż t

0
f psq

ż x

s
dt ds “

ż x

0
px ´ sq f psqds.

Furthermore,

pCn f qpxq “

ż x

0

px ´ tqn´1

pn ´ 1q!
f ptqdt,

which can be easily proved by virtue of mathematical induction. It is evident that
the norms decay rapidly as a result of the division by the factorial: }Cn} Ñ 0 as
n Ñ 8.

Now, let us find the inverse to A:

pA´1 f qpxq “
`

pI ´Cq
´1 f pxq

˘

pxq “

8
ÿ

k“0

Ck f pxq “ f pxq `

8
ÿ

k“0

ż x

0

px ´ tqk

k!
f ptqdt,

where we will swap the order of summation and integration (it is totally legal since
the sum converges uniformly):

f pxq `

8
ÿ

k“0

ż x

0

px ´ tqk

k!
f ptqdt “ f pxq `

ż x

0
ex´t f ptqdt.

Another approach to solve the problem is the following. Constructing the inverse is
equivalent to solving the equation

f pxq ´

ż x

0
f ptqdt “ gpxq

for f pxq for a given gpxq. Suppose the functions in question have derivatives of
higher order (note that C1r0,1s is dense in both Cr0,1s and L2r0,1s). Then we can
differentiate the equation and solve the ordinary differential equation obtained.

4) Consider the differential operator A f “ f 1 in Cr0,1s with domain DpAq “ C1r0,1s.
Prove that there exists a right inverse, but it is not unique.

Let us note that this operator is not invertible since it has a nontrivial kernel:

KerA “ x1y.
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However, there is a right inverse:

A´1
r f “

ż x

0
f ptqdt `C, AA´1

r “ I.

For C ‰ 0, the operator A´1
r is nonlinear, and, of course, it is not unique.

1) In L2r0,1s, consider the Hardy operator

pA f qpxq “
1
x

ż x

0
f ptqdt.

a) Prove that A is bounded.

b) Prove that A is not compact.

It is quite simple to obtain the bound }A} ď 2. In further, we will see that the point
spectrum of the Hardy operator consists of points t|z ´ 1| ă 1u, so }A} “ 2.

Let us begin with the estimation:

}A f }
2

“

ż 1

0

ˇ

ˇ

ˇ

1
x

ż x

0
f ptqdt

ˇ

ˇ

ˇ

2
dx ď

ż 1

0

´

ż x

0
| f ptq|dt

¯2´
´ d

1
x

¯

,

which can be integrated by parts:
ż 1

0

´

ż x

0
| f ptq|dt

¯2´
´ d

1
x

¯

“ ´

´

ż x

0
| f ptq|dt

¯1
x

ˇ

ˇ

ˇ

1

0
`

ż 1

0
2
´

ż x

0
| f ptq|dt

¯

¨ | f pxq|
1
x

dx.

At point x “ 1, the first term is negative, so by excluding it, we obtain an upper
bound; at point x “ 0, this term must be carefully calculated, since there is a possible
singularity due to the x-inverse factor. Let us use the Cauchy–Bunyakovsky–Schwarz
inequality:

1
x

´

ż x

0
| f ptq|dt

¯2
ď

1
x

´

ż x

0
1dt ˆ

ż x

0
| f ptq|

2 dt
¯

“
1
x

x
ż x

0
| f ptq|

2
Ñ 0 as x Ñ 0,

so, in fact, there is no singularity. For }A f }2, we obtain

}A f }
2

ď 2
ż 1

0

´

ż x

0
| f ptq|dt

¯

¨ | f pxq|
1
x

dx.

Let us use the Cauchy–Bunyakovsky–Schwarz inequality again (with | f pxq| as one
of the integrand functions):

2
ż 1

0

´

ż x

0
| f ptq|dt

¯

¨ | f pxq|
1
x

dx ď 2
´

ż 1

0

1
x

´

ż x

0
| f ptq|dt

¯2¯1{2
ˆ

´

ż 1

0
| f pxq|

2 dx
¯1{2

,
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where the second factor is } f }. Let us denote

M :“
´

ż 1

0

1
x

´

ż x

0
| f ptq|dt

¯2¯1{2
.

Recalling the beginning of our estimation, we obtain the bounds

}A f }
2

ď M2
ď 2M} f },

therefore, M ď 2} f }, and

}A f }
2

ď 4} f } ñ }A} ď 2.

Let us also try to solve the eigenequation for A in the form of a power function xα ,
α P R:

Axα
“ λxα ,

1
λ

ż x

0
tα dt “

xα

α ` 1
,

so λ “ 1{pα ` 1qq. Note that xα P L2r0,1s if
ż 1

0
x2α dx ă 8,

whence 2α ą ´1, or, equivalently, α ą ´1{2. Taking

αn “ ´
1
2

`
1
n
,

we see that
λn “

1
´1

2 ` 1
n ` 1

Ñ 2 as n Ñ 8,

so the spectral radius is at least 2, and, therefore, the norm is at least 2 as well.

Let us prove that this operator is not compact. We will demonstrate it using
the property of compact operators: a compact operator maps a weakly converging
sequence to a converging one.

First, let us point out that the Hardy operator seems to be bad near x “ 0. We will
construct a sequence of functions that concentrate at x “ 0:

fnpxq “
?

nχ“
0, 1

n

‰pxq, } fn} “ 1.

We claim that fn á 0. Why is that? We must show that

@F P
`

L2r0,1s
˘˚ : Fp fnq Ñ 0.

By Riesz’s theorem,

Fp fnq “ p fn,gq ”

ż 1{n

0

?
ngpxqdx,
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to which we apply the Cauchy–Bunyakovsky–Schwarz inequality:
ż 1{n

0

?
ngpxqdx ď

´

ż 1{n

0
ndx

¯1{2´
ż 1{n

0
|gpxq|

2 dx
¯1{2

“ 1 ¨

´

ż 1{n

0
|gpxq|

2 dx
¯1{2

Ñ 0

as n Ñ 8, since g P L2r0,1s and the integration interval shrinks to zero (to a set of
measure zero). Further,

}A fn}
2

“

ż 1

0

´1
x

ż x

0

?
nχ“

0, 1
n

‰ptqdt
¯2

dx “

ż 1{n

0

´1
x

ż x

0

?
ndt

¯2
dx `

ż 1

1{n
. . . dx,

where the second term is nonnegative, so

}A fn}
2

ě

ż 1{n

0

´1
x

ż x

0

?
ndt

¯2
dx “ 1 ­Ñ 0,

therefore, A is not compact.

Later, we will show that the spectrum of a compact operator, except for λ “ 0, is
purely discrete and consists of isolated points. As can be seen, the spectrum of the
Hardy operator is not of this form.

Exercises on Spectra and Spectral Radii. Spectrum of

a Self-Adjoint Operator

1) Prove that for A “ A˚ P BpHq, where H is a Hilbert space,

rpAq “ }A}.

a) First, we will show that }A˚A} “ }A}2 for any A P BpHq. In one direction, the
estimation is obvious:

}A˚A} ď }A˚
} ¨ }A} “ }A}

2,

since }A˚} “ }A}. We know that A˚A is self-adjoint. In Lecture 13, we proved
that the norm of a self-adjoint operator can be computed as the supremum of
the associated quadratic form:

}A˚A} “ sup
}x}“1

|pA˚Ax,xq|,

so
sup

}x}“1
|pA˚Ax,xq| “ sup

}x}“1
|pAx,Axq| “ sup

}x}“1
}Ax}

2
“ }A}

2.
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b) If A “ A˚, then }A2} “ }A}2, thus, }A2n
} “ }A}2n

; let us prove it by mathematical
induction:

}A2n`1
} “ }pA2n

q
2
} “ }A2n

}
2,

which is equal to }A}2n`1
by the induction hypothesis.

Next, using this in the formula for the spectral radius, we obtain

rpAq “ lim
nÑ8

}An
}

1{n
“ lim

kÑ8
}A2k

}
1{2k

“ }A}.

In Lecture 17, that we obtained the following: for A “ A˚,

σpAq Ă r´}A},}A}s.

This bound is not quite good, since, for instance, the spectrum of the identity operator
is σpIq “ t1u, while the inclusion above gives us σpIq Ă r´1,1s. Now, we will try to make
the bound sharper.

2) Let A “ A˚. Define
m “ inf

}x}“1
pAx,xq, M “ sup

}x}“1
pAx,xq.

Then, we claim that σpAq Ă rm,Ms, moreover, both endpoints belong to the
spectrum, i.e., m,M P σpAq, and maxp|m|, |M|q “ }A}.

For example, for A “ I we have m “ M “ 1, and this is precisely the spectrum of I.

a) For any x P H, consider

m}x}
2

ď pAx,xq ď M}x}
2.

For x “ 0, it is the equality; for x ‰ 0, we will divide it by }x}2:

m ď

´

A
x

}x}
,

x
}x}

¯

ď M,

which follows from the definition of m and M.

Further, we should discuss the localization of spectrum.

b) Let λ P σppAq: Dx, x ‰ 0, Ax “ λx. Then,

pAx,xq “ λ }x}
2, m}x}

2
ď λ }x}

2
ď M}x}

2,

therefore, m ď λ ď M.

c) The residual spectrum is empty.

169



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS

IGOR SHEIPAK

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

d) We must show that if λ ą M (and, similarly, λ ă m), then λ R σcpAq.

Let λ “ M ` δ , δ ą 0. Then, consider

}pA ´ λ Iqx}
2

“

´

pA ´ MI ´ δ Iqx,pA ´ MI ´ δ Iqx
¯

“

“ }pA ´ MIqx}
2

´ δ

´

pA ´ MIqx,x
¯

´ δ

´

x,pA ´ MIqx
¯

` δ
2
}x}

2,

where, due to the self-adjointness of A,

´δ

´

pA ´ MIqx,x
¯

´ δ

´

x,pA ´ MIqx
¯

“ ´2δ

´

pA ´ MIqx,x
¯

“

“ ´2δ pAx,xq ` 2δM}x}
2

ě 0,

so, excluding these terms from the equality above, we obtain the bound

}pA ´ λ Iqx}
2

ě δ }x}
2.

Thus, due to the theorem from Lecture 17, the image is closed, which implies
that λ R σcpAq. The proof for λ ă m is similar.

e) Now, let us show that the endpoints of the interval belong to the spectrum: m,
M P σpAq. Let us consider

rA “ A ´ mI.

This operator is self-adjoint as well, and rm “ 0, rM “ M ´ m:

σprq Ă r0,M ´ ms;

moreover, }rA} “ M ´m, and }rA} “ rprAq ñ M ´m “ rprAq. Therefore, there exists
λ P σprAq:

λ “ M ´ m.

Thus, shifting it back, we obtain

M P σpAq.

For rA “ A ´ MI, we obtain
rm “ m ´ M ď 0,

and the further proof for m P σpAq is similar.

Spectra of Similar Operators

The problem of finding the spectrum of an operator is often quite challenging. Next,
we will consider an approach that simplifies it in certain cases.
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Definition 18.1. Let X , Y be Banach spaces, and A P BpXq. Let there exist a bijective
operator S, S P BpX ,Y q, and an operator B P BpY q such that the diagram is commutative

X X

Y Y,

A

S S

B

i.e., SA “ BS. Then we say that the operator A is similar to the operator B and denote

A „ B.

Note that since S is bijective, due to the Banach bounded inverse theorem, there exists
S´1 so that

SAS´1
“ B.

In finite-dimensional spaces, we can fix a basis, and the operator takes the form of
a matrix in that basis. Under a change of basis with a transition matrix S, the matrix
of the operator transforms according to the same rule. It is a known result in Linear
Algebra that the characteristic polynomial of a matrix is unchanged under a change of
basis. Therefore, the eigenvalues of the operator, which are the roots of the characteristic
polynomial, also remain invariant. The same is true in Banach spaces: the spectra of
similar operator coincide.

Theorem 18.1. Let A P BpXq, B P BpY q, where X , Y are some Banach spaces. Let A „ B.
Then

σpAq “ σpBq,

moreover, the classification of points in spectra coincide.

Proof.

1) Let λ P ρpAq ô DpA ´ λ Iq´1 P BpXq,

pA ´ λ Iq
´1

“ pS´1BS ´ λ Iq
´1

“
`

S´1
pB ´ λ IqS

˘´1
“ S´1

pB ´ λ Iq
´1S,

therefore, λ P ρpBq, so the resolvent sets of A and B coincide, which means that the
spectra coincide as well.

2) Let λ P σppAq. Then Dx ‰ 0:
Ax “ λx.

Since A “ S´1BS, we have

S´1BS “ λx ô BS “ λSx,
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and Sx ‰ 0, since S is injective; therefore, Sx is an eigenvector of B corresponding to
an eigenvalue λ .

3) The continuous and residual spectra of A are related to the properties of image of A

(more precisely, to whether the imeage is dense in the entire space). Consider

pA ´ λ Iq “ S´1
pB ´ λ IqS.

Thus, if the image of pA ´ λ Iq is dense in X , then the image of pB ´ λ Iq is dense
in Y , and vice versa. Therefore,

σcpAq “ σcpBq and σrpAq “ σrpBq.

Example 18.1. Consider Aℓ, Ar in two-sided ℓ2: ℓ2pZq, where

ℓ2pZq Q x “ p. . . ,x´1,x0,x1, . . .q

with the condition
8
ÿ

k“´8

|xk|
2

ă 8.

(For instance, the discrete Schrödinger operator is usually considered in this space).

In ℓ2pZq, for x “
`

. . . ,x´1,px0q,x1, . . .q,

Arx “
`

. . . ,x´2,px´1q,x0, . . .q, Aren “ en`1,

and
Aℓx “

`

. . . ,x0,px1q,x2, . . .q, Aren “ en´1.

It is known that all separable Hilbert spaces are isometrically isomorphic. Thus, there are
a bijection S and an operator Br such that

ℓ2pZq ℓ2pZq

L2r0,2πs L2r0,2πs,

Ar

S S

Br

where Br acts on the basis elements in the same way as Ar does.
Operator S must map a basis into a basis; in ℓ2pZq, a basis can be chosen in the form

en “ p. . . ,0,
n
1,0, . . .q;

in L2r0,πs, let us fix a complex exponential basis:

Enptq “
1

?
2π

eint , n P Z.
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Since en ÞÑ en`1 under Ar, we have for Br

BrEn “ En`1,

so Br is a multiplication operator:

Br f ptq “ eit f ptq, f P L2r0,2πs.

Similarly, the operator Aℓ is similar to the multiplication operator Bℓ such that

Bℓ f ptq “ e´it f ptq, f P L2r0,2πs.

It is clear that Aℓ and Ar are adjoint and inverse to each other in ℓ2pZq, and the same
holds for Bℓ, Br. Thus, these operators are unitary. The spectrum of a unitary operator
lies on the unit circle.

In further lectures, we will study the multiplication operators in more detail. For now,
we will formulate the following theorem:

Theorem 18.2. Let ϕ P L8ra,bs. Then, for Aϕ : L2ra,bs Ñ L2ra,bs,

Aϕ f “ ϕpxq f pxq,

the equality
σpAϕq “ essEpϕq

holds, where essEpϕq is the set of essential values of ϕ:

essEpϕq “

!

λ : @ε ą 0 µ
`

tx : |ϕpxq ´ λ | ă εu
˘

ą 0
)

.

Note that, e.g., for ϕ P Crα,β s, the essential range is simply the range. Next, consider

sgn t “

$

’

’

&

’

’

%

´ 1, t ă 0,

0, t “ 0,

1, t ą 0.

The values ´1 and 1 of sgn t are essential, and the value 0 is not essential since the function
takes this value on the set of measure zero.

Note also that the multiplication operators in L2 are normal. Therefore, the residual
spectra of Bℓ and Br are empty.

Are there eigenvalues of Bℓ and Br? For λ P σppAϕq, there must exist a function
f P L2ra,bs, f ‰ 0, such that

Aϕ f “ λ f ,
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which is the same as
pϕpxq ´ λ q f pxq “ 0.

For this product to vanish on the entire ra,bs, either the function f must be vanishing
on ra,bs (in the sense of L2), or ϕpxq “ λ on a set of positive measure. For instance, the
function

ϕ
ˇ

ˇ

pα,β q
” C

satisfies the condition. However, e˘it is not constant on any set. Thus, the spectra of Br

and Bℓ are purely continuous.

Self-Study Exercises

1) Prove that σpABqzt0u “ σpBAqzt0u.

2) If AB ´ BA “ I, then at least one of the operators A, B is unbounded.

Hint: AB “ BA ` I implies

AB ´ λ I “ BA ´ pλ ´ 1qI,

so the “shifted” set must coincide with the set itself. Therefore, it is either
an unbounded set, or an empty set. However, the spectrum of a bounded operator
cannot be empty.

3) Let U˚ “ U´1. Prove that

σpUq Ă tz P C : |z| “ 1u.

4) Let α “ pα1,α2, . . .q P ℓ8. In ℓ2, consider

Aαx “ pα1x1,α2x2, . . .q.

Find σpAαq.

5) Let X be a Banach space and Ω Ă C be a nonempty compact set. Prove that

DA P BpXq : σpAq “ A.

Hint: Use problem 4 to construct an operator A.
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6) Let U “ U˚ “ U´1. Describe all operators of this form.

Hint: The entire Hilbert space must be decomposed into two components H “

H0 ‘ HK
0 such that

U “

˜

I 0

0 ´I

¸

,

where U
ˇ

ˇ

H0
“ I and U

ˇ

ˇ

HK
0

“ ´I.

7) In ℓ2, for a, b P R, consider

Aen “ ben´1 ` aen ` ben`1, n ě 2, Ae1 “ ae1 ` be2,

A „

¨

˚

˚

˚

˚

˝

a b 0 0 . . .

b a b 0 . . .

0 b a b . . .
...

...
...

... . . .

˛

‹

‹

‹

‹

‚

.

Find the spectrum of A by constructing a similar operator.
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Lecture 19. The Hilbert–Schmidt Theorem

Weyl Sequences

We continue to study the spectrum. In this lecture, we will formulate a number of
theorems that help one to find it.

Definition 19.1. Let X be a Banach space, A P BpXq. We say that for λ P C there exists
a Weyl sequence txnu if

}xn} “ 1, pA ´ λ Iqxn Ñ 0 as n Ñ 8.

For instance, suppose that x ‰ 0 is an eigenvector corresponding to an eigenvalue λ PC
of an operator A; consider xn ” x. Then txnu is a Weyl sequence for λ . Thus, for clarity, it
is convenient to think of a Weyl sequence as an “almost eigenvector”.

Theorem 19.1. If for λ P C there exists a Weyl sequence txnu, then λ P σpAq.

Proof by contradiction. Let λ P ρpAq; then there is an inverse:

DpA ´ λ Iq
´1

P BpXq.

Denote yn :“ pA ´ λ Iqxn; yn Ñ 0. Applying the inverse to yn, we get

pA ´ λ Iq
´1yn “ xn ‰Ñ 0,

which is a contradiction to the continuity of pA ´ λ Iq´1, since for a continuous (which is
the same as bounded) operator T , wn Ñ 0 ñ Twn Ñ 0. Thus, there is no bounded inverse,
so λ P σpAq, which completes the proof.

In the previous lecture, we formulated a theorem on the spectrum of a multiplication
operator. Let us return to it:

Theorem 19.2. Let Aϕ : L2ra,bs Ñ L2ra,bs, Aϕ f “ ϕpxq f pxq, where ϕ P L8ra,bs. Then

σpAϕq “ essEpϕq ”
␣

λ P C : @ε ą 0 µtx : |ϕpxq ´ λ | ă εu ą 0
(

.

Moreover, if there exists a measurable set Ω, µpΩq ą 0, such that ϕ
ˇ

ˇ

Ω
” λ , then λ P σppAϕq.

The remaining essential values form the continuous spectrum σcpAϕq.

Remark 19.1. 1) Note that Aϕ is normal, so σrpAϕq “ H.

2) For application, the most useful case is ϕ P Cra,bs. For such ϕ, essEpϕq is just the
set of all values that ϕ takes.
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Proof.

1) Let λ P essEpϕq. Then, by the definition of essential range,

@n P N : µ

!

x : |ϕpxq ´ λ ă
1
n

)

ą 0;

let us denote Mn :“ tx : |ϕpxq ´ λ ă 1{nu, and define a function fn:

fn :“
χMnpxq
a

µpMnq
.

One can see that } fn}L2 “ 1. Next,

}pA ´ λ Iq f }
2

“

ż

Mn

|ϕ ´ λ |2

µpMnq
dµ ă

1
n2 Ñ 0,

so fn is a Weyl sequence, and, therefore, λ P σpAq.

2) Now, we are to prove the inverse. Suppose λ R essEpϕq; we will show that λ P ρpAϕq.
Let us denote

Mε :“ tx : |ϕpxq ´ λ | ă εu;

by definition,
λ R essEpϕq ô Dε ą 0 : µpMεq “ 0.

The problem of construction the resolvent Rλ pAϕq “ pA ´ λ Iq´1 is equivalent to
solving the equation

pAϕ ´ λ Iq f “ g

for an arbitrary given g P L2. The equation can be rewritten as

pϕpxq ´ λ q f pxq “ gpxq,

so, if we seek for a solution f pxq, it is sufficient to divide by the first factor:

f pxq “
1

ϕpxq ´ λ
gpxq.

However, if |ϕpxq ´ λ | is “small”, the resulting function f pxq can be that “large”
so it would not belong to L2. Let us exclude the small values from the result by
considering

f pxq “

$

’

&

’

%

1
ϕpxq ´ λ

gpxq, x R Mε ,

0, x P Mε .

Note that since Mε is a set of measure zero, and the space L2ra,bs is an equivalence
class of functions that are equal almost everywhere (that is, they are equal except
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for a set of measure zero), f pxq may take any form on Mε , and all functions that
differ on Mε are indistinguishable in the L2-sense.

Further, we must verify that the resolvent defined by the rule above is bounded.
Consider

}Rλ pAϕqg}
2

“

ż

ra,bszMε

|gpxq|2

|ϕpxq ´ λ |2
dµ;

on the integration set, |ϕpxq ´ λ | ą ε , so

}Rλ pAϕqg}
2

ă
1
ε2

ż

ra,bszMε

|gpxq|
2 dµ ď

1
ε2 }g}

2,

thus, }Rλ } ă 1{ε . Note that ε is a fixed nonzero value. Therefore, Rλ is bounded,
and λ P ρpAϕq.

Next, we must prove the statements on the classifications of points in spectrum; it
is quite simple.

3) Let λ P essEpϕq. When λ P σppAϕq? For λ to belong to the discrete spectrum, the
following must hold:

D f P L2ra,bs, f ‰ 0 pDΩ : µpΩq ą 0, f
ˇ

ˇ

ˇ

Ω

pxq ‰ 0 @x P Ωq, Aϕ f “ λ f .

It means that
pϕpxq ´ λ q f pxq “ 0 in L2ra,bs;

since f pxq ‰ 0 on Ω, the first factor must vanish on this set:

ϕpxq ´ λ ” 0 on Ω,

where µpΩq ą 0.

Since the residual spectrum is empty, all the other points of essEpϕq belong
to σcpAϕq.

Note that the essential range of a continuous function on an interval coincides with
range. However, this is not true for continuous functions on R; consider, e.g.,

ϕpxq “
1

x2 ` 1
, x P R.

This function takes the values p0,1s, see Fig. 19.1, while the essential range is r0,1s.
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Рис. 19.1. Graph of ϕpxq.

Further, let us consider a multiplication operator in Cra,bs. The result is similar to
one in L2ra,bs with minor modifications.

Theorem 19.3. Let ϕ P Cra,bs, Aϕ : Cra,bs Ñ Cra,bs, Aϕ f “ ϕpxq f pxq. Then

σpAϕq “ Rnϕ ” tλ : Dx P ra,bs λ “ ϕpxqu,

moreover,
λ P σppAϕq ô Dpα,β q Ă ra,bs : ϕ

ˇ

ˇ

pα,β q
” λ ,

and other values of ϕ belong to σrpAϕq.

Proof.

1) If λ P Rnϕ , consider
gpxq :“ pϕpxq ´ λ q f pxq P Rnϕ.

By definition, λ P Rnϕ means that

Dxλ P ra,bs : λ “ ϕpxλ q.

At this point, gpxλ q “ 0, thus,

RnpAϕq ‰ Cra,bs

(the operator is not surjective), so λ P σpAq.

2) Let λ R Rnϕ . Rnϕ , being an image of a closed set under continuous map, is a closed
set. Therefore,

distpλ ,Rnϕq “ d ą 0,

where
distpλ ,Rnϕq “ min

xPra,bs
|λ ´ ϕpxq|.
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Now, we will construct the resolvent and check its boundedness. This is equivalent
to solving the equation

pϕpxq ´ λ q f pxq “ gpxq

for an arbitrary given gpxq. Formally dividing by the factor pϕpxq ´ λ q, we get

f pxq “
1

ϕpxq ´ λ
gpxq “ A 1

ϕpxq´λ

gpxq.

As we proved in previous lectures, the norm of multiplication operator A 1
ϕpxq´λ

in Cra,bs is equal to the maximum of 1{pϕpxq ´ λ q:

}Rλ pAϕq} ”

›

›

›
A 1

ϕpxq´λ

›

›

›
“ max

ra,bs

1
|ϕpxq ´ λ |

“
1

min
ra,bs

|ϕpxq ´ λ |
“

1
d

ă 8,

so the resolvent is bounded, and λ P ρpAϕq, which completes the proof of the first
statement.

Next, we show that the classification is as stated.

3) When λ P σppAϕq? For this to be true, the following must hold:

D f P Cra,bs, f ı 0 : Aϕ f “ λ f ,

that is,
pϕpxq ´ λ q f pxq “ 0. (19.1)

f ı 0 means that Dx0 P ra,bs: f px0q ‰ 0. Since f is continuous,

Dpα,β q Q x0 : f
ˇ

ˇ

ˇ

pα,β q
pxq ‰ 0.

Thus, for validity of (19.1), it is necessary that

ϕpxq ´ λ “ 0 on pα,β q.

Why do other points belong to the residual spectrum? Let λ P Rnϕ ; it means that

Dxλ : λ “ ϕpxλ q.

If g P RnpAϕ ´ λ Iq, then

gpxq “ pϕpxq ´ λ q f pxq, gpxλ q “ 0.

Consider the closure of the range in Cra,bs; the uniform convergence preserves the
values at points: if

hpxq P RnpAϕ ´ λ Iq,

then hpxλ q “ 0. So the closure does not coincide with the entire space, and therefore,
by definition, λ P σrpAϕq.
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We have considered only bounded operators, although many concepts carry over to
the unbounded case as well. For instance, the position operator in quantum mechanics,
i.e., the operator of multiplication by x in L2pRq, has the entire real line as its spectrum.

The Hilbert–Schmidt Theorem: Auxiliary Propositions

The fundamental Hilbert–Schmidt theorem concerns the properties of compact self-
adjoint operators. Recall that when discussing the Gram–Schmidt process, we mentioned
that, at present, there are two known methods for constructing orthogonal bases in
Hilbert spaces. The first method involves taking a closed linearly independent system
and orthogonalizing it using the Gram–Schmidt procedure. By a well-known theorem,
a closed orthogonal system forms a basis. The second method relies on the Hilbert–
Schmidt theorem. Before we state this theorem, we need to establish a few auxiliary
results.

Definition 19.2. Let A P BpHq, where H is a Hilbert space. A subspace H0 Ă H is
an invariant subspace of A if

@x0 P H0 : Ax P H0.

Lemma 19.1. If H0 is an invariant subspace of A, then HK
0 is invariant under the

operator A˚.

Proof. Let x P H0, y P HK
0 . We must prove that A˚y P HK

0 . Consider

pA˚y,xq “ py,Axq “ 0,

since y P HK
0 and Ax P H0, so A˚y P HK

0 .
This lemma has an obvious corollary:

Corollary 19.1. If A “ A˚ then HK
0 is invariant under A.

Recall that for A “ A˚, we know

}A} “ sup
}x}“1

|pAx,xq|.

Lemma 19.2. If there exists x0, }x0} “ 1, such that

|pAx0,x0q| “ }A},

then x0 is an eigenvector of A corresponding to λ “ ˘}A}:

Ax0 “ λx0.
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Proof. Assume that dimH ě 2. Take z P H, }z} “ 1, and z K x0. Consider

xptq “ x0 cos t ` zsin t.

For t P r0,2πs, it forms a circle in two-dimensional span of x0, z. By the Pythagorean
theorem, }xptq} “ 1. Let us plug it into the quadratic form, and consider

f ptq “
`

Axptq,xptq
˘

.

At zero, we get f p0q “ pAx0,x0q, and this is an extremum of f , so f 1p0q “ 0. Since

f ptq “
`

Apx0 cos t `zsin tq,x0 cos t `zsin t
˘

“ cos2 tpAx0,x0q`2RepAx0,zqsin t cos t `sin2 tpAz,zq,

we obtain
0 “ f 1

p0q “ 2RepAx0,zq.

Changing z ÞÑ iz, we get RepAx0, izq “ ´ ImpAx0,zq “ 0. Thus, pAx0,zq “ 0, and therefore,
Ax0 P zK, so

Ax0 P pxK
0 q

K
“ xx0y,

and Ax0 “ λx0, which means that x0 is an eigenvector. The equality λ “ ˘}A} is obvious
since the quadratic form equals to λ :

|pAx0,x0q| “ λ px0,x0q “ λ ,

and |pAx0,x0q| “ }A}.
The following is the property of compact operators.

Lemma 19.3. Let A P CpHq, where H is a Hilbert space. Let xn á x. Then

pAxn,xnq Ñ pAx,xq.

This means that quadratic form is a weakly continuous function.
Proof. Consider the difference of quadratic forms

ˇ

ˇ

ˇ
pAxn,xnq ´ pAx,xq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
pAxn,xnq ´ pAx,xnq ` pAx,xnq ´ pAx,xq

ˇ

ˇ

ˇ
ď

ď

ˇ

ˇ

ˇ

`

Apxn ´ xq,xn
˘

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

`

Ax,pxn ´ xq
˘

ˇ

ˇ

ˇ
.

Each summand in this bound tends to zero: by virtue of the Cauchy–Bunyakovsky–
Schwarz inequality,

ˇ

ˇ

ˇ

`

Apxn ´ xq,xn
˘

ˇ

ˇ

ˇ
ď }Axn ´ Ax} ¨ }xn},
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where }xn} is bounded, since txnu8
n“1 weakly converges to x, and therefore, is weakly

bounded (which is, by the Banach–Steinhaus theorem, equivalent to being bounded):

}Axn ´ Ax} ¨ }xn} ď }Axn ´ Ax} ¨C,

and, since A is compact, it makes a converging sequence out of weakly converging, thus,

}Axn ´ Ax} ¨C Ñ 0, and so is
ˇ

ˇ

ˇ

`

Apxn ´ xq,xn
˘

ˇ

ˇ

ˇ
;

as for the second summand, due to Riesz’s theorem, it is the evaluation of the functional
FAx, which corresponds to a fixed element Ax, at the element xn ´ x, so

ˇ

ˇ

ˇ

`

Ax,pxn ´ xq
˘

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
FAxpxn ´ xq

ˇ

ˇ

ˇ
Ñ 0,

which completes the proof.

Theorem 19.4. A unit ball in a Hilbert space is weakly sequentially compact. It means
that

@txnu
8
n“1, }xn} ď 1,

there exists a weakly converging subsequence xnk á x.

Given the difficulty of proving this theorem, we will omit the complete proof and focus
on the key idea, which is the following. For a separable space (while the theorem is valid
for unseparable spaces as well), in a unit ball, where }xn} ď 1,

xn á x ô pxn,ekq Ñ px,ekq

@k, where teku8
k“1 is an orthonormal basis. This means that @ f P H˚: f pxnq Ñ f pxq, which

is equivalent to
@y P H : pxn,yq Ñ px,yq

by Riesz’s theorem. Then, y can be expanded into the Fourier series with tail being
bounded by some ε , and for pxn,yq, and for the remaining finite sum, we have the
coordinate convergence.

There is an analogy for this. Consider continuous functions on a compact set. They
have many remarkable properties, one of which is that a continuous function on a compact
set attains its maximum and minimum. Similarly, weakly continuous functions on weakly
compact sets also attain their maximum and minimum.

Theorem 19.5. Let pX ,} ¨ }q be a normed space, and F be a weakly continuous function,
i.e.,

xn á x ñ Fpxnq Ñ Fpxq.
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Let M be a weakly compact set. Then

Dx0 P M : Fpx0q “ sup
xPM

Fpxq.

Proof. By the definition of sup,

Dxn P M : Fpxnq Ñ C ” sup
xPM

Fpxq.

Since M is weakly compact, Dtxnku8
k“1: xnk Ñ x0. Since F is weakly continuous, Fpxnkq Ñ

Fpx0q, and, simultaneously, Fpxnq Ñ C, so Fpx0q “ C.
Now, we are all set to formulate the Hilbert–Schmidt theorem.

The Hilbert–Schmidt Theorem

Theorem 19.6 (The Hilbert–Schmidt Theorem, for separable case). Let H be
a separable Hilbert space, dimH “ 8. Let A “ A˚ P CpHq. Then there exists
an orthonormal basis teku8

k“1 in H that consists of eigenvectors: Aek “ λkek. λk P R.
Moreover, if λn are enumerated such that

|λ1| ě |λ2| ě . . . |λk| ě . . . ,

then
|λ1| “ }A} and lim

nÑ8
λn “ 0.

Note that a basis exists only if we consider the eigenvalues with multiplicities. For
each eigenvalue λk, there may be a set of linearly independent eigenvectors ek j , and it
is necessary to choose an orthogonal basis in their span. However, if all eigenvalues are
simple (i.e., to any λk, there correspond a unique ek up to a constant factor), then all the
eigenvectors are automatically orthogonal.

Proof.

1) Consider the supremum of the quadratic form associated to A:

sup
}x}“1

ˇ

ˇpAx,xq
ˇ

ˇ.

The unit sphere is weakly compact; A is compact, therefore, pAx,xq is weakly
continuous, and De1, }e1} “ 1:

ˇ

ˇpAe1,e1q
ˇ

ˇ “ sup
}x}“1

ˇ

ˇpAx,xq
ˇ

ˇ,

and it is equal to }A}, since A is self-adjoint. By Lemma 19.2, e1 is an eigenvector:

Ae1 “ λ1e1, |λ1| “ }A}.
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2) The subspace xe1y Ă H is invariant under A, so, due to Lemma 19.1, H1 “ xe1yK is
invariant under A as well. Consider the restriction of A to H1:

A
ˇ

ˇ

H1
“ A1, A1 “ A˚

1

and A1 P CpH1q. Thus, by the same argument,

De2 P H1 :
ˇ

ˇpA1e2,e2q
ˇ

ˇ “ sup
}x}H1“1

pA1x,xq,

so
Ae2 “ λ2e2, |λ2| “ }A1} ď }A} “ |λ1|.

3) Through mathematical induction, we can construct a sequence teku8
k“1, which is

orthogonal, and
Aek “ λkek, and |λ1| ě |λ2| ě . . . .

Why λn Ñ 0? Let us prove it by contradiction. Suppose that there exists C ą 0 and
a subsequence |λnk | ě C. Taking a dot product with ek (this operation is a linear
functional), we obtain the Fourier coefficients, which belong to ℓ2. Thus, enk á 0,
and, therefore, by the property of compact operators,

Aenk

}¨}
Ñ 0,

but
}Aenk} “ |λnk | ¨ }enk} “ |λnk | ą C,

which leads to a contradiction.

Further, define
H8 “ xe1,e2, . . .y

K.

There are two possibilities:

a) H8 “ t0u. Then, teku is an ONB.

b) H8 ‰ t0u. Then, for the restriction of A to this space, we have
›

›

›
A
ˇ

ˇ

H8

›

›

›
ď }An} “ |λn| Ñ 0,

so
A
ˇ

ˇ

H8
“ 0.

This means that H8 “ KerA. Let us take an orthonormal basis in the kernel:

t fku
N
k“1, N ď 8.

Then teku8
k“1 Y t fkuN

k“1 is an orthonormal basis in H.
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Example: a Compact Operator in ℓ2

Consider the following operators in ℓ2:

1) Ax “

´

x1,
x2
2 , . . . ,

xn
n , . . .

¯

, that is,

Aek “
1
k

ek.

2) Ax “

´

x1,0,
x3
3 ,0,

x5
5 ,0, . . .

¯

,

What is H8 in these cases? In case 1, it is H8 “ t0u. One can see that H8 “ xe2,e4, . . .y

in case 2.
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Lecture 20. Applications of the Hilbert–Schmidt

Theorem

Discussion of Self-Study Exercises from the Previous Lecture

We begin by discussing the self-study problems from Lecture 18.

1) Prove that σpABqzt0u “ σpBAqzt0u. Additionally, if at least one of operators has
a bounded inverse, then σpABq “ σpBAq.

Note that if, for certainty, there exists A´1, then AB „ BA:

AB “ ApBAqA´1.

Therefore, the spectra coincide.

Without the assumptions on invertibility of A and B, the problem is a little more
difficult. Let λ ‰ 0, and λ P ρpBAq (for example, |λ | ą }BA}). For |λ | ą }BA}, let us
use the Neumann series for the resolvent:

pAB ´ λ Iq
´1

“ ´
1
λ

8
ÿ

k“0

pABqk

λ k “ ´
1
λ

´

I `
AB
λ

`
ABAB

λ 2 ` . . .
¯

.

All the summands in the brackets, except for I, have A as the first factor and B as
the last one. We can write it in the form

´
1
λ

´

I `
AB
λ

`
ABAB

λ 2 ` . . .
¯

“ ´
1
λ

´

I `
1
λ

A
´

I `
BA
λ

`
BABA

λ 2 ` . . .
¯

B
¯

“

“ ´
1
λ

´

I ´ ARλ pBAqB
¯

.

Now, let us look at the formulas obtained and see that the answer has no series
included. Thus, it is possible that the same equality holds for other points of the
resolvent set, and not only for |λ | ą }BA}:

Rλ pABq “ ´
1
λ

´

I ´ ARλ pBAqB, λ P ρpBAq

¯

,

and, similarly,

Rλ pBAq “ ´
1
λ

´

I ´ BRλ pABqA
¯

.

It is easy to check that these are indeed resolvents to the corresponding operators
by multiplying it by pAB ´ λ Iq and pBA ´ λ Iq respectively.

Example, where the spectra are not exactly the same, can be provided by Aℓ, Ar in
ℓ2:

AℓAr “ I, σpAℓArq “ t1u,
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and
ArAℓq “ PeK

1
, σpArAℓq “ t0,1u,

so the spectra coincide expect for 0. The fact that the spectrum of any projection
operator belongs to t0,1u will be proved later.

4) Let α “ pα1,α2, . . .q P ℓ8. In ℓ2, consider

Aαx “ pα1x1,α2x2, . . .q.

Find σpAαq.

The point spectrum is easy to find:

Aαx “ λx ñ @k : αkxk “ λxk;

if xk ‰ 0, then λ “ αk. For instance,

Aαek “ αkek.

Thus, σppAαq “ tαku8
k“1. Further, note that since the sequence tαku8

k“1 is bounded,
due to the Bolzano theorem, it has limit points. Therefore, since the spectrum is
a closed set,

tαku8
k“1 Ă σpAαq.

For instance, consider

Ax “ px1,
x2

2
,
x3

3
, . . .q, αk “

1
k
,

so σppAq “ t1{ku8
k“1, however, 0 P σpAq and 0 P t1{ku8

k“1.

Returning to the general case, we can claim that

tαku8
k“1 “ σpAαq.

Let us show it. Suppose λ ‰ tαku8
k“1. Then, the distance to this set is positive:

inf
kě1

|αk ´ λ | “ d ą 0,

and we construct a bounded resolvent Rλ pAαq, i.e., solve pAα ´ λ Iqx “ y. In
coordinate form, the solution can be expressed as follows:

Rλ pAαqy “

´ y1

α1 ´ λ
,

y2

α2 ´ λ
, . . .

¯

;

in fact, this is a multiplication operator corresponding to tβku8
k“1 ” t1{pαk ´λ qu8

k“1:

Rλ pAαq “ Aβ .
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The norm of this operator is

}Rλ pAαq} “ sup
kě1

1
|αk ´ λ |

“
1

inf
kě1

|αk ´ λ |
“

1
d

ă 8,

which completes the proof.

5) Let X be a Banach space and Ω Ă C be a nonempty compact set. Prove that

DA P BpXq : σpAq “ A.

In Ω, there is a countable dense set, and @n P N there exists a finite p1{nq-net y1n,
yn

2,. . . , yn
mn

, where the superscript stands for the number of the approximation step.
The union YnPNtyn

1, . . . ,y
n
mn

u of these nets is a countable set, and it is dense. Let us
enumerate it like this: pα1,α2, . . . ,αn, . . .q.

6) Let U “ U˚ “ U´1. Describe all operators of this form.

First, }U} “ 1, therefore,

@λ P C, |λ | ą 1, ñ λ P ρpUq.

Suppose |λ | ă 1. U has an inverse U´1 “ U˚, }U˚} “ 1, and

}λ I} ă
1

}U´1}
,

so the operator U ´ λ I has a bounded inverse, since we can consider λ I as a small
perturbation of U . Therefore,

σpUq Ă tλ P C : |λ | “ 1u;

in fact, for any closed subset of the unit circle, there exists a unitary operator that
has this subset as spectrum.

Further, we consider an operator that is self-adjoint and unitary at the same time.
So, due to the properties of these operators, σpUq Ă t˘u. Next, let us find out
whether these options are possible or not. Consider the operator

I ´U
2

`
I `U

2
“ I.

Squaring the first one, we get

´ I ´U
2

¯2
“

I ´ 2U `U2

4
“

I ´ 2U
2

,
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so this is a projection operator. The same can be verified for the second one. Further,
consider a vector x from the image of the first operator; denote Rn I´U

2 “: H0:

I ´U
2

x “ x, x P H0,

thus, pI ´Uqx “ 2x, so Ux “ ´x. Similarly, @x P H1, H1 “ Rn I`U
2 , we have Ux “ x.

Therefore, in the decomposition

H “ H0 ‘ H1,

the operator is of the form

U “

˜

´I 0

0 I

¸

.

It is possible for any of these spaces to be trivial; for instance, if U “ I, then H0 “ t0u.

Now, we are to prove that for the projection operator P, σpPq Ă t0,1u. Let X be
a Banach space decomposed into X “ X0 ‘ X1 with X j being closed. Let P : X Ñ X0

be a projection along X1.

First, let us try to find the eigenvectors:

Px “ λx, x0 “ λ px0 ` x1q, x j P X j.

Rearranging this equation, we obtain

p1 ´ λ qx0 “ λx1,

and, since X0 and X1 have a trivial intersection, it is equal to 0:

p1 ´ λ qx0 “ 0, λx1 “ 0.

When is it true? Taking λ “ 0 and an arbitrary x1, we have x0 “ 0, so X0 “ KerP.
Further, for λ ‰ 0 and x1 “ 0, we obtain, for x0 ‰ 0, that λ “ 1. Therefore, σppPq Ă

t0,1u.

In fact, the spectrum of P is purely discrete. One can prove it by constructing the
resolvent. Suppose λ R t0,1u. Let us solve

pP ´ λ Iqx “ y;

decomposing it with respect to the components X0 and X1, we get

x0 ´ λ px0 ` x1q “ y0 ` y1.
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The sum is direct, therefore, the components with index 0 on the left-hand side
coincide with those on the right-hand side; the same goes for the index 1:

p1 ´ λ qx0 “ y0,

´ λx1 “ y1
ñ

x0 “
y0

1 ´ λ
,

x1 “ ´
y1

λ
.

Thus, the resolvent can be written in the form

Rλ pPq “
P

1 ´ λ
´

I ´ P
λ

.

Exercises: Applications of the Hilbert–Schmidt Theorem

A while back, we considered the operator

pA f qpxq “

ż x

0
f ptqdt

in L2r0,1s, and obtained the bound for its norm. Recall that for any T : L2ra,bs Ñ L2ra,bs,

pT f qpxq “

ż b

a
Kpx, tq f ptqdt, Kpx, tq P L2ra,bs

2,

the following bound is valid:
}T } ď }K}L2.

Since for A we have

pA f qpxq “

ż 1

0
χtďxptq f ptqdt,

the bound for the norm is }A} ď 1
2 . In fact, the norm is less than this upper bound. Let

us find it by employing the Hilbert–Schmidt theorem.
This operator is compact, but not self-adjoint. However, we know that

}A˚A} “ }A}
2.

This operator is self-adjoint and compact, so one can apply the Hilbert–Schmidt theorem,
which gives that the largest eigenvalue is equal to the norm:

λ1pA˚Aq “ }A˚A},

where λ1 is taken with absolute value omitted since the operator is nonnegative:

pA˚Ax,xq “ pAx,Axq “ }Ax}
2

ě 0.

191



FUNCTIONAL ANALYSIS AND THEORY OF OPERATORS

IGOR SHEIPAK

THESE LECTURE NOTES ARE PREPARED
BY STUDENTS AND MAY CONTAIN MISTAKES

STAY TUNED FOR THE UPDATES AT VK.COM/TEACHINMSU

Further,
}A} “

a

λ1pA˚Aq.

We have to find the adjoint operator at first. For the integral operator in L2ra,bs,

pA f qpxq “

ż b

a
Kpx, tq f ptqdt,

the adjoint is given by

pA˚ f qpxq “

ż b

a
Kpt,xq f ptqdt.

Thus, in our case, we have

pA f qpxq “

ż 1

0
χtěx f ptqdt “

ż 1

x
f ptqdt;

one can see that the operator A is not self-adjoint since the integral kernel is not symmetric.
Next, let us consider the eigenequation

A˚A f “ λ f .

Expanding the right-hand side, we obtain
ż 1

x

´

ż t

0
f psqds

¯

dt “ λ f pxq. (20.1)

To find f , we will differentiate it. Why is it legal, considering f P L2r0,1s? For an arbitrary
function from L2r0,1s, the derivative is not defined, however, this function is an eigenvector
of our operator, and is defined by the equation above. The first integration on the left-
hand side of the equation gives us a function from ACr0,1s, and the second one takes
this function to C1r0,1s; therefore, the right-hand side is from C1r0,1s as well. Repeating
this argument, we integrate f P C1r0,1s twice, and obtain that P C3r0,1s, and so on, thus,
f P C8r0,1s.

Differentiating with respect to the lower limit of the integral, we obtain

´

ż x

0
f psqds “ λ f 1

pxq, (20.2)

and, differentiating again, we arrive at

´ f pxq “ λ f 2
pxq,

and one can see that λ “ 0 Ñ f ” 0, so λ is positive. Thus, we have

f 2
pxq “ ´

1
λ

f pxq,
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and the solution is a linear combination of sine and cosine:

f pxq “ asin
x

?
λ

` cos
x

?
λ
. (20.3)

Note that the differential equation is not equivalent to the integral equation, since the
boundary condition must be imposed. Note that it follows from the integral
equation (20.1) that f p1q “ 0, and equation (20.2) implies that f 1p0q “ 0. We have
a second-order differential equation, so there are two boundary conditions to be
imposed, and we just have found them.

It is better to begin with considering the condition for f 1, since it is posed at 0, where
the sine vanishes. By differentiating (20.3), we obtain

f 1
pxq “

a
?

λ
cos

x
?

λ
´

b
?

λ
sin

x
?

λ
,

thus,
f 1

p0q “
a

?
λ
,

so a “ 0. Therefore,
f “ bcos

x
?

λ
“ 0,

and b ‰ 0. Therefore,
1

?
λ

“
π

2
` πn, n “ 0,1, . . . ,

which gives

λn “ ´
4

π2p1 ` 2nq2 , λ0 “
4

π2 ,

therefore, }A} “
a

λ0 “ 2{π. From the Hilbert–Schmidt theorem it also follows that

fnpxq “ cos
´

π

2
` πn

¯

x

is an orthogonal basis in L2r0,1s.
Note that if we consider AA˚, we evidently obtain the same result, since nonzero

eigenvalues of AA˚ and A˚A coincide for a bounded operator A.
Further, let us consider self-study problem 7 from Lecture 18, where the operator of

the form

A „

¨

˚

˚

˚

˚

˝

a b 0 0 . . .

b a b 0 . . .

0 b a b . . .
...

...
...

... . . .

˛

‹

‹

‹

‹

‚

acts in ℓ2, a, b P R. We will construct a similar operator, and find the spectrum.
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The aim is to find a unitary isomorphism U and an operator B such that

ℓ2 ℓ2

L2r0,πs L2r0,πs.

A

U U

B

In L2r´π,πs, one of the standard orthonormal bases is

1
?

2π
,

1
?

π
sinnx,

1
?

π
cosnx, n P N. (20.4)

In L2r0,πs, one can take as a basis either odd or even part of the basis above, so
?

2
?

π
sinnx, and

?
2

?
π

cosnx,
1

?
π

are both bases. It is quite simple to demonstrate; considering the odd (or even) extension
of f P L2r0,πs to L2r´π,πs, we see that the Fourier series with respect to basis (20.4)
consists only of sines (or, respectively, cosines).

Next, let us fix the standard basis tenu in ℓ2 and the sine basis
!

En
?

2?
π

sinnx
)

in L2r0,πs.
There is an isometric isomorphism U so that U : en Ñ En. Let us construct it. It can be
easily seen that

Ae1 “ ae1 ` be2,

and, for n ě 2,
Aen “ ben´1 ` aen ` ben`1.

Therefore, for B we have

BE1 “ aE1 ` bE2 “ pa ` 2bcosxqE1,

and, for n ě 2,

BEn “

?
2

?
π

`

bsinpn ´ 1qx`asinnx`bsinpn ` 1qx
˘

“

?
2

?
π

pa`2bcosxqsinnx “ pa`2bcosxqEn,

thus, since B acts the same way for any element of the basis,

B f “ pa ` 2bcosxq f pxq.

This is a multiplication operator, spectra of which are well-studied, so

σpBq “
“

a ´ 2|b|,a ` 2|b|
‰

,

and, more precisely, it is σcpBq, because the measure of the preimage for each value that
pa ` 2bcosxq takes is zero. Therefore, the same goes for σpAq.
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Schatten–von Neumann Classes and Nuclear Operators

Let A P CpHq. Then A˚A is self-adjoint and compact. By the Hilbert–Schmidt theorem,

Dek : A˚Aek “ λkek, λk ě 0.

Define skpAq :“
a

λkpA˚Aq; we call them s-numbers of the operator A.

Definition 20.1. If tcku8
k“1 P ℓp, then we denote A P Sp and say that A belongs to the

Schatten–von Neumann class. The case p “ 1, S1, is often referred to as the nuclear class.
S2 is called a Hilbert–Schmidt class.

For S1-class operators, the trace is well-defined, i.e., the sum
ÿ

k

pAek,ekq

is independent of the choice of basis.
Note also that S8 is the space of all compact operators in H. Now, we remind that the

space of compact operators is a closed two-sided ideal in the space of bounded operators;
the classes Sp are ideals as well, however, they are not closed. Their closure is S8. Thus,
the classes Sp can be can be regarded as a certain classification of compact operators.

In perturbation theory, compact perturbations of operators are often considered.
Sometimes, stricter conditions must be imposed, such as requiring the perturbation to
belong to the class Sp for some p. For example, the well-known Kato’s theorem states
that the absolutely continuous spectrum of a self-adjoint operator is stable under trace-
class perturbations.

Self-Study Exercises

1) Consider, for A P CpHq,

Ax “

N
ÿ

k“1

skpAqpx,ϕkqψk, N ď 8,

where tϕku is an orthonormal basis and tψku is an orthogonal system. This is called
the Schmidt representation. Prove the validity of the representation.

2) Consider

pA f qpxq “

ż 1

0
minpx, tq f ptqdt

in L2r0,1s. Find the eigenvalues, eigenvectors, and the corresponding p for Sp class.
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3) Let µk be solutions of

tan µ “ ´
1
µ
, µ ą 0.

Prove that cos µkx forms an orthogonal system, but is not a basis. Additionally,
prove that being completed by µ0 that is a solution of

coth µ “
1
µ
,

cos µkx forms an orthogonal basis.

This problem is equivalent to the following one. Consider

pA f qpxq “

ż 1

0
maxpx, tq f ptqdt

in L2r0,1s. Find the eigenvectors and (asymptotic) eigenvalues.
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Lecture 21. Fredholm Theory

Fredholm Theory: Introduction

During this lecture, we focus on the study of Fredholm theory. Its main objective is
to analyze the solvability of equations of the form

pI ´ Aqx “ y,

where A is a compact operator, in some Banach space X . The questions posed are as
follows. For a given y, does a solution x exist? If not, why? If yes, is it unique?

Clearly, the case of dimX “ 8 is of interest, as such problems are well-studied in linear
algebra for finite-dimensional spaces.

Let us first consider the finite-dimensional analog. Suppose dimX “ n ă 8, T P LpXq.
Then,

dimKerT ` dimRnT “ n.

In infinite-dimensional case, this equality makes no sense. However, we can consider it
from another point of view. If dimKerT “ 0, then the range is the entire space X , so
injectivity of T immediately implies its surjectivity, and vice versa, if dimRnT “ n, then
the kernel is trivial, so T is surjective. For operators of the form I ´ A with compact A, it
works the same way, so injectivity and surjectivity become equivalent.

We will prove all the statements for Hilbert spaces, since the key ideas are preserved
for Banach spaces, and the proof involves tedious technical work rather than conceptual
difficulty. At the same time, Hilbert spaces are more natural here for applications.

In a Hilbert space H, consider the following equations:

pI ´ Aqx “ y, (1) pI ´ Aqx “ 0, (2)

and, for the adjoint operator,

pI ´ A˚
qx “ y, (3) pI ´ A˚

qx “ 0. (4)

These equations are very closely related. These equations can be also considered in
a Banach space X , with A˚ being replaced by A1, and for the adjoint operator, the equation
is given in the dual space X˚.

Auxiliary Lemmas

As a first step, it is necessary to formulate and prove several auxiliary lemmas, which
will simplify the proof of the fundamental theorems in Fredholm theory. We emphasize
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one more time that we always assume H to be a Hilbert space and A to be a compact
operator.

Lemma 21.1. dimKerpI ´ Aq ă 8.

Proof. Suppose x P KerpI ´ Aq. Then, by definition,

pI ´ Aqx “ 0.

Therefore,
A
ˇ

ˇ

ˇ

KerpI´Aq
“ I.

Since A is compact, and the identity operator is compact only in a finite-dimensional
space, we conclude that dimKerpI ´ Aq ă 8.

Lemma 21.2. RnpI ´ Aq is closed.

Proof. Denote
H0 :“ KerpI ´ Aq.

It is a finite-dimensional closed subspace of H; consider its orthogonal complement

H1 “ HK
0 , H “ H0 ‘ H1.

Naturally,
RnpI ´ Aq “ RnpI ´ Aq

ˇ

ˇ

ˇ

H1
,

since I ´ A takes all the elemts of H0 to 0.
Recall the previously proved auxiliary statement. If for a bounded operator T in

a Banach space X there exists c ą 0 such that }T x} ě c}x}, then RnT is closed.
How do we show that the range of I ´ A is closed? We will prove a constant c so that

the bound above holds for pI ´ Aq
ˇ

ˇ

H1
. Let us show the existence of c by contradiction.

Suppose that there is no such constant. The inequality

}pI ´ Aqx} ě c}x}

means that T x is separated from zero for x ‰ 0; thus, the following means the inverse:

Dxn, }xn} “ 1, such that pI ´ Aqxn Ñ 0.

Further, txnu8
n“1 is bounded and A is compact, so the set tAxnu8

n“1 is precompact.
Therefore, there exists a converging subsequence xnk such that Axnk Ñ x0 P H1. At the
same time, pI ´ Aqxnk Ñ 0. Therefore,

xnk Ñ x0
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as well. One can see that
pI ´ Aqx0 “ 0,

so x0 P H0, while we supposed that x0 P H1. Whence, x0 “ 0, which gives a contradiction
with the continuity of the norm, since }xn} “ 1.

Lemma 21.3. The following equalities hold:

KerpI ´ Aq ‘K RnpI ´ A˚
q “ H, KerpI ´ A˚

q ‘K RnpI ´ Aq “ H.

Remark 21.1. If we consider T P BpHq instead of I ´A with A P CpHq, the decomposition
above becomes

KerT ‘K RnT ˚ “ H,

since for an arbitrary bounded operator, the range need not form a closed subspace.

Proof. These statements are symmetric, so it is sufficient to prove only one of them.
First, we will show that these two subsets are orthogonal. Suppose x P KerpI ´ Aq and

y P RnpI ´ A˚q, that is, Dz P H: y “ pI ´ A˚qz. Then,

px,yq “
`

x,pI ´ A˚
qz
˘

“
`

pI ´ Aqx,zq “ p0,zq “ 0,

since x P KerpI ´ Aq, so x K y.
Next, we must show that the sum of these two subspaces is the entire space. Assume

that
Dw K

´

KerpI ´ Aq ‘ RnpI ´ A˚
q

¯

.

It implies that w P RnpI ´ A˚q, so

@y P H : 0 “
`

w,pI ´ A˚
qy
˘

,

as pI ´ A˚qy P RnpI ´ A˚q. By the definition of the adjoint operator, it can be transfered to
the first argument of the dot product as

`

w,pI ´ A˚
qy
˘

“
`

pI ´ Aqw,y
˘

,

therefore, since this product vanishes for all y P H, we obtain pI ´Aqw “ 0 ñ w P KerpI ´Aq.
At the same time, w K KerpI ´ Aq, thus, w “ 0.

Recall that one of our aims was to show that the injectivity and surjectivity are
equivalent. The following lemma is the first part of this.

Lemma 21.4. If KerpI ´ Aq “ t0u, then RnpI ´ Aq “ H.
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Proof by contradiction. Suppose that

RnpI ´ Aq “ H1 Ĺ H.

In further, we are to consider the powers of this operator. For its powers, we have

Hn “ pI ´ AqHn´1, Hk “ RnpI ´ Aq
k

due to the injectivity of pI ´ Aq; see the diagram in Fig. 21.1.

Рис. 21.1. Diagram of H Ľ H1 Ľ H2.

Thus, we obtain a chain of inclusions of subspaces

H ” H0 Ľ H1 Ľ H2 Ľ ¨¨ ¨ Ľ Hn´1 Ľ Hn Ľ . . . .

For any n P N,
Dxn´1 P Hn´1, xn´1 K Hn, }xn´1} “ 1.

Since the set txnu8
n“1 is bounded and the operator A is compact, the set tAxnu8

n“1 is
precompact, and, therefore, there exists a Cauchy subsequence for it. Consider, for m ą n,

}Axn ´ Axm}
2

“ }pI ´ Aqxm ´ pI ´ Aqxn ´ xm ` xn}
2.

For the first term, we have pI ´ Aqxm P Hm`1; the second one belongs to Hn`1, and the
third one belongs to Hm. All three first terms together lie in Hn`1, while for the last one,
we have xn P Hn. Therefore,

xn K pI ´ Aqxm ´ pI ´ Aqxn ´ xm,

therefore, due to the Pythagorean theorem,

}pI ´ Aqxm ´ pI ´ Aqxn ´ xm ` xn}
2

“ }xn}
2

` }pI ´ Aqxm ´ pI ´ Aqxn ´ xm}
2

“

“ 1 ` }pI ´ Aqxm ´ pI ´ Aqxn ´ xm}
2

ě 1,

which contradicts to the existence of a Cauchy subsequence of tAxnu8
n“1.
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Lemma 21.5. If RnpI ´ Aq “ H, then KerpI ´ Aq “ t0u.

Let us point out that Lemmas 21.4, 21.5 together imply that an operator of the form
I ´ A with A being a compact operator is injective if and only if it is surjective.

Proof. It is sufficient to combine two previous lemmas to prove this one. If RnpI ´Aq “

H, then, due to Lemma 21.3,
KerpI ´ A˚

q “ t0u.

Further, since A˚ is compact as well, Lemma 21.4 gives

RnpI ´ A˚
q “ H,

from which, by virtue of Lemma 21.3, we obtain

KerpI ´ Aq “ t0u.

Note that the the same holds for pI ´ A˚q.

Fredholm Solvability Conditions

Recall the equations from which we started the lecture:

pI ´ Aqx “ y, (1) pI ´ Aqx “ 0, (2)

and, for the adjoint operator,

pI ´ A˚
qx “ y, (3) pI ´ A˚

qx “ 0. (4)

Theorem 21.1. Equation (1) (or (3)) has a solution iff y is orthogonal to solutions of
equation (4) (respectively, to solutions of equation (2)).

Proof. This theorem follows from Lemma 21.3. Suppose that equation (1) has
a solution; then, y P RnpI ´ Aq. According to Lemma 21.3, y K KerpI ´ A˚q, which is the
space of solutions of equation (4). For equation (3), the proof is similar.

The Fredholm Alternative

Theorem 21.2 (The Fredholm Alternative). Either equation (1) has a unique solution
for every y, or equation (2) admits a nontrivial solution.

Remark 21.2. Note that, similarly, either equation (3) has a unique solution for any y,
or equation (4) has a nontrivial solution.

Note also that it is possible that for some y there is no uniqueness of solution, and for
some there is no solutions at all. However, if there is a solution for every y P H, then it
is automatically a unique one.
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Proof. It is quite simple to prove the theorem by combining Lemmas 21.4 and 21.5,
according to which

KerpI ´ Aq “ t0u ô RnpI ´ Aq “ H.

Let us look at the first possibility. If we have a solution of equation (1) for any y, then
RnpI ´ Aq “ H, then the kernel is trivial, i.e., KerpI ´ Aq “ t0u, which, in turn, means that
equation (2) has only a trivial solution. Therefore, the second possibility is false. The
uniqueness of the solution of (1) follows from injectivity of I ´ A.

Next, suppose that equation (2) admits a nontrivial solution. In this case, KerpI ´Aq ‰

t0u, so RnpI ´ Aq ‰ H, and thus, for some y P H, there are no solutions of equation (1).
Therefore, the first possibility is false.

The Third Fredholm Theorem

Note that Lemma 21.1 claims that

dimKerpI ´ Aq ă 8,

and, since A˚ is compact as well,

dimKerpI ´ A˚
q ă 8.

The third theorem, in turn, claims that these dimensions are equal:

Theorem 21.3.
dimKerpI ´ Aq “ dimKerpI ´ A˚

q.

Proof. Denote

n “ dimKerpI ´ Aq, m “ dimKerpI ´ A˚
q.

Let tϕ1, . . . ,ϕnu be an orthonormal basis in KerpI ´Aq and tψ1, . . . ,ψmu be an orthonormal
basis in KerpI ´ A˚q. Suppose that these numbers are different, e.g., n ą m. Consider the
operator T given by

T x “ pI ´ A˚
qx `

m
ÿ

i“1

px,ψiqϕi.

Additional part has finite rank, so it is a compact operator, and T x can be rewritten as

T x “ pI ´ Bqx,
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where B P CpHq is defined by

Bx “ A˚x ´

m
ÿ

i“1

px,ψiqϕi.

As T is an operator of the same form as earlier, Lemmas 21.1–21.5 and Theorems 21.1–21.2
are valid. Let us show that KerpI ´ Bq “ t0u. Suppose x P KerpI ´ Bq. Then

pI ´ A˚
qx ´

m
ÿ

i“1

px,ψiqϕi “ 0.

By definition, pI ´ A˚qx P RnpI ´ A˚q, and

m
ÿ

i“1

px,ψiqϕi P KerpI ´ Aq.

According to Lemma 21.3, these subspaces are orthogonal to each other. Therefore, this
sum vanishes if both terms vanish:

pI ´ A˚
qx “ 0,

m
ÿ

i“1

px,ψiqϕi “ 0.

The first equality gives x P KerpI ´ A˚q. Next, since tϕ1, . . . ,ϕnu is a basis, any subsystem
of it is linearly independent, so

px,ψiq “ 0, i “ 1, . . . ,m.

Recalling that tψ1, . . . ,ψnu is a basis in KerpI ´ A˚q, we conclude that x K KerpI ´ A˚q.
Therefore, x “ 0, which means that the kernel of T “ I ´B is trivial, and hence, RnpI ´Bq “

H. This means that the equation
pI ´ Bqx “ y

has a solution @y P H. Let us take a look at the equation

T x ” pI ´ A˚
qx `

m
ÿ

i“1

px,ψiqϕi “ ϕm`1. (21.1)

(Recall that we supposed that n ą m, so we have at least one additional element of the
basis in KerpI ´ Aq.) Taking the dot product of this equation with ϕm`1, we obtain

´

pI ´ A˚
qx,ϕm`1

¯

`

m
ÿ

i“1

px,ψiqpϕi,ϕm`1q “ }ϕm`1}
2.

Since tϕ1, . . . ,ϕnu is an orthonormal basis in KerpI ´ Aq, the right-hand side is 1. On the
left-hand side, we have pI ´A˚qx P RnpI ´A˚q and ϕm`1 P KerpI ´Aq, so the first summand
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vanishes, and since pϕi,ϕm`1q “ 0, i “ 1, . . . ,m, all terms under the sum vanish as well.
Thus, we obtain the contradiction: 0 “ 1. Therefore, n ď m. Supposing that n ă m, one
can consider the operator S defined by

Sx “ pI ´ Aqx `
ÿ

i“n

px,ϕiqψi,

and, using by reasoning, arrive at a similar contradiction. Thus, n “ m, which completes
the proof.

History of the Fredholm Theory

E.Fredholm considered integral equations of the form

f pxq ´

ż b

a
Kpx, tq f ptqdt “ gpxq. (21.2)

It does not matter in which space these equations are considered – whether in Banach
spaces such as Cra,bs or Lpra,bs, p ‰ 2, or in Hilbert spaces such as L2ra,bs. The operator A

defined by

A f “

ż b

a
Kpx, tq f ptqdt,

obviously, must be compact, for the entire Fredholm theory to be applicable here. Note
that equation (21.2) is called the Fredholm equation of 2nd kind.

It is worth noting that the Fredholm alternative does not mean “either everything is
good or everything is bad”. Instead, it signifies “either everything is good or almost good”,
where “good” corresponds to the operator I ´ A being a bijection, where equation (21.2)
has a unique solution, and “almost good” corresponds to the case where the right-hand
side must be orthogonal to the kernel of the adjoint operator, which is in fact finite-
dimensional, so it imposes only mild constraints on the choice of the right-hand side in
the inhomogeneous equation. Additionally, in the latter case, a solution (if any) is not
unique, which is a minor flaw.

The Fredholm equation of 1st kind is of the form
ż b

a
Kpx, tq f ptqdt “ gpxq, A f “ g.

To solve this equation for generic g, one must find an inverse operator to A. The problem
is that, in an infinite-dimensional space, a compact operator has no bounded inverse. This
leads to the following issue. Suppose that there is a solution for g “ g0, and consider a small
perturbation of g0: g0 ` εg1. Applying an unbounded inverse to g1, one can make it not
really small correction. Due to this fact, the problems of this kind are called sometimes
ill-posed problems.
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Corollaries: Spectra of Compact Operators in Banach Spaces

From the Fredholm theory, one can derive many valuable corollaries about the
structure of the spectrum of compact operators.

Theorem 21.4. Let X be a Banach space, dimX “ 8, and A P CpXq. Then

1) 0 P σpAq.

2) If λ P σpAq and λ ‰ 0, then λ P σppAq, and λ is an isolated eigenvalue with finite
multiplicity:

dimKerpA ´ λ Iq ă 8.

3) @ε ą 0 there exists a finite number of eigenvalues λk such that |λk| ą ε.

The third property means that, outside some ball centered at 0 in C, there is a finite
number of eigenvalues of a compact operator. This implies that the only possible limit
point for tλku is 0.

Proof.

1) We will prove this property by contradiction. Let 0 P ρpAq. Then there exists
A´1 P BpXq:

AA´1
“ I.

Since A is compact and A´1 is bounded, the composition is compact, but I can be
compact only in X with dimX ă 8.

2) This property is an immediate corollary of the Fredholm theory. Suppose that λ ‰ 0

and λ P σpAq. Constructing the resolvent is equivalent to solving the equation

pA ´ λ Iqx “ y.

Since λ ‰ 0, this equation can be rewritten as
´

I ´
A
λ

¯

x “ ´
y
λ
.

Consider the possibility given by the Fredholm alternative.

a) For any right-hand side, there is a unique solution. Therefore, pI ´ A{λ q is
bijective, which is equivalent to that A ´ λ I is bijective, so λ P ρpAq, which is
a contradiction to the assumption λ P σpAq.
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b) The homogeneous equation
´

I ´
A
λ

¯

x “ 0

has a nontrivial solution. It is equivalent to

Ax “ λx,

so λ P σppAq.

The multiplicity of λ is finite due to Lemma 21.1. Consider x P KerpA ´ λ Iq, λ ‰ 0.
This is equivalent to Ax “ λx, that is,

x “
A
λ

x.

Therefore,

I “
A
λ

ˇ

ˇ

ˇ

KerpA´λ Iq
,

and, since A is compact, and due to the fact that the identity operator is compact
only in a finite-dimensional space, dimKerpA ´ λ Iq ă 8.

Note that there is no such restriction for λ “ 0. It can belong to σcpAq, σrpAq, or
σppAq, and, in the latter case, it may have infinite multiplicity.

3) To be proved in the next lecture.
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Lecture 22. Fredholm Theory: Exercises

Localization of Eigenvalues of a Compact Operator

Note that the proof of the following fact was set aside for discussion in this lecture:
@ε ą 0 there exists a finite number of eigenvalues λk such that |λk| ą ε . Now, we are to
prove it by contradiction.

Suppose that there exists an infinite number of different eigenvalues, namely, tλku8
k“1,

outside some ε-neighborhood of zero: |λk| ą ε . We stress that assumption that eigenvalues
are different is important due to the fact that eigenvectors correspoding to different
eigenvalues are linearly independent (one can prove it through mathematical induction).
Let ek satisfy

Aek “ λek;

consider the linear span Xn “ xe1,e2, . . . ,eny. These spaces are nested:

X1 Ĺ X2 Ň ¨¨ ¨ Ĺ Xn Ĺ Xn`1 Ĺ . . . .

Due to Riesz’s theorem, for any n P N, there is an element xn P Xn such that

dist
`

xn,Xn´1
˘

ě 1 ´ δ , δ P p0,1q.

Since xn P Xn, one can expand it in terms of the basis

xn “

n
ÿ

k“1

akek.

Consider yn :“ xn{λn; for this element, we have }yn} ă 1{ε . Since A is compact, the set
tAynu8

n“1 is precompact. We are going to show that it is impossible to choose a Cauchy
sequence, which will lead to a contradiction. Expanding yn and Ayn, we obtain

yn “
anen

λn
`

n´1
ÿ

k“1

akek

λn
, Ayn “ anen `

n´1
ÿ

k“1

akλkek

λn
“ xn ` zn´1, zn´1 P Xn´1,

where zn´1 “ Ayn ´ xn is indeed from Xn´1, since the n-th term vanishes. Let us try to
choose a Cauchy subsequence in tAynu; for m ą n, consider

}Ayn ´ Aym} “ }xn ` zn´1 ` xm ` zm´1}.

Since xn ` zn´1 ` zm´1 P Xm´1, due to Riesz’s theorem,

}xn ` zn´1 ` xm ` zm´1} ą 1 ´ δ , δ P p0,1q,

therefore, there is no Cauchy subsequence, hence, A is not compact, which is
a contradiction.
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Discussion of Self-Study Exercises from the Previous Lecture

Consider some self-study problems from Lecture 20.

1) Consider, for A P CpHq,

Ax “

N
ÿ

k“1

skpAqpx,ϕkqψk, N ď 8,

where tϕku is an orthonormal basis and tψku is an orthogonal system. This is called
the Schmidt representation. Prove the validity of the representation.

Let us consider A˚A. This operator is compact and self-adjoint, therefore, due to the
Hilbert–Schmidt theorem, there exists an orthonormal basis tϕku8

k“1 such that

A˚Aϕk “ λkϕk.

Additionally, A˚A is nonnegative: pA˚Ax,xq ě 0, therefore, λk ě 0. By definition,

skpAq “
a

λkpA˚Aq.

Since tϕku8
k“1 is a basis, @x P H we have

x “

8
ÿ

k“1

px,ϕkqϕk,

so

Ax “

N
ÿ

k“1

px,ϕkqAϕk, (22.1)

where we exclude numbers k such that Aϕk “ 0, and N ď 8. For Aϕk “ 0, we have
skpAq ‰ 0, since for ϕk we have

Aϕk “ 0 ñ A˚Aϕk “ 0,

so it is an eigenvector corresponding to the eigenvalue λ “ 0. Take only ϕk, Aϕk ‰ 0,
and denote

ψk :“
Aϕk

skpAq
.

Let us verify that this system is orthonormal:

pψk,ψnq “
pAϕk,Aϕnq

skpAqsnpAq
“

pA˚Aϕk,ϕnq

skpAqsnpAq
“

λkpA˚Aqpϕk,ϕnq

skpAqsnpAq
“ δkn,

since
pϕk,ϕnq “ δkn and

λkpA˚Aq

s2
kpAq

“ 1.
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Thus, for (22.1), we have

Ax “

N
ÿ

k“1

skpAqpx,ϕkqψk,

where numbers k are such that Aϕk ‰ 0.

3) Consider

pA f qpxq “

ż 1

0
maxpx, tq f ptqdt

in L2r0,1s. Find the eigenvectors and (asymptotic) eigenvalues.

It is clear that this operator is compact and self-adjoint (since the integral kernel is
a continuous symmetric real-valued function). Due to the Hilbert–Schmidt theorem,
eigenvectors of this operator form an orthogonal basis. Consider the eigenequation
A f “ λ f :

ż x

0
x f ptqdt `

ż 1

x
t f ptqdt “ λ f pxq. (22.2)

One can see that this equation implies that its solution is a differentiable function,
so we can differentiate the equation with respect to x:

ż x

0
f ptqdt ` x f pxq ´ x f pxq “ λ f 1

pxq. (22.3)

Differentiating once again, we obtain

f pxq “ λ f 2
pxq.

Further, we must obtain the boundary conditions. Substituting x “ 0 and x “ 1

into (22.2) and (22.3), we get

λ f p0q “

ż 1

0
t f ptqdt,

λ f p1q “

ż 1

0
f ptqdt,

λ f 1
p0q “ 0,

λ f 1
p1q “

ż 1

0
f ptqdt.

Thus, the following boundary conditions must be imposed:

f 1
p0q “ 0, f p1q “ f 1

p1q.

The operator is self-adjoint, so eigenvalues are real. Consider the following
possibilities.
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a) λ ą 0. Then
f pxq “ aex{

?
λ

` be´x{
?

λ ,

and
f 1

pxq “
1

?
λ

´

aex{
?

λ
´ be´x{

?
λ

¯

,

so, f 1p0q “ 0 gives a “ b, therefore, f pxq “ acoshpx{
?

λ q. Further, substituting
it into the second boundary condition, we obtain

acosh
1

?
λ

“
a
λ

sinh
1

?
λ
, a ‰ 0,

which can be rewritten as
coth

1
?

λ
“

1
?

λ
.

Denote µ “ 1{
?

λ . The equation coth µ “ µ can be solved asymptotically by
employing the expansion in Taylor series, however, we will omit this calculation;
there exists a unique solution µ “ µ0, see Fig. 22.1.
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Рис. 22.1. Graphs of u “ coth µ and u “ µ .

Of course, there must be other eigenvectors, since they have to form a basis.

b) λ ă 0. In this case,
f pxq “ acos

x
?

´λ
` bsin

x
?

´λ
,

so,

f 1
pxq “

1
?

´λ

´

´ asin
x

?
´λ

` bcos
x

?
´λ

¯

.
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Therefore, the condition f 1p0q “ 0 gives b “ 0:

f pxq “ acos
x

?
´λ

.

Substituting it into f p1q “ f 1p1q, we obtain

acos
1

?
´λ

“ ´
a

?
´λ

sin
1

?
´λ

, a ‰ 0.

Denoting µ :“ 1{
?

´λ , we arrive at the equation

tan µ “ ´
1
µ
,

see Fig. 22.2.

-6 -4 -2 2 4 6
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-2

2

4

6

Рис. 22.2. Graphs of u “ tan µ and u “ ´1{µ .

There are infinitely many eigenvalues tµnu8
n“1, and µn „ πn. Thus, our operator

belongs to Sp @p ą 1. The functions

cothpµ0xq, cospµnxq, n P N

form an orthogonal basis in L2r0,1s.

Fredholm Theory: Exercises

1) In L2r0,πs, consider

f pxq ´ λ

ż

π

0
sinpx ` tq f ptqdt “ gpxq.
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For which λ and g does a solution exist?

Due to the Fredholm Solvability theorem, there exists a solution iff g is orthogonal
to the solutions of pI ´ A˚q f “ 0. Since the integral kernel sinpx ` tq is symmetric,
the operator above is self-adjoint, therefore, g must be orthogonal to the solutions
of

f pxq ´ λ

ż

π

0
sinpx ` tq f ptqdt “ 0.

Using the sine of sum identity, we can rewrite it as

f pxq “ λ sinx
ż

π

0
cos t f ptqdt ` λ cosx

ż

π

0
sin t f ptqdt.

If there is a solution of this equation, it has the following form

fhompxq “ asinx ` bcosx.

Substituting it into the homogeneous equation, we obtain

asinx ` bcosx “ λ sinx
ż

π

0
cos tpasinx ` bcosxqdt ` λ cosx

ż

π

0
sinxpasinx ` bcosxqdt.

Since sinx and cosx are linearly independent, the coefficients must match, so

a “ λ

ż

π

0
bcos2 t dt, a “ λ

ż

π

0
bsin2 t dt,

so a “ λbπ{2 and b “ λaπ{2. Therefore,

b “
λ 2π2b

4
.

For λ “ ˘2{π, this equation admits any value of b as a solution, and a “ ˘b.

For λ “ 2{π, we have
fhompxq “ apsinx ` cosxq,

and, for λ “ ´2{π,
fhompxq “ apsinx ´ cosxq.

For λ ‰ 0, the equation admits only a trivial solution fhom “ 0. Thus, in this case,
there exists a unique solution @g P L2r0,πs, moreover,

f pxq “ gpxq ` asinx ` bcosx (22.4)

for some certain a and b. For λ “ ˘2{π, g must be orthogonal to fhompxq “

sinx ˘ cosx, and, moreover, all solutions have the form f pxq `C fhompxq, where f pxq
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has the form as in (22.4); so, there are infinitely many solutions, and they form
a one-dimensional affine space.

The key here is that the integral kernel is a linear combination of two functions. In
a more general setting, for

Kpx, tq “

n
ÿ

i“1

pipxqqiptq,

all steps above can be repeated.

2) In L2r0,1s, consider

f pxq ´ λ

ż 1

0
Kpx, tq f ptqdt “ sinp2024πxq

with Kpx, tq of the form

Kpx, tq “

#

xp1 ´ tq, t ą x,

tp1 ´ xq, t ă x.

In the operator form, this equation becomes pI ´ λAq f “ g.

For λ “ 0, we get f “ g.

For λ ‰ 0, consider first the homogeneous equation, and decompose the integral
operator into the sum of two:

f pxq ´ λ

ż x

0
tp1 ´ xq f ptqdt ´ λ

ż 1

x
xp1 ´ tq f ptqdt “ 0.

Differentiating this equation, we obtain

f 1
pxq ´ λxp1 ´ xq f pxq ` λ

ż x

0
t f ptqdt ` λxp1 ´ xq f pxq ´ λ

ż 1

x
p1 ´ tq f ptqdt “ 0.

Since the nonintegral terms cancel out, one can take the second derivative; this gives

f 2
pxq ` λx f pxq ` λ p1 ´ xq f pxq “ 0,

and, after simplifying it, we obtain

f 2
pxq ` λ f pxq “ 0. (22.5)

Since it is the second-order equation, we have to find two boundary conditions. One
can see that f p0q “ f p1q “ 0, and that, given these boundary conditions, the operator
d2{dx2 is negative. Let us show it. First, we take dot product of equation (22.5) with
f pxq

ż

f 2 f dx ` λ

ż

f 2 dx “ 0 ô

ż

f 12 dx ` λ

ż

f 2
“ 0,
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therefore, λ ą 0.

Further, a solution of the homogeneous equation is of the form

f pxq “ asin
?

λx ` bcos
?

λx.

The condition f p0q “ 0 gives b “ 0; then, substituting x “ 1, we obtain

asin
?

λx “ 0.

For a ‰ 0, we have
?

λ “ πn, n P N,

or, equivalently, λn “ π2n2.

Note also that the homogeneous equation pI ´ λAq f “ 0 with λ ‰ 0 is equivalent to
the following eigenproblem

A f “
1
λ

f .

That is, 1{pπ2n2q are eigenvalues of A, and the eigenvectors

fnpxq “ sinpπnxq

form an orthogonal basis; for this basis to become orthonormal, one can put
a normalization factor in front of sine:

en “
?

2sinpπnxq. (22.6)

Further, one can try to find a solution expressed in the form of Fourier series.
Expanding the right-hand side into the Fourier series, one can obtain the relation
for the Fourier coefficients of the solution. Note also that gpxq “ sinp2024πxq belongs
to family (22.6).

In the case λ “ π220242, a solution of the homogeneous equation takes the form
fhompxq “ asinp2024πxq, so the right-hand side gpxq is not orthogonal to it, therefore,
due to the Fredholm theory, there is no solution for such λ . For any other λ , let us
try to find a solution of the form

f pxq “

8
ÿ

k“1

akek.

Substituting it into the equation, we obtain

8
ÿ

k“1

akek ´ λ

8
ÿ

k“1

ak
1

π2k2 ek “
e2024
?

2
,
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or simply
8
ÿ

k“1

ak

´

1 ´
λ

π2k2

¯

ek “
e2024
?

2
.

Upon carefully examining this equation, one can see that

a) For λ ‰ π2k2, k P N:

a2024 “
1

?
2
´

1 ´ λ

π2k2

¯ , ak “ 0, k ‰ 2024.

b) For λ “ π2k2, k P Nzt2024u, the coefficient ak can be arbitrary,

a2024 “
1

?
2
´

1 ´ λ

π2k2

¯ , ak “ 0, k ‰ 2024,

and an “ 0, n ‰ k,2024, so we have a one-dimensional affine space of solutions.

c) For λ “ 20242π2, there are no solutions.

Let us demonstrate another approach to solving problems of this kind using the
following equation as an example:

f pxq ´ λ

ż 1

0
Kpx, tq f ptqdt “ x.

Taking the second derivative, we obtain the equation

f 2
pxq “ λ f pxq.

Although this equation is the same as the homogeneous one, the boundary conditions
must be modified. One can see that

f p0q “ 0, f p1q “ 1.

Substituting
f pxq “ asin

?
λx ` bcos

?
λx,

into f p0q “ 0, we get b “ 0; next, substituting it into f p1q1, we get

asin
?

λ “ 1,

so
a “

1
sin

?
λ

for λn ‰ π2n2. In that case,

f pxq “
sin

?
λx

sin
?

λ
, λ ‰ π

2n2.

For λ “ π2n2, there are no solutions, since x M x fhom,ny.
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3) (Weyl Theorem). Let A P BpXq and λ P σpAqzσppAq. Let B P CpXq. Then λ P σpA`Bq.

This can be reformulated in the following form: under a compact perturbation B of A,
the continuous and residual spectra remains in the spectrum of the operator A ` B.
However, the classification may change.

The proof of this statement is quite simple. Let us prove it by contradiction.

Suppose λ R σpA ` Bq. Then, there exists a bounded resolvent. Consider

A ´ λ I “ A ` B ` λ I ´ B “
`

A ` B ´ λ I
˘`

I ´ pA ` B ´ λ Iq
´1B

˘

,

where the first factor is invertible, and pA`B´λ Iq´1B is compact since B is compact
and pA ` B ´ λ Iq´1 is bounded, whence, the second factor is a Fredholm operator.
Let us examine the possibilities for the second factor, as dictated by the Fredholm
alternative. The first possibility is that the equation

`

I ´ pA ` B ´ λ Iq
´1B

˘

f “ g

has a unique solution for any g P H, that is,
`

I ´ pA ` B ´ λ Iq´1B
˘

is invertible.
Therefore, A ´ λ I is invertible as well, but this is not true since λ P σpAq. Another
possibility is that the homogeneous equation

`

I ´ pA ` B ´ λ Iq
´1B

˘

x “ 0

admits a nontrivial solution, so x is an eigenvector correspoding to the eigenvalue 0;
therefore, it is an eigenvector of A corresponding to λ , which is not true, since
λ R σppAq.

Self-Study Exercises

1) Consider

f pxq ´ λ

ż b

a
Kpx, tq f ptqdt “ gpxq, Kpx, tq “

n
ÿ

i“1

pipxqqipxq, (22.7)

where the functions tpiu
n
i“1 are linearly independent. Then a solution has the form

f pxq “ gpxq `

n
ÿ

i“1

ci pipxq,

where tciu
n
i“1 is a solution of the following system of equations:

n
ÿ

j“1

ai jc j “ bi, i “ 1,2, . . . ,n.
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Find ai j, bi.

Note that equation (22.7) can be considered in any Banach space of functions where
all the integrals and functions are well-defined.

2) Consider

f pxq ´ λ

ż

π

0
cospx ´ tq f ptqdt “ gpxq.

For which λ P C and g P L2r0,πs does a solution exist?
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Lecture 23. Unbounded Operators: Introduction

Volterra Operators

Recall first what we proved in the last two lectures. Let A P CpXq, where X is a Banach
space, dimX “ 8. Then

1) 0 P σpAq.

2) If λ P σpAq, λ ‰ 0, then λ P σppAq and dimKerA ´ λ I ă 8.

3) @ε ą 0 there exists a finite number of eigenvalues λ such that |λ | ą ε .

Now, we proceed to the following topic.

Definition 23.1. A is called a Volterra operator if A P CpXq and σpAq “ t0u.

The importance of these operators is due to the Fredholm Alternative. Consider

pI ´ Aqx “ y.

Recall that there are two possibilities: either there exists a unique solution x for any y P X ,
or there exists a nontrivial solution x0 to the homogeneous equation

pI ´ Aqx0 “ 0.

If A is a Volterra operator, then for any λ P C the equation

pI ´ λAqx “ y

has a unique solution for any y P X , that is, for Volterra operators, the first possibility of
the alternative always holds. To explain this, let us consider the following possibilities.

1) If λ “ 0, then x “ y, since pI ´ λAq becomes I.

2) If λ ‰ 0, then
´

A ´
1
λ

Iqx “ ´
y
λ
,

and 1{λ R σpAq, so there exists a bounded resolvent

R1{λ pAq “

´

A ´
1
λ

I
¯´1

.
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Examples of Volterra Operators

1) Consider

pA f qpxq “

ż x

0
f ptqdt

in Cr0,1s or L2r0,1s.

First, let us show that the point spectrum is empty: σppAq “ H. Let us try to solve
the eigenequation

A f “ λ f ,
ż x

0
f ptqdt “ λ f pxq.

Note that the eigenfunction must be a differentiable function, since it is equal to the
integral of itself, and the integral increases the number of derivatives. Moreover, if
there is an eigenfunction f , one can see that f P C8r0,1s, since the aforementioned
reasoning can be repeated infinitely many times. Differentiating the equation, we
get

f pxq “ λ f 1
pxq (23.1)

with the Cauchy condition
f p0q “ 0. (23.2)

Thus, from (23.1), we obtain

f pxq “ Cex{λ , λ ‰ 0.

Substituting it into (23.2), we get C “ 0, so f pxq ” 0, which is not an eigenfunction.
Further, if λ “ 0, then f pxq ” 0 as well.

Another approach is to construct the resolvent. Let |λ | ą }A}, then the Neumann
series is valid:

Rλ pAq “ ´
1
λ

8
ÿ

k“0

Ak

λ k . (23.3)

Recall the expression obtained in the previous lectures:

Ak f “

ż

´0x px ´ tqk´1

pk ´ 1q!λ k f ptqdt.

Due to the factorial in denominator, the sum in (23.3) converges, so one can
interchange the summation and integration and obtain

Rλ pAq f “ ´
1
λ

´

f `
1
λ

ż x

0
epx´tq{λ f ptqdt

¯

.

With this expression, one can drop the condition |λ | ą }A} since it holds for any
nonzero λ .
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2) Consider a slightly more difficult example

pA f qpxq “

ż x

a
Kpx, tq f ptqdt

in Cra,bs with the condition K P Cra ď t ď xs (this kind of Kpx, tq is called a triangle
kernel) or in L2ra,bs with the following conditions: K is measurable and |Kpx, tq| ď M.
This is a Volterra operator as well, and we will consider it in detail a little later.

Unbounded Operators: Introduction

Let us recall the Hellinger–Toeplitz theorem: If A P LpHq, where H is a Hilbert space,
and @x,y P H

pAx,yq “ px,Ayq,

then A P BpHq.
Therefore, an unbounded operator cannot be defined in the entire space H, and it

must have some domain. Consider the example

A f “ i f 1

in L2r0,1s this operator is called the momentum operator. Consider, for instance,

fnpxq “ sinπnx, } fn} “
1

?
2
.

For these functions,
}A f } “

πn
?

2
Ñ 8 as n Ñ 8.

One of the standard domains for this operator is

DpAq “ t f P W 1
2 r0,1s : f p0q “ f p1q “ 0u,

where

pA f ,gq “

ż 1

0
i f 1

pxqgpxqdx “ i f pxqgpxq
ˇ

ˇ

1
0 ´

ż 1

0
i f pxqg1pxqdx,

and the nonintegral terms vanish due to the boundary conditions in DpAq, therefore,

pA f ,gq “ p f ,Agq.

Note that this operator is not self-adjoint since the domain of adjoint operator is larger.
Our further studies, we will focus on the study of unbounded operators in Hilbert

spaces. Let H be a Hilbert space, and A P LpHq be an unbounded operator. By definition,
a domain of the operator A is a subset DpAq Ă H such that the following condition holds:

x P DpAq ñ Ax P H.

The largest domain of A is called sometimes a natural domain; usually, this domain has
no effective description.
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Graph of an Operator. Graph Norm. Closed Operators

Definition 23.2. A graph of an operator A is a set ΓpAq Ă H ˆ H such that

ΓpAq “
␣

tx,Axu P H ˆ H : x P DpAq
(

.

Definition 23.3. }x}A “ }x} ` }Ax} is called a graph norm of an operator A.

If A P BpHq, due to the fact that the boundedness is equivalent to the continuity, one
can take a sequence xn Ñ x, and then Axn Ñ Ax. In general, this does not work this way
for unbounded operators. However, there is a class of unbounded operators, for which this
property is preserved:

Definition 23.4. A is called a closed operator if ΓpAq is closed in H ˆ H with respect
to the graph norm } ¨ }A.

For a closed operator A, if xn P DpAq and xn Ñ x, Axn Ñ y, then x P DpAq and y “ Ax.

Example of a Nonclosed Operator

Consider A : L2r0,1s Ñ L2r0,1s, A f “ f p0q ¨1 with DpAq “ Cr0,1s. This operator is not
closed; let us show it. Consider the functions fn Ñ 0 P L2r0,1s as depicted in Fig. 23.1.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1/n

Рис. 23.1. Graph of fn.

These functions converge to zero in L2r0,1s, and we have t fn,1u P ΓpAq, however, for
the limit function, the point t0,1u cannot belong to ΓpAq, since it is a graph of linear
operator.
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Note that, for a closed operator, the graph norm is equivalent to the original norm
of H.

Closure of an Operator. Closable Operators

What can we do if the operator is not closed? We can consider ΓpAq. Then

1) If ΓpAq is a graph of some operator B, then we call B a closure of A and denote
B “ A, and A is called a closable operator.

2) If ΓpAq is mot a graph, i.e., t0,yu P ΓpAq, y ‰ 0, then A is not closable.

In the example above, we face an nonclosable operator.
Let us also consider the operator A f “ i f 1 with domain

DpAq “ t f P C8
r0,1s, f p0q “ f p1q “ 0u.

Then, for A, we have

DpAq “ t f P W q21
r0,1s, f p0q “ f p1q “ 0u,

that is, A is closable.

Definition 23.5. If ΓpAq is a graph of some operator, then A is called a closable
operator, and its closure is A with ΓpAq “ ΓpAq.

The Adjoint of an Unbounded Operator

One of the key concepts in operator theory, the adjoint operator, can be extended to
the case of unbounded operators in a natural way.

Definition 23.6. Let A P LpHq, DpAq “ H. Define the domain of A˚ by

DpA˚
q “ th P H : x ÞÑ pAx,hq is a bounded functional in H, x P DpAqu.

By Riesz’s theorem, pAx,hq “ px,zq, and then we define z :“ A˚h.

It is necessary for DpAq to be dense in H, so for z to be unique; otherwise, the adjoint
operator is not well-defined.

In the previous examples, for A f “ f p0q ¨ 1 with DpAq “ Cr0,1s, the domain is dense

in L2r0,1s; the same holds for A f “ i f 1 with DpAq “

˝

W 1
2 r0,1s.

Theorem 23.1. Let A P LpHq, DpAq “ H. Then A˚ is closed.
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Proof. Let us consider the operator

W : H ˆ H Ñ H ˆ H, Wtx,yu “ t´y,xu.

We are going to show that ΓpA˚q “
`

WΓpAq
˘K; it is known that the orthogonal complement

is closed, and, in that case, so is ΓpA˚q. Consider pAx,yq “ px,A˚yq; equivalently, pAx,yq ´

px,A˚yq “ 0. Further, it can be rewritten as

t´Ax,xu K ty,A˚xu in H ˆ H,

since
ptx1,y1u,tx2,y2uqHˆH

def
“ px1,x2qH ` py1,y2qH ,

so
pt´Ax,xu,ty,A˚xuq “ p´Ax,yq ` px,A˚yq “ 0.

Thus, since
t´Ax,xu “ Wtx,Axu and ty,A˚xu P ΓpA˚

q,

we see that ΓpA˚q “ pWΓpAqqK.

Theorem 23.2. Let A P LpHq, DpAq “ H. Then

H “ KerA˚
‘K RnA.

Note that we proved this statement for the operators of the form I ´ A, and we did
not use the boundedness of this operator.

Proof. Let us first show that KerA˚ K RnA. If x P KerA˚, y P RnA, then A˚x “ 0 and
y “ Az for some z P DpAq. Further,

px,yq “ px,Azq “ pA˚x,zq “ 0,

since A˚x “ 0.
Next, one can verify that

KerA˚
K RnA

by considering the limit points of RnA.
Now, the only point to be proved is that KerA˚ ‘ RnA “ H. Suppose that there exists

h P H such that
h K

´

KerA˚
‘K RnA

¯

.

For x P DpAq, consider
0 “ pAx,hq “ px,A˚hq,

where h K Ax, so the first dot product vanishes, and the second one is defined for x P DpAq,
DpAq “ H, therefore, A˚h “ 0, and thus, h P KerA˚, which means h “ 0, since h is orthogonal
to this space.
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Closability of a Densely Defined Operator

Theorem 23.3. Let A P LpHq, DpAq “ H. Then A is closable iff DpA˚q “ H.

If A˚ is densely defined, then A “ A˚˚ (note that it may not coincide with A for
unbounded A).

Consider A f “ i f 1 with DpAq “

˝

W 1
2 :

A˚ f “ i f 1, DpAq “ W 1
2 r0,1s, (23.4)

and these operators are not self-adjoint, since the adjoint one has different domain. Both
of these operators are closed, and A “ A “ A˚˚.

Note also that there is a difference between symmetric and self-adjoint operators, and
it is due to the difference in domains. However, for some symmetric operators, there exist
so-called self-adjoint extensions. By definition, a symmetric operator satisfies

pA f ,gq “ p f ,Agq @ f ,g P DpAq.

We also know that

pA f ,gq “ p f ,A˚gq, @ f P DpAq, @g P DpA˚
q,

so, for a symmetric operator A, the following holds: A Ă A˚, which means that DpAq Ă

DpA˚q and
A˚

ˇ

ˇ

DpAq
“ A,

and the closure may be non-self-adjoint. In further lectures, we will construct all self-
adjoint extensions of (23.4).

Proof of Theorem 23.3. Consider the second power of W :

W : tx,yu “ t´y,xu,

that is, W 2 “ ´I. Since A is densely defined, for WΓpA˚q, we have

WΓpA˚
q “ W

`

W pΓpAqq
˘K

“
`

W 2
ΓpAq

¯K

“ pΓpAqq
K,

and
ΓppA˚

q
˚
q “ pWΓpA˚

qq
K

“
`

pΓpAqq
K
˘K

“ ΓpAq “ ΓpAq.
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Example: Nonexistence of A˚˚

Consider again the following example: in L2r0,1s,

A f “ f p0q ¨ 1, DpAq “ Cr0,1s.

What is A˚?
We know that

KerA˚
‘K RnA “ L2r0,1s

and
DpA˚

q “ tg P L2r0,1s : pA f ,gq is a bounded functionalu.

Further,
ż 1

0
f p0q ¨ 1 ¨ gpxqdx “ f p0q

ż 1

0
gpxqdx.

is the very functional that must be bounded. However, this is not a continuous functional
on the domain of A; there is a way to make it continuous by restricting to the case where

ż 1

0
gpxqdx “ 0.

Thus, g K 1, and 1 is from the range of A, therefore, g P KerA˚, so A˚ “ 0. (It is not
a typical situtation, however, it is quite typical for nonclosable operators.) Since A˚ is not
densely defined, there is no pA˚q˚, and, therefore, it is impossible to construct A.

Inverse of an Unbounded Operator

Theorem 23.4. Let A P LpHq, DpAq “ H. Then there exists A´1 P BpHq,

A´1 : RnA Ñ H,

iff
Dc ą 0 : @x P DpAq : }Ax} ě c}x}.

Proof. ñ. Since there exists A´1, then

@y P RnA : }A´1y} ď }A´1
} ¨ }y},

and KerA “ t0u. There exists a unique x: y “ Ax, and

}x} ď }A´1
} ¨ }Ax}, C “

1
}A´1}

.
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Further, for ð, we have }Ax} ě c}x}, which is equivalent to KerA “ t0u, therefore, there
exists A´1 : RnA Ñ H. Let us show the boundedness of A´1:

}y} ě c}A´1y},

so
}A´1y} ď

1
c

}y} ñ A´1
P BpHq.
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