Занятие 4. Кратные интегралы – вычисление физических величин.

Продолжим наше изучение материала курса математического анализа, второго семестра, читаемого на Физическом факультете. Настоятельно рекомендуем в первую очередь разобраться с третьим занятием — здесь мы продолжим тему, начатую в предыдущем занятии. На примере решения задач, <u>опубликованных</u> на кафедре математики, продолжим изучение кратных интегралов — а именно, познакомимся с приложениями кратных интегралов для вычисления физических величин и более подробно познакомимся с тройными интегралами.

Оглавление

1.	№86	1
	№90	2
2.	Тройные интегралы	3
	Nº92	
	N <u>°</u> 93	
	N <u>°</u> 94	
	Nº95	
3.	Практика	8
	Nº83	
	Nº84	
	Nº85	
	Nº89	
	Nº91	
	NoQ/	11

1. Определение физических величин при помощи вычисления кратных интегралов.

Как уже отмечалось на предыдущем занятии, кратные интегралы используются для вычисления различных физических величин. В этом разделе мы потренируемся в вычислении таких величин. Так, если мы имеем твёрдое тело М на плоскости Оху, то для него мы можем вычислить следующие величины по формулам:

$$m=\iint_M \; \rho(x,y) dx dy - \text{масса тела}$$

$$M_x=\iint_M \; y \rho(x,y) dx dy - \text{статический момент относительно оси x}$$

$$M_y=\iint_M \; x \rho(x,y) dx dy - \text{статический момент относительно оси y}$$

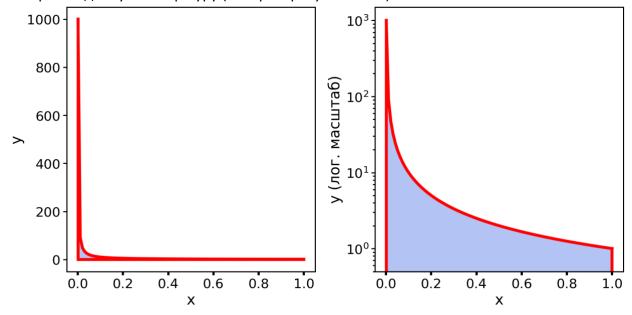
$$I_x=\iint_M \; y^2 \rho(x,y) dx dy - \text{момент инерции относительно оси x}$$

$$I_y=\iint_M \; x^2 \rho(x,y) dx dy - \text{момент инерции относительно оси x}$$

Для следующих фигур M ($\rho \equiv 1$):

Nº86.
$$M = \{10^{-3} \le x \le 1, 0 \le y \le x^{-1}\}$$

Изобразим данную нам фигуру (смотрим рисунок ниже).



Вычислим интересующие нас величины (ещё раз напоминаем, $\rho \equiv 1$ по условию):

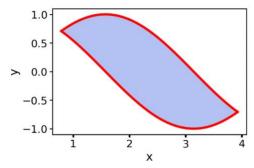
$$m = \iint\limits_{M} dxdy = \int\limits_{10^{-3}}^{1} dx \int\limits_{0}^{\frac{1}{x}} dy = \int\limits_{10^{-3}}^{1} \frac{1}{x} dx = \ln 1 - \ln 10^{-3} = 3 \cdot \ln 10$$

$$M_{x} = \iint\limits_{M} y dxdy = \int\limits_{10^{-3}}^{1} dx \int\limits_{0}^{\frac{1}{x}} y dy = \int\limits_{10^{-3}}^{1} \frac{1}{2x^{2}} dx = -\frac{1}{2} \left(1 - \frac{1}{10^{-3}}\right) = \frac{999}{2}$$

$$\begin{split} M_y &= \iint\limits_{M} x dx dy = \int\limits_{10^{-3}}^{1} x dx \int\limits_{0}^{\frac{1}{x}} dy = \int\limits_{10^{-3}}^{1} dx = 1 - 10^{-3} = 0.999 \\ I_x &= \iint\limits_{M} y^2 dx dy = \int\limits_{10^{-3}}^{1} dx \int\limits_{0}^{\frac{1}{x}} y^2 dy = \int\limits_{10^{-3}}^{1} \frac{1}{3x^3} dx = -\frac{1}{6} \Big(1 - \frac{1}{10^{-6}} \Big) = \frac{999\,999}{6} = \frac{333\,333}{2} \\ I_y &= \iint\limits_{M} x^2 dx dy = \int\limits_{10^{-3}}^{1} x^2 dx \int\limits_{0}^{\frac{1}{x}} dy = \int\limits_{10^{-3}}^{1} x dx = \frac{1}{2} - \frac{10^{-6}}{2} = \frac{0.999999}{2} \end{split}$$

Посмотрим, какие ещё величины можно вычислять:

№90. Вычислите координаты центра масс плоской фигуры, ограниченной кривыми $y=\cos x, y=\sin x\left(\frac{\pi}{4} \le x \le \frac{5\pi}{4}\right)$; поверхностная плотность $\rho\equiv 1$. Изобразим фигуру:



Как вычислить координаты центра масс? Физически, центр масс системы материальных точек определяется по формуле:

$$x_0 = \frac{\sum_{i=1}^{N} m_i x_i}{\sum_{i=1}^{N} m_i}$$

Где N — число точек в системе, m_i , x_i — масса и координата i-й точки соответственно. Чтобы написать аналогичную формулу для плоского тела, разобьём тело M на K кусочков (аналогично, как мы это делали в определении двойного интеграла). Воспользуемся представлением массы небольшого участка разбиения с центром в точке (x,y) с размерами $dx \times dy$:

$$dm = \rho(x, y) dx dy$$

Тогда формула для центра масс перепишется в виде

$$x_0 = \frac{\sum_{j=1}^K \rho(x_j, y_j) x_j dx dy}{\sum_{j=1}^K \rho(x_j, y_j) dx dy}$$

И в предельном переходе по количеству разбиения $K \to \infty$ будем иметь интегральные формулы:

$$x_0 = \frac{\iint_M \rho(x, y) x dx dy}{\iint_M \rho(x, y) dx dy} = \frac{M_y}{m}$$

Аналогичная формула имеет место быть и для у-координаты центра масс:

$$y_0 = \frac{\iint_M \rho(x, y)y dx dy}{\iint_M \rho(x, y) dx dy} = \frac{M_x}{m}$$

То есть нам необходимо найти m, M_{x} , M_{y} – а это мы уже умеем:

меем.
$$m = \iint\limits_{M} dx dy = \int\limits_{\frac{\pi}{4}}^{\frac{5\pi}{4}} dx \int\limits_{\cos x}^{\sin x} dy = \int\limits_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\cos x - \sin x) dx = 2\sqrt{2}$$

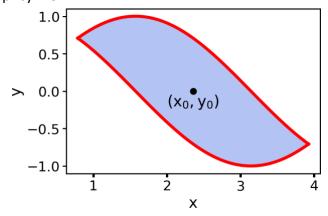
$$M_{x} = \iint\limits_{M} y dx dy = \int\limits_{\frac{\pi}{4}}^{\frac{5\pi}{4}} dx \int\limits_{\cos x}^{\sin x} y dy = \frac{1}{2} \int\limits_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\cos^{2} x - \sin^{2} x) dx = 0$$

$$M_{y} = \iint\limits_{M} x dx dy = \int\limits_{\frac{\pi}{4}}^{\frac{5\pi}{4}} x dx \int\limits_{\cos x}^{\sin x} dy = \int\limits_{\frac{\pi}{4}}^{\frac{5\pi}{4}} x (\cos x - \sin x) dx = \frac{3\pi}{\sqrt{2}}$$

То есть координаты центра масс:

$$x_0 = \frac{M_y}{m} = \frac{3\pi}{4}; y_0 = \frac{M_x}{m} = 0$$

Отметим эту точку на рисунке:



Выглядит весьма правдоподобно для координат центра масс.

2. Тройные интегралы.

По сути своей тройной интеграл мало чем отличается от двойного. Для вычисления интеграла от функции f(x, y, z) по области точек M, необходимо разбить тело M на

множество малых объёмных областей с размерами dx, dy, dz, выбрать внутри каждой области точку (ξ_i, η_i, ζ_i) и составить следующую сумму:

$$\sum_{i,j,k} f(\xi_i, \eta_j, \zeta_k) \Delta x_i \Delta y_j \Delta z_k$$

И тогда интегралом функции f(x,y,z) по области точек M называется предел интегральной суммы при $\Delta x \to 0$, $\Delta y \to 0$, $\Delta z \to 0$.

Методы вычисления тройных интегралов используются те же методы, что и для двойных – сведение тройного интеграла к повторным или замена переменных (наиболее частые переменные – цилиндрические и сферические).

Переход от декартовых к <u>цилиндрические координатам</u> выполняют по следующим формулам:

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \\ z = z \end{cases}$$

Якобиан перехода: $D = \rho$.

Переход от декартовых к <u>сферическим координатам</u> выполняют по следующим формулам:

$$\begin{cases} x = r \cos \phi \sin \theta \\ y = r \sin \phi \sin \theta \\ z = r \cos \theta \end{cases}$$

Якобиан перехода: $D = r^2 \sin \theta$.

Познакомимся с решением наиболее типовых задач:

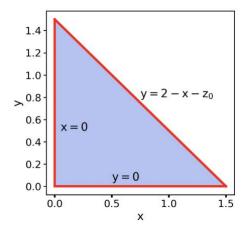
№92. Вычислите тройной интеграл $\iiint_G (x^2+y^2) dx dy dz$, где область G ограничена поверхностями $x^2+y^2=2z$, z=2.

При каждом фиксированном $z_0 \geq 0$ уравнение $x^2 + y^2 = 2z_0$ задаёт окружность радиусом $\sqrt{2z_0}$. А значит поверхность $x^2 + y^2 = 2z$ – параболоид, причём z изменяется от 0 до 2. В фигурах цилиндрической симметрии удобно использовать цилиндрические координаты. Причём при каждом фиксированном z_0 переменные ϕ изменяется от 0 до 2π (полный оборот вокруг оси 0z), ρ изменяется в пределах от 0 до $\sqrt{2z_0}$. Выполним преобразование:

$$\iiint\limits_G (x^2+y^2) dx dy dz = \int\limits_0^2 dz \int\limits_0^{2\pi} d\phi \int\limits_0^{\sqrt{2z}} \rho^2 \cdot \rho d\rho = 2\pi \int\limits_0^2 z^2 dz = \frac{16\pi}{3}$$

№93. Сведите тройной интеграл $\iiint_G f(x,y,z) dx dy dz$ к повторному, где область G ограничена поверхностями x=0, y=0, z=0, x+y+z=2.

Наша поверхность представляет собой плоскость x+y+z=2, ограниченной простыми плоскостями x=0,y=0,z=0. В первую очередь, выберем внешнюю переменную — пусть это будет переменная z. От чего до изменяется данная переменная? Понятно, что z будет максимальным, когда $x=y=0 \rightarrow z=2$. С другой стороны, z будет минимальным при $x=y=1 \rightarrow z=0$. То есть z изменяется от z=00 до z=01. Зафиксируем произвольный z=01. Нарисуем нашу область в проекции z=02.



То есть в данном случае мы имеем переменную y, изменяющуюся от 0 до $2-z_0$. Зафиксируем произвольный $y_0 \in [0,2-z_0]$. Тогда переменная x изменяется от 0 до $2-z_0-y_0$. Итого записываем наш тройной интеграл в виде повторного:

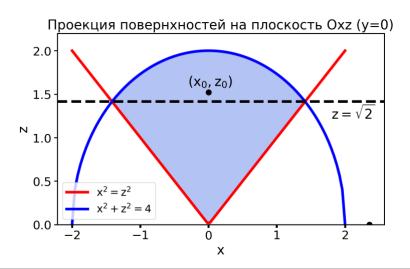
$$\iiint\limits_{G} f(x,y,z) dxdydz = \int\limits_{0}^{2} dz \int\limits_{0}^{2-z} dy \int\limits_{0}^{2-y-z} f(x,y,z) dx$$

№94. Вычислите координаты центра масс и момент инерции относительно начала координат тела с плотностью $ho(x,y,z)=x^2+y^2+z^2$, ограниченного поверхностями $x^2+y^2+z^2=4$, $x^2+y^2=z^2$ ($z\geq 0$).

Во-первых, вспомним формулы для координаты центра масс (они полностью аналогичны двумерному случаю, заменяем только двойные интегралы на тройные):

$$x_0 = \frac{\iiint_G \ \rho(x,y,z) x dx dy dz}{\iiint_G \ \rho(x,y,z) dx dy dz}; \ y_0 = \frac{\iiint_G \ \rho(x,y,z) y dx dy dz}{\iiint_G \ \rho(x,y,z) dx dy dz}; \ z_0 = \frac{\iiint_G \ \rho(x,y,z) z dx dy dz}{\iiint_G \ \rho(x,y,z) dx dy dz}$$

Вычисляем! Наша область представляет собой пересечение шара и конуса. Перейдем в цилиндрические координаты. Наша внешняя переменная z изменяется от 0 до 2. Однако давайте построим нашу область в плоскости 0xz (y=0).



Как видно из рисунка, при измении координаты z от 0 до $\sqrt{2}$ мы переменная r (здесь мы взяли такое обозначение, чтобы не путать c плотностью ρ) изменяется от 0 до z ($x^2+y^2=z^2\to r^2=z^2$); при $z\in \left[\sqrt{2};2\right]$ переменная r изменяется от 0 до $\sqrt{4-z^2}$, в то время как переменная ϕ изменяется от 0 до 2π для любых значений r, z (всегда делаем полный оборот вокруг оси 0z). Запишем наши интегралы:

$$\iiint_{G} \; \rho(x,y,z) dx dy dz = \int\limits_{0}^{\sqrt{2}} dz \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{z} r \; (r^{2}+z^{2}) dr + \int\limits_{\sqrt{2}}^{2} dz \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{\sqrt{4-z^{2}}} r \; (r^{2}+z^{2}) dr$$

Вычисляем:

$$\int_{0}^{\sqrt{2}} dz \int_{0}^{2\pi} d\phi \int_{0}^{z} r (r^{2} + z^{2}) dr = 2\pi \int_{0}^{\sqrt{2}} \left(\frac{z^{4}}{4} + \frac{z^{4}}{2}\right) dz = 2\pi \cdot \frac{3\sqrt{2}}{5}$$

$$\int_{\sqrt{2}}^{2} dz \int_{0}^{2\pi} d\phi \int_{0}^{z} r (r^{2} + z^{2}) dr = 2\pi \int_{\sqrt{2}}^{z} \left(\frac{(4 - z^{2})^{2}}{4} + \frac{z^{2}(4 - z^{2})}{2}\right) dz = 2\pi \left(\frac{32}{5} - \frac{19\sqrt{2}}{5}\right)$$
Average:

Итого:

$$\iiint_{G} \rho(x, y, z) dx dy dz = 2\pi \cdot \left(\frac{3\sqrt{2}}{5} + \frac{32}{5} - \frac{19\sqrt{2}}{5} \right) = 2\pi \left(\frac{32 - 16\sqrt{2}}{5} \right)$$

Полностью аналогично

$$\begin{split} \iiint_G \ x \cdot \rho(x,y,z) dx dy dz \\ &= \int\limits_0^{\sqrt{3}} dz \int\limits_0^{2\pi} d\phi \int\limits_0^z r^2 \cos\phi \ (r^2 + z^2) dr + \int\limits_{\sqrt{3}}^2 dz \int\limits_0^{2\pi} d\phi \int\limits_0^{\sqrt{4-z^2}} r^2 \cos\phi \ (r^2 + z^2) dr \\ &= 0 \end{split}$$

Так как $\int_0^{2\pi}\cos\phi\,d\phi=0$. Оно и понятно: такой результат есть следствие симметрии. Очевидно, что по тем же причинам и $y_0=0$. Остаётся вычислить z_0 :

$$\begin{split} \iiint_G \ z \cdot \rho(x,y,z) dx dy dz &= \int\limits_0^{\sqrt{2}} dz \int\limits_0^{2\pi} d\phi \int\limits_0^z rz \, (r^2+z^2) dr + \int\limits_{\sqrt{2}}^2 dz \int\limits_0^{2\pi} d\phi \int\limits_0^{\sqrt{4-z^2}} rz (r^2+z^2) dr \\ &\int\limits_0^{\sqrt{2}} dz \int\limits_0^{2\pi} d\phi \int\limits_0^z rz \, (r^2+z^2) dr = 2\pi \int\limits_0^{\sqrt{2}} \left(\frac{z^5}{4} + \frac{z^5}{2}\right) dz = 2\pi \\ &\int\limits_{\sqrt{2}}^2 dz \int\limits_0^{2\pi} d\phi \int\limits_0^{\sqrt{4-z^2}} rz (r^2+z^2) dr = 2\pi \int\limits_{\sqrt{2}}^2 \left(\frac{z(4-z^2)^2}{4} + \frac{z^3(4-z^2)}{2}\right) dz = 4\pi \left(\frac{198-71\sqrt{2}}{105}\right) \end{split}$$

$$\text{Итого:}$$

$$z_0 = \frac{4\pi \left(\frac{198 - 71\sqrt{2}}{105}\right) + 2\pi}{2\pi \left(\frac{32 - 16\sqrt{2}}{5}\right)} = \frac{501 - 142\sqrt{2}}{336(2 - \sqrt{2})} \approx 1.52$$

Вполне разумный результат, если посмотреть на картинку выше! Полностью аналогично вычисляются моменты инерции по формулам:

$$\begin{split} I_x &= \iiint_G \ (y^2 + z^2) \cdot \rho(x,y,z) dx dy dz \\ I_y &= \iiint_G \ (x^2 + z^2) \cdot \rho(x,y,z) dx dy dz \\ I_z &= \iiint_G \ (x^2 + y^2) \cdot \rho(x,y,z) dx dy dz \end{split}$$

(см. подробнее в разделе 3).

№95. Пусть G — однородное тело с единичной плотностью, ограниченное поверхностями $x^2+y^2+z^2=4, \ z=1\ (z\ge 1)$. Найдите силу притяжения этим телом материальной точки массы m_0 , находящейся в начале координат.

Давайте выведем формулу, как рассчитать эту силу. Будем действовать аналогично тому, как мы делали с центром масс. Рассмотрим силу взаимодействия материальной точки \mathbf{m}_0 с системой материальных точек:

$$F = G_0 m_0 \sum_{i=1}^{N} \frac{m_i}{r_i^2}$$

где m_i , r_i — масса i-й точки и расстояние между i-й точкой и точкой m_0 соответственно, G_0 — гравитационная постоянная. Теперь представим тело G в виде совокупности таких материальных точек, масса каждой из которых:

$$dm = \rho dV = \rho(x, y, z) dx dy dz$$

И заменяем теперь знак суммы на интеграл:

$$F=G_0m_0\iiint\int \frac{\rho(x,y,z)dxdydz}{(x^2+y^2+z^2)}=G_0m_0\iiint\int \frac{dxdydz}{(x^2+y^2+z^2)}$$

Так как $\rho \equiv 1$ по условию. Остаётся посчитать интеграл! Вновь можем перейти к цилиндрическим координатам:

$$\iiint\limits_{G} \frac{dxdydz}{(x^2 + y^2 + z^2)} = \int\limits_{1}^{2} dz \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{\sqrt{4 - z^2}} \frac{rdr}{r^2 + z^2} = \pi \int\limits_{1}^{2} dz \ln\left(\frac{4}{z^2}\right) = -2\pi \int\limits_{1}^{2} dz \ln\left(\frac{z}{2}\right)$$
$$= \pi (2 - \ln 4)$$

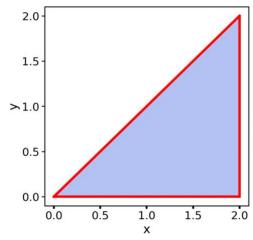
Ответ: $F = G_0 m_0 \pi (2 - \ln 4)$.

Дорогие друзья, на этом мы заканчиваем второй видеоразбор! Попробуйте в качестве упражнения самостоятельно решить оставшиеся номера: №83-85, №89, №91. А краткие решения будут представлены ниже для самопроверки. Успехов!

3. Практика

Nº83. $M = \{0 \le x \le 2, 0 \le y \le x\}$

Данная фигура максимально простая — это есть просто треугольник (смотрим рисунок ниже).



Вычислим интересующие нас величины

$$m = \iint_{M} dxdy = \int_{0}^{2} dy \int_{y}^{2} dx = \int_{0}^{2} (2 - y)dy = 4 - 2 = 2$$

То есть просто площадь данного треугольника.

$$M_{x} = \iint_{M} y dx dy = \int_{0}^{2} y dy \int_{y}^{2} dx = \int_{0}^{2} y(2 - y) dy = \frac{4}{3}$$

$$M_{y} = \iint_{M} x dx dy = \int_{0}^{2} dy \int_{y}^{2} x dx = \int_{0}^{2} \left(2 - \frac{y^{2}}{2}\right) dy = \frac{8}{3}$$

$$I_{x} = \iint_{M} y^{2} dx dy = \int_{0}^{2} y^{2} dy \int_{y}^{2} dx = \int_{0}^{2} y^{2}(2 - y) dy = \frac{4}{3}$$

$$I_{y} = \iint_{M} x^{2} dx dy = \int_{0}^{2} dy \int_{y}^{2} x^{2} dx = \int_{0}^{2} \left(\frac{8}{3} - \frac{y^{3}}{3}\right) dy = 4$$

Nº84. $M = \{0 \le x \le 4, 0 \le y \le x(4-x)\}$

Вычислим интересующие нас величины (ещё раз напоминаем, $\rho \equiv 1$ по условию):

$$m = \iint_M dxdy = \int_0^4 dx \int_0^{x(4-x)} dy = \int_0^4 x(4-x)dx = \frac{32}{3}$$

$$\begin{split} M_x &= \iint\limits_{M} y dx dy = \int\limits_{0}^{4} dx \int\limits_{0}^{x(4-x)} y dy = \frac{1}{2} \int\limits_{0}^{4} x^2 (4-x)^2 dx = \frac{256}{15} \\ M_y &= \iint\limits_{M} x dx dy = \int\limits_{0}^{4} x dx \int\limits_{x(4-x)}^{0} dy = \int\limits_{0}^{4} x^2 (4-x) dx = \frac{64}{3} \\ I_x &= \iint\limits_{M} y^2 dx dy = \int\limits_{0}^{4} dx \int\limits_{x(4-x)}^{x(4-x)} y^2 dy = \frac{1}{3} \int\limits_{0}^{4} x^3 (4-x)^3 dx = \frac{4096}{105} \\ I_y &= \iint\limits_{M} x^2 dx dy = \int\limits_{0}^{4} x^2 dx \int\limits_{0}^{x(4-x)} dy = \int\limits_{0}^{4} x^3 (4-x) dx = \frac{256}{5} \end{split}$$

Nº85. $M = \{0 \le x \le \pi, 0 \le y \le \sin x\}$

Вычисляем:

$$\begin{split} m &= \iint\limits_{M} dx dy = \int\limits_{0}^{\pi} dx \int\limits_{0}^{\sin x} dy = \int\limits_{0}^{\pi} \sin x \, dx = 2 \\ M_{x} &= \iint\limits_{M} y dx dy = \int\limits_{0}^{\pi} dx \int\limits_{0}^{\sin x} y dy = \frac{1}{2} \int\limits_{0}^{\pi} \sin^{2} x \, dx = \frac{\pi}{4} \\ M_{y} &= \iint\limits_{M} x dx dy = \int\limits_{0}^{\pi} x dx \int\limits_{0}^{\sin x} dy = \int\limits_{0}^{\pi} x \sin x \, dx = \pi \\ I_{x} &= \iint\limits_{M} y^{2} dx dy = \int\limits_{0}^{\pi} dx \int\limits_{0}^{\sin x} y^{2} dy = \frac{1}{3} \int\limits_{0}^{\pi} \sin^{3} x \, dx = \frac{1}{3} \int\limits_{0}^{\pi} \sin x \, (1 - \cos^{2} x) dx \\ &= \{t = \cos x, dt = -\sin x \, dx\} = -\frac{1}{3} \int\limits_{1}^{-1} (1 - t^{2}) d = \frac{4}{9} \end{split}$$

№89. Вычислите координаты центра масс и моменты инерции плоской фигуры относительно осей координат, если фигура ограничена линиями x=1, x=2, y=0, y=x; поверхностная плотность $\rho\equiv 1$.

Координаты центра масс вычисляем по формулам:

$$x_0 = \frac{\iint_M \rho(x, y) x dx dy}{\iint_M \rho(x, y) dx dy} = \frac{M_y}{m}$$

$$y_0 = \frac{\iint_M \rho(x, y)y dx dy}{\iint_M \rho(x, y) dx dy} = \frac{M_x}{m}$$

То есть нам необходимо найти m, $M_{\rm x}$, $M_{\rm v}$ – а это мы уже умеем:

$$m = \iint_{M} dxdy = \int_{1}^{2} dx \int_{0}^{x} dy = \int_{1}^{2} xdx = \frac{3}{2}$$

$$M_{x} = \iint_{M} ydxdy = \int_{1}^{2} dx \int_{0}^{x} ydy = \frac{1}{2} \int_{1}^{2} x^{2}dx = \frac{7}{6}$$

$$M_{y} = \iint_{M} xdxdy = \int_{1}^{2} xdx \int_{0}^{x} dy = \int_{1}^{2} x^{2}dx = \frac{7}{3}$$

То есть координаты центра масс:

$$x_0 = \frac{M_y}{m} = \frac{14}{9}$$
; $y_0 = \frac{M_x}{m} = \frac{7}{9}$

И вычисляем моменты инерции:

$$I_{x} = \iint_{M} y^{2} dx dy = \int_{1}^{2} dx \int_{0}^{x} y^{2} dy = \frac{1}{3} \int_{1}^{2} x^{3} dx = \frac{5}{4}$$

$$I_{y} = \iint_{M} x^{2} dx dy = \int_{1}^{2} x^{2} dx \int_{0}^{x} dy = \int_{1}^{2} x^{3} dx = \frac{15}{4}$$

№91. Вычислите координаты моменты инерции относительно оси Оу плоской фигуры, ограниченной линиями x=0, x=1, y=0, y=arcsin(x); поверхностная плотность $\rho\equiv 1$.

$$I_{y} = \iint_{M} x^{2} dx dy = \int_{0}^{1} x^{2} dx \int_{0}^{\arcsin x} dy = \int_{0}^{1} x^{2} \arcsin x dx$$

Вычисляем по частям:

$$\int u dv = uv - \int v du$$
 где $u = \arcsin x$, $dv = x^2 dx \to du = \frac{dx}{\sqrt{1-x^2}}$; $v = \frac{x^3}{3}$.
$$\int_0^1 x^2 \arcsin x \, dx = \frac{x^3 \arcsin x}{3} |_0^1 - \frac{1}{3} \int_0^1 \frac{x^3}{\sqrt{1-x^2}} dx = \{t = 1 - x^2; dt = -2x dx\}$$

$$= \frac{\pi}{6} + \frac{1}{6} \int_0^1 \frac{(1-t)dt}{\sqrt{t}} = \frac{\pi}{6} - \frac{2}{9} \approx 0.301$$

№94. Вычислите координаты центра масс и момент инерции относительно начала координат тела с плотностью $ho(x,y,z)=x^2+y^2+z^2$, ограниченного поверхностями $x^2+y^2+z^2=4$, $x^2+y^2=z^2$ ($z\geq 0$).

Вычислим оставшиеся величины – моменты инерции – по формулам:

$$I_{x} = \iiint_{G} (y^{2} + z^{2}) \cdot \rho(x, y, z) dx dy dz$$

$$I_{y} = \iiint_{G} (x^{2} + z^{2}) \cdot \rho(x, y, z) dx dy dz$$

$$I_{z} = \iiint_{G} (x^{2} + y^{2}) \cdot \rho(x, y, z) dx dy dz$$

Мы также выполним переход к цилиндрическим координатам (см. подробнее в разделе 2):

$$\begin{split} I_{x} &= \iiint_{G} \; (y^{2} + z^{2}) \cdot \rho(x, y, z) dx dy dz \\ &= \int_{0}^{\sqrt{3}} dz \int_{0}^{2\pi} d\varphi \int_{0}^{z} (r^{2} \sin^{2} \varphi + z^{2}) r \; (r^{2} + z^{2}) dr \\ &+ \int_{\sqrt{3}} dz \int_{0}^{2\pi} d\varphi \int_{0}^{z} (r^{2} \sin^{2} \varphi + z^{2}) r \; (r^{2} + z^{2}) dr \end{split}$$

Вычислим каждый интеграл:

$$\int_{0}^{\sqrt{3}} dz \int_{0}^{2\pi} d\varphi \int_{0}^{z} (r^{2} \sin^{2} \varphi + z^{2}) r (r^{2} + z^{2}) dr$$

$$= \int_{0}^{\sqrt{3}} dz \int_{0}^{2\pi} d\varphi \int_{0}^{z} (r^{5} \sin^{2} \varphi + r^{3} z^{2} \sin^{2} \varphi + r^{3} z^{2} + r z^{4}) dr$$

$$= \int_{0}^{\sqrt{3}} dz \int_{0}^{2\pi} \left(\frac{z^{6}}{6} \sin^{2} \varphi + \frac{z^{6}}{4} \sin^{2} \varphi + \frac{z^{6}}{4} + \frac{z^{6}}{2} \right) d\varphi$$

$$= \int_{0}^{\sqrt{3}} dz \int_{0}^{2\pi} \left(\frac{5z^{6}}{12} \sin^{2} \varphi + \frac{3z^{6}}{4} \right) d\varphi = \int_{0}^{\sqrt{3}} \left(\frac{5\pi}{12} z^{6} + \frac{3\pi}{2} z^{6} \right) dz = \frac{23\pi}{12} \int_{0}^{\sqrt{3}} z^{6} dz$$

$$= \pi \frac{23}{12} \cdot \frac{27\sqrt{3}}{7} = \pi \frac{207\sqrt{3}}{28}$$

$$\int\limits_{\sqrt{3}}^2 dz \int\limits_0^{2\pi} d\varphi \int\limits_0^{\sqrt{4-z^2}} (r^2 \sin^2\varphi + z^2) r \, (r^2 + z^2) dr$$

$$= \int\limits_{\sqrt{3}}^2 dz \int\limits_0^{2\pi} d\varphi \int\limits_0^{\sqrt{4-z^2}} (r^5 \sin^2\varphi + r^3 z^2 \sin^2\varphi + r^3 z^2 + r z^4) dr$$

$$= \int\limits_{\sqrt{3}}^2 dz \int\limits_0^{2\pi} \left(\frac{(4-z^2)^3}{6} \sin^2\varphi + \frac{z^2(4-z^2)^2}{4} \sin^2\varphi + \frac{z^2(4-z^2)^2}{4} + \frac{4-z^2}{2} z^4 \right) d\varphi$$

$$= \int\limits_{\sqrt{3}}^2 \left(\frac{(4-z^2)^3}{6} \pi + \frac{z^2(4-z^2)^2}{4} \pi + \frac{z^2(4-z^2)^2}{2} \pi + \pi (4-z^2) z^4 \right) dz$$

$$= \{\text{приводим все подобные слагаемые ...}\} = \pi \frac{2048 - 1097\sqrt{3}}{84}$$

Итого:

$$I_x = \iiint_G (y^2 + z^2) \cdot \rho(x, y, z) dx dy dz = \pi \frac{207\sqrt{3}}{28} + \pi \frac{2048 - 1097\sqrt{3}}{84} = \pi \frac{512 - 119\sqrt{3}}{21}$$

Полностью аналогично вычисляются и оставшиеся моменты инерции, что, конечно же, предоставляется проделать читателю.

