

ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО. ЧАСТЬ 2

ДОМРИН АНДРЕЙ ВИКТОРОВИЧ

МЕХМАТ МГУ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ ПРОФ. РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ. СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU.

ЕСЛИ ВЫ ОБНАРУЖИЛИ ОШИБКИ ИЛИ ОПЕЧАТКИ ТО СООБЩИТЕ ОБ ЭТОМ, НАПИСАВ СООБЩЕСТВУ VK.COM/TEACHINMSU.

БЛАГОДАРИМ ЗА ПОДГОТОВКУ КОНСПЕКТА СТУДЕНТКУ ФАКУЛЬТЕТА ВМК МГУ **НЕДОЛИВКО ЮЛИЮ НИКОЛАЕВНУ**

Содержание

Лекция 1. Аналитическое продолжение	4
Аналитическое продолжение. Примеры	4
Два аспекта задач аналитического продолжения	,
Голоморфная зависимость интеграла от параметра	,
	(
Формула дополнения $\Gamma(z)\Gamma(1-z)=\pi/\sin\pi z$	(
Лекция 2. Дзета-функция Римана	L 2
1 11 19 1	12
Задача	
	15
	15
	16
Непосредственное аналитическое продолжение (НАП) элементов	18
, , , , , , , , , , , , , , , , , , , ,	2]
	2
Аналитическое продолжение вдоль пути	22
Аналитическая функция в области	2
АФ с числом листов 1	2
Примеры А Φ . \sqrt{z}	26
Лекция 4. Аналитические функции	28
· · · · · · · · · · · · · · · · · · ·	28
	3(
	3(
	3:
· · · · · · · · · · · · · · · · · · ·	3: 3:
·	32
Теорема Пуанкаре – Вольтерра	34
	36
1	36
	3
Классификация изолированных особых точек А Φ	3'
	39
Лекция 6. Точки ветвления	13
·	4:
	14
	1: 1:
	±. 48
ллгеораическая точка ветвления	±(
Лекция 7. Теоремы об алгебраических функциях	5(
Изолированная алгебраическая точка	5(

Теоремы об алгебраических функциях	. 50
Лекция 8. Аналитическое продолжение элементов	57
Окончание доказательства теоремы 7.2	. 57
Задача	
Лемма о стирании отрезка	
Принцип симметрии	
Лекция 9. Теорема Каратеодори	65
Принцип соответствия границ	
А Φ на $\mathbb{C}\setminus\{0,1\}$ с значениями $\{ w <1\}$	
Малая теорема Пикара	
Лекция 10. Формула Кристоффеля – Шварца	71
Дополнение к построению АФ в единичном круге	
Замечания к малой теореме Пикара	
Формула Кристоффеля – Шварца	
Формула Кристоффеля – шварца	. 75
Лекция 11. Эллиптические функции	77
Конформное отображение полуплоскости на прямоугольник	. 77
Эллиптический синус	. 79
Упражнения	. 80
Определение и свойства эллиптических функций	. 81
Лекция 12. Свойства эллиптических функций	83
Свойства эллиптических функций	. 83
Пример	. 85
<i>φ</i> -функция Вейерштрасса	
Выражение эллиптических функций через p -функцию	
Задачи	
Лекция 13. Выражение эллиптических функций	89
Дифференциальное уравнение для $\wp(z)$	
Дорановское разложение $\wp(z)$ при $0 < z < \varepsilon$	
Другая форма дифферинцального уравнения для $\wp(z)$	
Алгебраическая теорема сложения	
Теорема Вейерштрасса о функциях с алгебраической теремой сложения	
теорема венерштрасса о функциях с алтеоранческой теремой сложения	. 34
Лекция 14. Асимптотический закон распределения простых чисел	97
Асимптотический закон распределения простых чисел	
Функция Чебышёва $\theta(x)$ и переформулировка АЗРПЧ	. 97
Преобразование Лапласа и тауберова теорема	. 100
Проверка условий леммы 14.5	. 102

Лекция 1. Аналитическое продолжение

Аналитическое продолжение. Примеры

Определение 1.1. Пусть области $D_1 \subset D_2 \subset \mathbb{C}$, функции f_1 и f_2 голоморфны в областях D_1 и D_2 соответственно и $f_1 = f_2$ на D_1 . Тогда f_2 называется аналитическим продолжением f_1 с D_1 на D_2 .

Пример 1.1. Пусть $D_1 = \{|z| < 1\}$, а

$$f_1(z) = \sum_{n=0}^{\infty} z^n.$$

Функцию $f_1(z)$ можно продолжить на $D_2 = \mathbb{C} \setminus \{1\}$:

$$f_2(z) = \frac{1}{1-z}.$$

Замечание 1.1. По теореме единственности, при данных D_1 , f_1 и D_2 , существует не более одной функции f_2 такой, что $f_2 = f_1$ на D_1 .

В вещественном анализе это не так. Гладкая функция может иметь более, чем одно продолжение на больший отрезок.

Пример 1.2. Вспомним теорему Римана об устранимой особенности.

Пусть

$$D_1 = \{0 < |z - a| < \varepsilon\}, \ D_2 = \{|z - a| < \varepsilon\},\$$

а $f_1 \in \mathcal{O}(D_1)$ ограничена. Тогда $\exists \ f_2 \in \mathcal{O}(D_2)$ такая, что

$$f_1 = f_2$$
, на D_2 .

Бывает, что вместо D_1 исходная функция f_0 задана на интервале или луче $I\subset\mathbb{R}$:

$$f_0: I \to \mathbb{C}$$
 или (\mathbb{R}) .

Ищется область $D_2\supset I$ и функция $f_2\in\mathcal{O}(D_2)$ такая, что

$$f_2 = f_0 \text{ Ha } I.$$

По теореме единственности, при заданных I, f_0, D_2 таких функций f_2 не более одной.

Пример 1.3. Пусть

$$I = (0, +\infty) \subset \mathbb{R},$$

$$f_0(x) = \ln x$$
.

Например, сначала продолжим f_0 с I на

$$D_1 = \{ \text{Re} z > 0 \}$$

по формуле

$$f_1(z) = \ln|z| + \arg z, \quad -\frac{\pi}{2} < \arg z < \frac{\pi}{2}.$$

Хотелось бы найти большую область, на которую можно продолжить f_0 . Для \forall $\alpha \in (\pi/2, 3\pi/2) \; \exists \; f_2^{\alpha} \in \mathcal{O}(D_2^{\alpha}), \; \text{где (рис. 1.1)}$

$$D_2^{\alpha} = \{ z \in \mathcal{C} : \alpha - 2\pi < \arg z < \alpha \},$$

такая, что

$$f_2^{\alpha} = f_1$$
 на $D_1 \subset D_2^{\alpha}$.

А именно,

$$f_2^{\alpha}(z) = \ln|z| + i\arg z, \quad \alpha - 2\pi < \arg z < 2\pi.$$

Итак, не \exists аналитического продолжения (D_2, f_2) пары (D_1, f_1) , которое содержало бы все остальные аналитические продолжения этой пары.

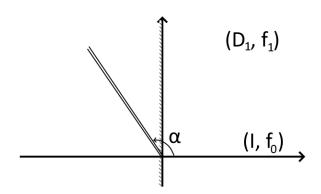


Рис. 1.1. Области АП $f_0 = \ln x$.

Два аспекта задач аналитического продолжения

- (min) Найти хотя бы одно аналитическое продолжение (D_2,f_2) данной пары (D_1,f_1) (или (I,f_0)).
- (max) Описать возникающую в результате всех возможных продолжений «многозначную функцию».

Голоморфная зависимость интеграла от параметра

Теорема 1.1. Пусть $D \subset \mathbb{C}$ – область, а

$$\varphi:\ [a,b]\times D\to\mathbb{C}$$

– непрерывная функция такая¹, что $\varphi(t,\cdot) \in \mathcal{O}(D)$ при $\forall \ t \in [a,b]$. Тогда функция

$$f(z) := \int_{a}^{b} \varphi(t, z) dt$$

¹Напомним, что обозначение $\varphi(z) \in \mathcal{O}(D)$ означает голоморфность $\varphi(z)$ на D.

 $moнee \in \mathcal{O}(D).$

Доказательство. Для любого открытого круга $U \subset D$ функция f непрерывна на U (в силу равномерной непрерывности φ на $[a,b] \times K$ для \forall компакта $K \subset U$). Для \forall открытого треугольника $^2 T \subset U$ имеем

$$\int_{\partial T} f(z)dz = \int_{\partial T} \int_{a}^{b} \varphi(t,z)dtdz.$$

По теореме Фубини из курса математического анализа,

$$\int_{\partial T} \int_{a}^{b} \varphi(t, z) dt dz = \int_{a}^{b} \int_{\partial T} \varphi(t, z) dz dt = \int_{a}^{b} 0 dt = 0$$

по лемме Гаусса (или теореме Коши).

Следовательно, $f \in \mathcal{O}(U)$ по теореме Морера. В силу произвольности $U \subset D$, $f \in \mathcal{O}(D)$.

Гамма-функция Эйлера

По определению,

$$\Gamma(x) := \int_{0}^{\infty} t^{x-1} e^{-t} dt, \quad \forall \ x > 0.$$

Утверждение 1.1. При z = x + iy, x > 0, интеграл

$$f_1(z) := \int_{0}^{\infty} t^{z-1} e^{-t} dt$$

 $cxodumcs \ \kappa \ f_1 \in \mathcal{O}(D_1), \ rde$

$$D_1 = \{ z \in \mathbb{C} : Rez > 0 \}. \tag{1}$$

Доказательство. Справедливо представление

$$f_1(z) = \varphi(z) + \psi(z),$$

где

$$\varphi(z) := \int_{0}^{1} t^{z-1} e^{-t} dt, \quad \psi(z) := \int_{1}^{\infty} t^{z-1} e^{-t} dt.$$

По определению,

$$t^{z-1} := e^{(z-1)\ln t}, \quad t > 0, \quad z \in \mathcal{C}.$$

 $^{^2}$ Запись $T\subset U$ означает компактное включение, то есть замыкание T лежит в U.

Из того, что

$$|e^A| = e^{\operatorname{Re}A}, \quad A \in \mathcal{C},$$

следует, что

$$|t^{z-1}| = e^{(x-1)\ln t} = t^{x-1},$$

где x = Rez.

Поэтому для

$$\psi(z) = \lim_{n \to \infty} \psi_n(z),$$

где

$$\psi_n(z) := \int_1^n e^{-t} t^{z-1} dt,$$

верно, что $\psi(z) \in \mathcal{O}(\mathbb{C})$ в силу теоремы 1.1.

Кроме того,

$$\psi_n \to \psi$$

равномерно на компакте в С. Это следует из того, что

$$|\psi_n(z) - \psi(z)| = \left| \int_n^\infty e^{-t} t^{z-1} dt \right| \le \int_n^\infty e^{-t} t^{x-1} dx,$$

откуда

$$\max_{z \in K} |\psi_n(z) - \psi(z)| \le \int_n^\infty e^{-t} t^{M-1} dt \to 0, \quad n \to \infty,$$

где

$$M = \max_{z \in K} (\text{Re}z)$$
.

Тогда по теореме Вейерштрасса о рядах $\psi \in \mathcal{O}(\mathbb{C})$.

Аналогично показывается, что $\varphi \in \mathcal{O}(\text{Re}z > 0)$, поскольку

$$\underbrace{\int\limits_{1/n}^{1}e^{-t}t^{-z}dt}_{1/n} \rightarrow \int\limits_{0}^{1}e^{-t}t^{-z}dt$$

равномерно на компакте в $\{\text{Re}z > 0\}$.

Утверждение 1.2. \exists единственная $F \in \mathcal{O} \setminus \{0, -1, -2, \ldots\}$ такая, что

$$F(z) = \Gamma(z), \quad \forall z \in D_1,$$

или, эквивалетно,

$$F(x) = \Gamma(x), \quad \forall x \in I = (0, +\infty).$$

При этом³ $F \in \mathcal{M}(\mathbb{C})$ имеет при $z = n, n \in \{0, -1, -2, \ldots\}$, полюс 1-го порядка с вычетом

$$\frac{(-1)^n}{n!}$$
.

Доказательство. Разложив в ряд e^{-t} , получим, что

$$\varphi(z) = \int_{0}^{1} t^{z-1} e^{-t} dt = \int_{0}^{1} t^{z-1} \sum_{n=0}^{\infty} \frac{(-1)^n t^n}{n!} dt =$$

$$= \sum_{n=0}^{\infty} \int_{0}^{1} \frac{(-1)^n t^{n+2-1}}{n!} dt = S_1,$$
(2)

поскольку при Rez>1 все члены ряда непрерывны на [0,1] и ряд сходится равномерно на [0,1] (по теореме Вейершстрасса). Более того, если Rez>1 (а не просто Rez>0), то

$$\int_{0}^{1} t^{n+z-1} dt = \frac{1}{n+z}$$

по формуле Ньютона – Лейбница. Тогда сумма (2) равна

$$S_1 = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+z)}, \quad \text{Re}z > 1.$$
 (3)

Ряд (2) сходится равномерно на \forall компакте $K \subset \mathbb{C}$, если отбросить те его члены (их конечное число), которые имеют полюсы на K (рис. 1.2), так как

$$\left| \frac{(-1)^n}{n!(n+z)} \right| \le \frac{1}{n!d}, \quad \forall \ z \in K,$$

где

$$d = \operatorname{dist} (\mathbb{Z} \setminus \{$$
 полюса из $K\}, K)$.

Следовательно, функция

$$g(z) := \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(z+n)} \in \mathcal{M}(\mathbb{C})$$

– мероморфная на всей плоскости функция с полюсами и вычетами, как обозначенными в утверждении. Тогда функция

$$F(z) := q(z) + \psi(z)$$

является искомой функцией.

Замечание 1.2. Утверждение 1.2 позволяет расширить продолжение $\Gamma(z)$ с D_1 (1) на D_2 (рис. 1.2).

$$f \in \mathcal{M}(D)$$

означает, что f(z) является мероморфной в области D.

³Напомним, что запись

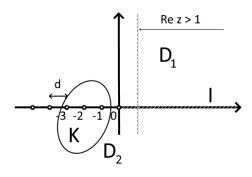


Рис. 1.2. Области в АП $\Gamma(z)$

Формула дополнения $\Gamma(z)\Gamma(1-z) = \pi/\sin \pi z$

Утверждение 1.3. Справедлива формула⁴⁵

$$\Gamma(z)\Gamma(1-z) = \pi/\sin \pi z, \quad \forall \ z \in \mathbb{C} \setminus \mathbb{Z}.$$
 (4)

Доказательство. По теореме единственности, достаточно доказать (4) для всех $z=\alpha\in(0,1).$ В определении

$$\Gamma(\alpha) = \int_{0}^{\infty} t^{\alpha - 1} e^{-t} dt$$

сделаем замену

$$t = 2^s$$
, $dt = 2sds$.

Получим

$$\Gamma(\alpha) = \int_{0}^{\infty} s^{2\alpha - 2} e^{-s^{2}} 2s ds = 2 \int_{0}^{\infty} x^{2\alpha - 1} e^{-x^{2}} dx.$$

Аналогично,

$$\Gamma(1-\alpha) = 2 \int_{0}^{\infty} y^{2(1-\alpha)-1} e^{-y^2} dy.$$

Отсюда

$$\Gamma(\alpha)\Gamma(1-\alpha) = 4\int_{0}^{\infty} \int_{0}^{\infty} x^{2\alpha-1}y^{1-2\alpha}e^{-x^2+y^2}dxdy.$$

Перейдем к полярным координатам

$$\begin{cases} x = r\cos\theta, \\ y = r\sin\theta, \\ dxdy = rdrd\theta \end{cases}$$

 $^{^4}$ Здесь и далее функцию F из утверждения 1.2 будем обозначать $\Gamma(z)$ в силу единственности продолжения функции.

⁵Вообще говоря, при $z \in \mathbb{Z}$ обе части (4) обращаются в бесконечность, а значит, (4) остается справедливой. Будем, однако, рассматривать только конечный случай.

При этом область интегрирования $X \times Y = (0, \infty) \times (0, \infty)$ переходит в область $P \times \Theta = (0, \infty) \times (0, \pi/2)$. Получим

$$\Gamma(\alpha)\Gamma(1-\alpha) = 4 \int_{0}^{\pi/2} \int_{0}^{\infty} r^{2\alpha-1} (\cos\theta)^{2\alpha-1} r^{1-2\alpha} (\sin\theta)^{1-2\alpha} e^{-r^2} r dr d\theta =$$

$$= 2 \int_{0}^{pi/2} (\cot\theta)^{2\alpha-1} d\theta = I_1,$$

$$\int_{0}^{\infty} e^{-r^2} 2r dr = 1.$$
(5)

так как

Вычислим интеграл (5). Для этого сделаем замену

$$x = (\operatorname{ctg} \theta)^{2}, \quad x^{1/2} = \operatorname{ctg} \theta,$$

$$\frac{1}{2}x^{-1/2}dx = -\frac{d\theta}{\sin^{2}\theta} = -(x+1)d\theta.$$

Отсюда

$$I_1 = 2 \int_0^\infty \frac{1}{2} \frac{x^{-1/2} dx}{x+1} \cdot x^{\alpha - 1/2} = \int_0^\infty \frac{x^{\alpha - 1} dx}{x+1}.$$

Такой интеграл вычисляется с помощью вычетов.

Положим область

$$D_{\varepsilon,R} := \{ z \in \mathbb{C} : \varepsilon < |z| < R, \quad 0 < \arg z < 2\pi \}$$

и функцию

 $f(z) = \frac{z^{\alpha - 1}}{z + 1},$

где

$$z^{\alpha - 1} = e^{(\alpha - 1)\ln z}$$

$$\ln z = \ln |z| + i \arg z, \quad 0 < \arg z < 2\pi.$$

Формально говоря, $D_{\varepsilon,R}$ не является областью с простой границей, но ее можно разбить на области D_1 и D_2 (рис. 1.3). Можно вычислить по границе D_1 и D_2 интегралы. При их суммировании интегралы по добавленным разрезам сократятся, поэтому теорему о вычетах можно применить и ко всей $D_{\varepsilon,R}$.

Итак, по теореме Коши о вычетах для D_1 и D_2

$$2\pi i \cdot \operatorname{res}\{z = -1\} \cdot f(z) = \int_{\partial D_{\varepsilon,R}} f(z)dz =$$

$$= \int_{r}^{R} \left(\frac{x^{\alpha - 1}}{x + 1} - \frac{e^{(\alpha - 1)(\ln x + 2\pi i)}}{x + 1}\right) dx + \int_{\gamma_{R}} f(z)dz - \int_{\gamma_{\varepsilon}} f(z)dz. \tag{6}$$

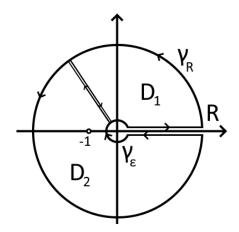


Рис. 1.3. Область $D_{\varepsilon,R}$

Так как по стандартной оценке

$$\left| \int_{\gamma_R} \dots \right| \le \max_{\gamma_R} |f(z)| 2\pi R \le \frac{R^{\alpha - 1}}{R - 1} 2\pi R \to 0, \quad R \to \infty,$$

так как $\alpha < 1$, и, аналогично,

$$\left| \int_{\gamma_{\varepsilon}} f(z) dz \right| \to 0, \quad \varepsilon \to 0,$$

так как $\alpha > 0$, два последних интеграла в (6) равны o(1). Тогда

$$\int_{\partial D_{\varepsilon,R}} f(z)dz = \left(1 - e^{(\alpha - 1)2\pi i}\right) \int_{\varepsilon}^{R} \frac{x^{\alpha - 1}}{x + 1} dx + o(1), \quad \varepsilon \to 0, \quad R \to \infty,$$

откуда

$$2\pi i e^{(\alpha-1)\pi i} = \left(1 - e^{(\alpha-1)\pi i}\right) \int_{0}^{\infty} \frac{x^{\alpha-1}}{x+1} dx.$$

С помощью несложных арифметических преобразований получим, что

$$\int_{0}^{\infty} \frac{x^{\alpha - 1}}{x + 1} dx = \frac{\pi}{\sin \pi \alpha}, \quad 0 < \alpha < 1.$$

Формула (4) доказана.

Лекция 2. Дзета-функция Римана

Дзета-функция Римана. Аналитическое продолжение

Определение 2.1. Определим дзета-функцию Римана

$$\zeta(x) := \sum_{n=1}^{\infty} \frac{1}{n^x} = 1 + \frac{1}{2^x} + \frac{1}{3^x} + \dots, \quad x > 1.$$
 (7)

Поскольку

$$\left| \frac{1}{n^z} \right| = \frac{1}{n^{\text{Re}z}},$$

то (7) можно продолжить

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z} \in \mathcal{O}(\text{Re}z > 1),$$

так как данный ряд сходится равномерно на компакте в $\{\text{Re}z>1\}$ по признаку Вейерштрасса.

Утверждение 2.1. При всех $x \ge 2$ справедливо равенство

$$\zeta(x)\Gamma(x) = \int_{0}^{\infty} \frac{t^{x-1}}{e^t - 1} dt.$$

Доказательство. По определению,

$$\zeta(z)\Gamma(z) = \sum_{n=1}^{\infty} \frac{\Gamma(x)}{n^x} = \sum_{n=1}^{\infty} \int t^{x-1} e^{-nt} dt =$$

$$= \int_0^{\infty} \left(\sum_{n=1}^{\infty} t^{x-1} e^{-nt}\right) dt = \int_0^{\infty} t^{x-1} \frac{e^{-t}}{1 - e^{-t}} dt = \int_0^{\infty} t^{x-1} \frac{dt}{e^t - 1}.$$
(8)

Обсудим справедливость перехода 6 (8).

Разность d_N между правой частью (7) и N-й частичной суммой слева равна – это интеграл по полупрямой $(0,\infty)$ от функции

$$\sum_{n=N+1}^{\infty} t^{x-1}e^{-nt} = t^{x-1}\frac{e^{-Nt}}{e^t - 1}.$$

Обозначим

$$\varphi(t) = \frac{t^{x-1}}{e^t - 1}.$$

⁶Конечно, достаточно просто использовать теорему Беппо Леви или Лебега из вещественного анализа. Здесь же покажем, как доказать переход, не выходя за рамки курса математического анализа.

Оценим

$$0 \le d_N = \int_0^\delta \varphi(t) e^{-Nt} dt + \int_\delta^\infty \varphi(t) e^{-Nt} dt \le \int_0^\delta (t) dt + e^{-N\delta} \underbrace{\int_\delta^\infty \varphi(t) dt}_{\le \text{const}}.$$

Для $\forall \ \varepsilon > 0$ выберем $\delta > 0$ такое, что

$$\int_{0}^{\delta} \varphi(t)dt < \frac{\varepsilon}{2},$$

а затем при этом δ выберем N_0 такое, что

$$e^{-N\delta}\int\limits_{s}^{\infty}\varphi(t)dt<\frac{\varepsilon}{2}$$

при всех $N \geq N_0$.

Утверждение доказано.

Утверждение 2.2. \exists единственная $F \in \mathcal{O}(\mathbb{C} \setminus \{1\})$ такая, что

$$F(z) = \zeta(z), \quad Rez > 1,$$

или, эквивалентно,

$$F(x) = \zeta(x), \quad x \ge 2.$$

При этом $F \in \mathcal{M}(\mathbb{C})$ имеет при z = 1 полюс 1-го порядка с вычетом 1.

Замечание 2.1. Начиная с этого момента, обозначаем F(z) через $\zeta(z)$ для всех $z \in \mathbb{C} \setminus \{1\}$.

Доказательство. Пусть сначала $x \in [2, +\infty)$. Тогда по утверждению 2.1,

$$\zeta(x)\Gamma(x) = \int_{0}^{1} \frac{t^{x-1}}{e^{t} - 1} dt + \int_{1}^{\infty} \frac{t^{x-1}}{e^{t} - 1} dt =: \varphi(x) + \psi(x),$$

причем

$$\psi(z) := \int_{1}^{\infty} \frac{t^{z-1}}{e^t - 1} dt$$

сходится равномерно на компакте в $\mathbb C$ по признаку Вейерштрасса, так как

$$|t^{z-1}| = t^{\text{Re}z - 1}.$$

Отсюда $\phi \in \mathcal{O}(\mathbb{C})$.

Разложим в ряд функцию $\frac{1}{e^t-1} \in \mathcal{O}(0<|t|<2\pi)$. Заметим, что

$$\operatorname{res}_{t=0} \frac{1}{e^t - 1} = \frac{1}{1} = 1.$$

Тогда

$$\frac{1}{e^t - 1} = \frac{1}{t} + c_0 + c_1 t + \dots,$$

причем

$$\sum_{n=0}^{\infty} c_n t^n \tag{9}$$

сходится равномерно на компактах при $|t| < 2\pi$.

Будем считать, что

$$\text{Re}z > 2 \implies |t^{z-1}| = t^{\Re(z)-1}$$

тогда

$$\varphi(z) := \int_{0}^{1} t^{z-1} \left(\frac{1}{t} + \sum_{n=0}^{\infty} c_n t^n \right) dt = \frac{1}{z-1} + \sum_{n=0}^{\infty} \frac{c_n}{z+n},$$

так как

$$\int_{0}^{1} t^{z+n-1} dt = \frac{z+n}{2}, \quad \text{Re}z + n - 1 > -1.$$

Так как для коэффицентов (9)

$$\sum_{n=0}^{\infty} |c_n| < \infty,$$

где радиус сходимости равен $2\pi > 1$, то ряд

$$\sum_{n=0}^{\infty} \frac{c_n}{z+n}$$

сходится равноперно на \forall компакте $K \subset \mathbb{C}$, если отбросить те члены ряда (конечное число), у которых на K есть полюсы.

Отсюда следует, что

$$\varphi \in \mathcal{O}(\mathbb{C} \setminus \{1, 0, -1, -2, \ldots\})$$

с полюсами 1-го порядка в точках $1, 0, -1, -2, \dots$

Итак, функция

$$F(z) := \frac{1}{\Gamma(z)} \left(\underbrace{\frac{1}{z-1} + \sum_{n=0}^{\infty} \frac{c_n}{z+n}}_{\varphi(z)} + \int_{1}^{\infty} \frac{t^{z-1}}{e^t - 1} dt \right).$$

является искомой функцией, то есть $F(z) \in \mathcal{O}(\mathbb{C} \setminus \{1\})$ с указанным полюсом (так как $\Gamma(1)=1$) и совпадает с $\zeta(z)$ при $z \in [2,+\infty)$ или даже при $\mathrm{Re}z \geq 2$.

Здесь используется следствие формулы дополнения

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z},$$

то есть что функция $1/\Gamma(z)$ целая (то есть $\in \mathcal{O}(\mathbb{C})$) с нулями 1-го порядка там, где у $\Gamma(z)$ были полюсы, то есть при $z=0,-1,-2,\ldots$ Поэтому особенность функции $\varphi(z)/\Gamma(z)$ в точках $0,-1,-2,\ldots$ устранима.

Задача

Задача 2.1. Показать, что

$$\begin{cases} \zeta(0) = -\frac{1}{2} \\ \zeta(-1) = -\frac{1}{12} \\ \zeta(-2m) = 0, \quad \forall m \in \mathbb{N}. \end{cases}$$

Указание. То, что

$$\zeta(-2m) = 0, \ \forall m \in \mathbb{N},$$

вытекает из того, что $c_{-2m}=0$ при $m\in\mathbb{N},$ то есть функция

$$\frac{1}{e^t-1}-\frac{1}{t}+\frac{1}{2}.$$

Гипотеза Римана

Утверждение 2.3. (Гипотеза Римана) Если $0 \le Rez \le 1$ и $\zeta(z) = 0$, то

$$Rez = \frac{1}{2}.$$

Иллюстрация к гипотезе Римана представлена на рис. 2.1.

Формула Эйлера

Утверждение 2.4. (Формула Эйлера)

$$\zeta(z) \cdot \prod_{p} \left(1 - \frac{1}{p^z} \right) = 1,\tag{10}$$

при Rez > 1, где произведение берется по всем простым числам $p = 2, 3, 5, \ldots$

Доказательство. Рассмотрим первый сомножитель (10):

$$\left(1 - \frac{1}{2^z}\right)\zeta(z) = 1 + \sum_{2|n} \frac{1}{n^z}.$$

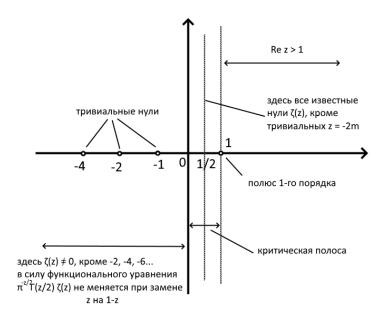


Рис. 2.1. Иллюстрация к гипотезе Римана

Теперь, для первых двух сомножителей

$$\left(1 - \frac{1}{3^z}\right) (1 - 2^z) \zeta(z) = 1 + \sum_{2|h, 3|h} \frac{1}{n^z}.$$

Продолжая рассуждения M раз, получим

$$\zeta(z) \prod_{m=1}^{M} \left(1 - \frac{1}{p_m^z} \right) = 1 + \sum_{(n)} \frac{1}{n^z},$$

где $2=p_1<3=p_2<\ldots$ – все простые числа в порядке возрастания, а сумма берется по всем n, не делящимся ни на одного из чисел $p_1,p_2,\ldots,p_M.$ В частности, $n\geq p_M^2.$

Следовательно,

$$\left| \zeta(z) \prod_{m=1}^{M} \left(1 - \frac{1}{p_m^z} \right) - 1 \right| \le \sum_{n=p_M^2}^{\infty} \frac{1}{n^{\text{Re}z}} \to 0, \quad M \to \infty,$$

так как простых бесконечно много.

Следствие. $\zeta(z) \neq 0$ при $\mathrm{Re}z > 1$.

Асимптотический закон распределения простых чисел

Обсудим асимптотический закон распределения в двух словах, без строго доказательства. Итак, из формулы Эйлера (10),

$$\zeta(z) = \prod_{p} \left(1 - \frac{1}{p^z}\right), \operatorname{Re} z > 1.$$

Отсюда

$$-\frac{\zeta'(z)}{\zeta(z)} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^z},\tag{11}$$

где

$$\Lambda(n):=egin{cases} \ln p, & ext{если } n=p^m, & m\in\mathbb{N}, & p- ext{простое} \\ 0, & ext{иначе} \end{cases}$$

Будем рассматривать функцию Чебышёва

$$\psi(x) := \sum_{n \le x} \Lambda(n).$$

Поскольку (11) можно рассматривать как степенной ряд с логарифмическими степенями

$$-\frac{\zeta'(z)}{\zeta(z)} = \sum_{n=1}^{\infty} \Lambda(n) \left(e^{-z}\right)^{\ln n},$$

$$\psi(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \left(-\frac{\zeta'(z)}{\zeta(z)} \right) \frac{x^z}{z} dz,$$

где c > 1, x > 1 не целое, и x не есть Rez.

Если $\zeta(z) \neq 0$ при $b < \mathrm{Re}z \leq 1$, то

$$\psi(x) = x + \frac{1}{2\pi i} \int_{b-i\infty}^{b+i\infty} \left(-\frac{\zeta'(z)}{\zeta(z)} \right) \frac{x^z}{z} dz.$$
 (12)

Здесь

$$x = \operatorname{res}_{z=1} \left(-\frac{\zeta'(z)}{\zeta(z)} \frac{x^z}{z} \right).$$

В (12) под знаком интеграла

$$|x^z| = x^{\text{Re}z} = x^b, \quad 1/2 < b < 1.$$

Правдоподобно, что интеграл = $O(x^b)$ или чуть хуже. Следовательно,

$$\psi(x) = x \left(1 + o(1) \right), \quad x \to \infty.$$

Это эквивалетно асимптотическому закону распределения простых чисел

$$\lim_{x \to \infty} \pi(x)) \frac{\ln x}{x} = 1,$$

где

$$\pi(x) := \sum_{p \le x} 1.$$

Замечание 2.2. В терминах функции

$$\lambda(n) := (-1)^{M(n)},$$

где M(n) равно числу простых делителей n с учетом кратностей,

Гипотеза Римана
$$\iff \lim_{n\to\infty} \frac{\lambda(2)+\ldots+\lambda(n)}{n^{1/2+\varepsilon}} = 0, \ \forall \ \varepsilon>0,$$

а асимптотический закон распределения простых чисел равносилен

$$\lim_{n \to \infty} \frac{\lambda(2) + \ldots + \lambda(n)}{n} = 0.$$

Непосредственное аналитическое продолжение элементов

Определение 2.2. Элементом называется пара

$$F = (U, f),$$

где $U \subset \mathbb{C}$ – круг (то есть |z-a| < R или вся C), а $f \in \mathcal{O}(U)$.

Точка a называется центром элемента, а число R > 0 – paduycom элемента.

Определение 2.3. Элемент F = (U, f) называется *каноническим*, если U равен кругу сходимости ряда Тейлора f с центром a, то есть ряда

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n.$$

Определение 2.4. Элементы F = (U, f) и G(V, g) называются непосредственным аналитическим продолжением (НАП) друг друга (запись $F \sim G$), если $U \cap V$ непусто и f = g на $U \cap V$ (рис. 2.2).

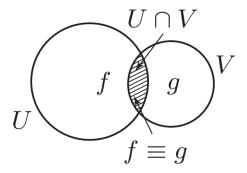


Рис. 2.2. Непосредственное аналитическое продолжение f и q

Утверждение 2.5. (Свойства НАП)

- 1. (Свойство Вейерштрасса) \forall элемента F = (U, f) и \forall точки $b \in U \exists$ единственный канонический элемент G с центром в b такой, что $G \sim F$.
- 2. (Свойство треугольника) Если элементы

$$F_i := (U_i, f_i), \quad j = 0, 1, 2$$

таковы, что

$$F_0 \sim F_1, \quad F_1 \sim F_2,$$

u

$$U_0 \cap U_1 \cap U_2 \neq \emptyset, \tag{13}$$

mo

$$F_0 \sim F_2$$
.

Доказательство. 1. Свойство Вейершстрасса вытекает из теоремы о разложении голоморфной функции в степенной ряд.

2. Из условия $F_0 \sim F_1,\, F_1 \sim F_2$ вытекает (рис. 2.3), что

$$f_0 = f_1 = f_2$$

на

$$U_0 \cap U_1 \cap U_2 \neq \emptyset$$
.

Тогда по теореме единственности

$$f_0 = f_2 \text{ Ha } U_0 \cap U_2.$$

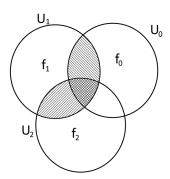


Рис. 2.3. Взаимное расположение F_0 , F_1 и F_2

Замечание 2.3. Без условия (13) непустоты тройного пересечения свойство 2 неверно. Рассмотрим следующий контрпример.

Пусть

$$U_j := \{|z - \omega^j| < 1\}, \quad j = 0, 1, 2,$$

где

$$\omega := e^{2\pi i/3},$$

а функции

$$f_j(z) := \sqrt{|z|}e^{i\arg z/2}, \quad \frac{2\pi}{3}j - \frac{\pi}{2} < \arg z < \frac{2\pi}{3}j + \frac{\pi}{2}.$$

Тогда $F_0 \sim F_1, \; F_1 \sim F_2, \; \text{но} \; F_2 \not\sim F_0 \; (фактически, \; f_2 = -f_0 \neq f_0 \; \text{на} \; U_0 \cap U_2).$

Лекция 3. Аналитическое продолжение элементов

Полная аналитическая функция

Определение 3.1. Элемент G является аналитическим продолжением $(A\Pi)$ элемента F, если $\exists n \in \mathbb{N}$ и элементы F_1, \ldots, F_n такие, что (рис. 3.1)

$$F \sim F_1, F_1 \sim F_2, \dots, F_{n-1} \sim F_n, F_n = G.$$

Обозначение:

$$F \cong G$$
.

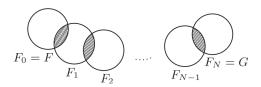


Рис. 3.1. G – аналитическое продолжение элемента F

Отношение \cong («быть аналитическим продолжением») является отношением эквивалетности на множестве всех элементов (а также на множестве всех канонических элементов).

Определение 3.2. Классы эквивалетности канонических элементов по отношению \cong называются *полными аналитическими функциями* ($\Pi A \Phi$).

Иными словами, $\Pi A \Phi$, nopo жеденная каноническим элементом F – это множество всех канонических элементов

$$G \cong F$$
.

Такой набор элементов ${\mathcal F}$ можно рассматривать как «многозначную функцию» на открытом множестве

$$D_{\mathcal{F}} := \{ a \in \mathbb{C} : \exists$$
 элемент $F \in \mathcal{F}$ с центом $a \}$,

сопоставляющую каждой точке $a \in D_{\mathcal{F}}$ набор значений f(a) всех элементов

$$F = (U, f) \in \mathcal{F}$$

c центром в a.

Число этих значений может быть = 1, как для $\Gamma(z)$ или $\zeta(z)$:

$$D_{\Gamma} = \mathbb{C} \setminus \{0, -1, -2, \ldots\},$$
$$D_{\zeta} = \mathbb{C} \setminus \{1\},$$

либо > 1. Такой пример рассматривался в замечании 2.3), где элементы $F_0 \sim F_1$, $F_1 \sim F_2$, но $F_2 \not\sim F_0$. Напомним, что в этом примере элементы $F_0 = (U_0, f_0)$ и $F_2 = (U_2, f_2)$ с центром z = 1 и

$$U_0 = U_2 = \{|z - 1|| < 1\}$$

принимают разные значения:

$$f_0(1) = 1, \quad f_2(1) = -1.$$

Аналитическое продолжение вдоль пути

Определение 3.3. Пусть

$$\gamma: [0,1] \rightarrow \mathbb{C}$$

- непрерывное отображение. Семейство канонических элементов

$$\{F_t | t \in [0,1]\}$$

называют аналитическим продолжением элемента F_0 вдоль пути γ , если

- 1. Центр F_t равен значению $\gamma(t)$ для $\forall t \in [0,1]$;
- 2. $\forall t \in [0,1] \; \exists \; \text{окрестность} \; u_t \subset [0,1] \; \text{такая, что}$

$$F_{\tau} \sim F_{t}$$

для всех $\tau \in u_t$.

Определение 3.3 иллюстрирует рис. 3.2.

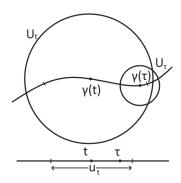


Рис. 3.2. Аналитическое продолжение элемента

Определение 3.4. Канонический элемент F_1 с центром $\gamma(1)$ называется результатом $A\Pi$ элемента F_0 вдоль пути γ .

Утверждение 3.1. Справедливы следующие утверждения.

- 1. Если $A\Pi$ данного канонического элемента F_0 вдоль непрерывного пути γ существует, то только одно.
- 2. $\exists \ \varepsilon > 0 \ make, что радиус \ F_t > \varepsilon \ для \ \forall \ t \in [0,1].$
- 3. $F_t \cong F_0$ для $\forall \ t \in [0,1]$. В частности, $F_1 \cong F_0$.
- 4. \forall канонических элементов $G \cong F \exists$ непрерывный путь

$$\gamma: [0,1] \rightarrow \mathbb{C}$$

такой, что $\gamma(0)$ равен центру F, а $\gamma(1)$ равен центру G, и $A\Pi$ элемента F вдоль пути γ с результатом в G (рис. 3.3).

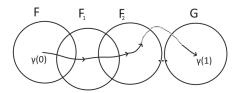


Рис. 3.3. К пункту 4 утверждения 3.1

Доказательство. 1. Положим

$$R(t) := \operatorname{радиуc}(F_t),$$

$$v_t = \left\{ \tau \in u_t \mid |\gamma(\tau) - \gamma(t)| < \frac{1}{4}R(t) \right\}, \tag{14}$$

Тогда $\forall \tau_1, \tau_2 \in v_t$ элементы

$$F_{\tau_1} \sim F_{\tau_2}$$

содержат центры друг друга. Убедимся в этом. Для каждого τ_j , удовлетворяющему условию (14), очевидно

$$R(\tau_j) \ge \frac{3}{4}R(t),$$

$$|\gamma(\tau_1) - \gamma(\tau_2)| \le \frac{R(t)}{2},$$

откуда следует, что

$$\tau_1 \in U_{\tau_2}, \quad \tau_2 \in U_{\tau_1}.$$

Пусть $\delta > 0$ — число Лебега покрытия $\{v_t|t\in[0,1]\}$ отрезка [0,1] (то есть \forall отрезок длины δ лежит в некотором элементе покрытия) и пусть

$$0 = t_0 < t_1 < \dots < t_{n-1} < t_n = 1$$

– разбиение с $t_{k+1} - t_k < \delta, \forall k$.

Каждый элемент F_t , $t \in [t_0, t_1]$ является НАП F_0 с центром $\gamma(t) \in U_0$, то есть по свойству Вейерштрасса (утверждение 2.5) однозначно задается элементом F_0 .

Каждый элемент F_t , $t \in [t_1, t_2]$ есть НАП F_{t_1} с центром $\gamma(t) \in U_1$ (по определению v_t и δ). Следвательно, F_t однозначно задается элементом F_{t_1} (и F_{t_0}) по свойству Вейерштрасса.

Продолжим рассуждения аналогичным образом. За конечное число шагов дойдем д F_1 . Единственность получена.

- 2. Радиус всех элементов $\geq 3/4 \min_{j=0,1,\dots,n-1} R(t_j)$ согласно определению v_t и δ .
- 3. Вытекает из конструкции пункта 1.
- 4. Будем считать, что в цепочке один элемент, то есть

$$F = (U, f) \sim G = (V, q).$$

Пусть $a = \gamma(0)$ – центр F, а $b = \gamma(1)$ – центр G, и, соответственно,

$$\gamma(t) = tb + (t-1)a, < t < 1.$$

Определим F_t как единственный элемент, $\sim F$, с центром $\gamma(t)$ при $\gamma(t) \in U$, и то же с заменой F на G и U на V.

При $\gamma(t)\in U\cap V$ эти функции не противоречат друг другу, так как f=g на $U\cap V$.

Если $\forall t \in [0,1]$ определить u_t как такую окрестность, что $\gamma(u_t) \subset U$ или V, то выполнено определение АП вдоль пути.

Замечание 3.1. Пункты 3 и 4 означают эквивалентность понятия АП канонических элементов и АП вдоль пути.

В частности, можно определить ПАФ как множество результатов продолжений данного элемента вдоль всех путей, по которым АП существуют.

Аналитическая функция в области

Определение 3.5. Пусть $D \subset \mathbb{C}$ – область, $a \in D$ и F – канонический элемент с центром в a. Аналитической функцией F в области D, порожденной элементом F, называется совокупность результатов АП элемента F вдоль всех непрерывных путей

$$\gamma: [0,1] \rightarrow D,$$

таких, что $\gamma(0)=a$, причем предполагается, что такое АП существует вдоль всех таких путей.

Утверждение 3.2. Мощность множества \mathcal{F}_b всех элементов $F \in \mathcal{F}$ с центром $b \in D$ не зависит от выбора точки $b \in D$ и называется числом листов $A\Phi$ F в области D.

Доказательство. Пусть

$$\gamma:~[0,1]~\to~D$$

– непрерывный путь с

$$\gamma(0) = b_1, \quad \gamma(1) = b_2.$$

Отображение

$$\Phi: \mathcal{F}_{b_1} \to \mathcal{F}_{b_2},$$

24

переводящее $\forall F \in \mathcal{F}_{b_1}$ в результат продолжения F вдоль γ (\exists по определению $\Lambda\Phi$ в области), является *биекцией*, так как обратным к нему будет аналогичное отображение

$$\Psi: \ \mathcal{F}_{b_2} o \mathcal{F}_{b_1}$$

вдоль пути

$$\gamma_1(t) = \gamma(1-t).$$

$\mathsf{A}\Phi$ с числом листов 1

Утверждение 3.3. Справедливы следующий утверждения.

1. Пусть $D \subset \mathbb{C}$ – область $u f \in \mathcal{O}(D)$.

Tогда cовокупноcть \mathcal{F}_f каноничеcких элементов вида

$$F_a = (U_a, f_a),$$

 $r\partial e \ a \in D$,

$$f_a(z) := \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n,$$

 $U_a := \kappa p y \epsilon \ cxo димости этого ряда,$

является $A\Phi$ в области D с числом листов 1.

2. Обратно, $\forall A\Phi \mathcal{F}$ в области D с числом листов 1 имеет вид \mathcal{F}_f для некоторой $f \in \mathcal{O}(D)$.

Доказательство. 1. Достаточно проверить, что результат АП элемента F_a вдоль \forall непрерывного пути

$$\gamma: [0,1] \to D,$$

где $\gamma(0) = a$ совпадает с $F_{\gamma(1)}$.

Это свойство вытекает из того, что АП F_a вдоль γ задается в точности семейством

$$\{F_{\gamma(t)}|t\in[0,1]\}.$$

2. Пусть

$$\tilde{F}_a = (\tilde{U}_a, \tilde{f}_a) \in F$$

– единственный элемент с центром $a \in D$. Положим

$$f(z) := \tilde{f}_z(z)$$

для всех $z \in D$. Тогда по определению АП вдоль пути и свойству Вейерштрасса (утверждение 2.5)

$$f(z) = \tilde{f}_a(z) \tag{15}$$

для всех z, достаточно близких к точке a, и, следовательно, $f \in \mathcal{O}(a)$.

П

Тогда $f \in \mathcal{O}(D)$ в силу призвольности a и $\forall a \in D$

$$\tilde{f}_a = f_a$$

в окрестности точки a согласно (16) и теореме о разлжении голоморфной функции в степенной ряд. Следовательно,

$$\mathcal{F} = \mathcal{F}_f$$
.

Примеры АФ. \sqrt{z}

Утверждение 3.4. Канонический элемент

$$F_0 := (U_0, f_0),$$

где

$$U_0 := \{|z - 1| < 1\},$$

$$f_0(z) := \sqrt{|z|} e^{i \arg z/2}, \quad -\pi/2 < \arg z < \pi/2,$$

допускает АП вдоль непрерывного пути

$$\gamma:\ [0,1]\to \mathbb{C}$$

 $c \gamma(0) = 1$ тогда и только тогда, когда

$$\gamma([0,1]) \subset \mathbb{C} \setminus \{0\}.$$

Совокупность результатов всех таких продолжений является $A\Phi$ на $\mathbb{C}\setminus\{0\}$ с числом листов 2, обозначаемой по определению \sqrt{z} .

Доказательство. 1. Пусть

$$\gamma: [0,1] \to \mathbb{C} \setminus \{0\}$$

– непрерывный путь. Запишем

$$\gamma(t) = |\gamma(t)|e^{i\theta(t)}$$

для некоторой непрерывной функции

$$\theta: [0,1] \to \mathbb{R}$$

 $\theta(0) = 0$, и положим

$$F(t) := (U_t, f_t),$$

где

$$U_t := \{ |z - \gamma(t)| < |\gamma(t)| \},$$

$$f_t(z) := \sqrt{|z|} e^{i \arg z/2}, \quad \theta(t) - \pi/2 < \arg z < \theta(t) + \pi/2.$$
(16)

То, как осуществляется такое АП, проиллюстрировано на рис. 3.4.

В силу непрерывности $\theta(t)$ семейство

$$\{\mathcal{F}_t|t\in[0,1]\}$$

является АП F_0 вдоль γ .

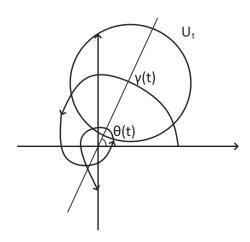


Рис. 3.4. Связь U_t , $\gamma(t)$ и $\theta(t)$

2. Если $\exists t_0 \in [0,1]$ такое, что $\gamma(t_0) = 0$, то \exists канонический элемент

$$G \cong F_0$$

с центром 0.

Рассмотрим цепочку

$$\underbrace{G}_{=(V,g)} = F_n \sim F_{n-1} \sim \ldots \sim F_1 \sim F_0,$$

где на U_0 имеем

$$f_0^2(z) = z,$$

а значит, по теореме единственности, на U_1

$$f_1^2(z) = z,$$

и так далее. Наконец, на U_n

$$g^2(z) = z.$$

Но тогда

$$2g(z)g'(z) = 1$$

на V, что при z=0 дает противоречие:

$$2 \cdot 0 \cdot g'(0) = 1.$$

3. Утверждение количестве листов 2 вытекает из описания АП (16). В случае, когда

$$\theta(1) = \text{четному кратному } 2\pi,$$

в конечной точке получим тот же элемент, с которого начинали. В случае же, когда

$$\theta(1) =$$
 нечетному кратному 2π ,

у функции $f_t(z)$ возникает множитель $e^{i\pi} = -1$.

Лекция 4. Аналитические функции

Примеры АФ на $\mathbb{C}\setminus\{0\}$

Рассмотрим функции

$$\mathcal{F}_n(z) = \sqrt[n]{z}, \quad n = 2, 3, \dots,$$

$$\mathcal{F}_{\infty}(z) = \ln z.$$

Количество листов этих функций совпадает со значением индекса.

Зададим исходный элемент

$$F_0^{(n)} = (U_0, f_0^{(n)}),$$

где

$$U_{0} = \{|z - 1| < 1\},\$$

$$\begin{cases} f_{0}^{(n)}(z) = \sqrt[n]{|z|} e^{i \arg z/n}, & -\pi/2 < \arg z < \pi/2,\\ f_{0}^{(\infty)}(z) = \ln|z| + i \arg z, & -\pi/2 < \arg z < \pi/2. \end{cases}$$
(17)

Элемент $F_0^{(n)}$ является каноническим. Действительно, для $n=\infty$ это верно, поскольку,

$$\lim_{z \to 0+} f_0^{(n)} = \infty,$$

а для $n \in \mathbb{N}$ это верно, поскольку

$$\varphi(z) := f_0^{(n)}(z)$$

удовлетворяет

$$\varphi^n(z) = z, \quad z \in U_0,$$

откуда

$$n\varphi^{n-1}(z)\varphi'(z) = 1,$$

И

$$\lim_{z \to 0+} \varphi'(z) = \infty.$$

АП $F_0^{(n)}$ вдоль непрерывного пути возможно тогда и только тогда, когда путь не проходит через 0:

$$\gamma: [0,1] \to \mathbb{C} \setminus \{0\}.$$

В таком случае справедливо представление

$$\gamma(t) = |\gamma(t)|e^{i\theta(t)},$$

где

$$\theta: [0,1] \to \mathbb{R}$$

– непрерывная функция с $\theta(0) = 0$. Рассмотрим

$$F_t = (U_t, f_t), \tag{18}$$

где

$$U_t = \{|z - \gamma(t)| < |\gamma(t)|\},\,$$

а $f_t(z)$ равно (17), но с условием

$$\theta(t) - \pi/2 < \arg z < \theta(t) + \pi/2.$$

(18) является АП $F_0^{(n)}$ вдоль γ в силу непрерывности $\theta(t)$. Здесь $u_t \subset [0,1]$ выбирается так, что

$$\gamma(u_t) \subset U_t$$
.

Утверждение 4.1. Аналитическое продолжение $F_0^{(n)}$ вдоль пути

$$\gamma: [0,1] \to \mathbb{C}$$

 $c \ 0 \in \gamma([0,1])$ невозможно.

Доказательство. Предположим противное. Тогда $\exists t_0 \in [0,1]$ такое, что

$$\gamma(t_0) = 0.$$

Тогда

$$(V,g) = G := F_{t_0}$$

удовлетворяет

$$G \cong F_0$$
.

то есть ∃ канонические элементы

$$G = F_n \sim F_{n-1} \sim \ldots \sim F_1 \sim F_0.$$

Но $f_0^n(z)=z$ (при $n=\infty$ $e^{f_0(z)}=z$) на U_0 . Следовательно, по теореме единственности $f_1^n(z)=z$ ($e^{f_1(z)}=z$) на U_1 . Продолжая рассуждения, получим, что $g^n(z)=z$ ($e^{g(z)}=z$) на V. Но $0\in V$. Пришли к противоречию с существованием такой $g\in \mathcal{O}(V)$.

Все элементы $F \in \mathcal{F}_n(z)$, где

$$\mathcal{F}_n(z) := \sqrt[n]{2}$$

с данным центром $a \in \mathbb{C} \setminus \{0\}$ имеют вид

$$F = (U_a, e^{2\pi i/k} f_a(z)), k = 0, 1, \dots, n-1,$$

где

$$U_a = \{ |z - a| < |a| \},\,$$

а $f_a(z)$ задается формулой (17) с любым фиксированным интервалом для $\arg z$. При $n=\infty$ соответственно

$$F = (U_a, \tilde{f}_a(z) + 2\pi i k), \quad k \in \mathbb{Z},$$

$$\tilde{f}_a(z) - \ln|z| + i\arg z, \ \theta_A - \pi/2 < \arg z < \theta_a + \pi/2,$$

где θ_a – любое фиксированное значение arg a.

Можно сделать следующий вывод.

Утверждение 4.2. $\mathcal{F}_n(z)$ есть $A\Phi$ на $\mathbb{C}\setminus\{0\}$ при всех $n=2,3,\ldots,\infty$ (а также $\Pi A\Phi$, порожденная любым своим элементом) с числом n.

Действия над аналитическими функциями

Операции⁷

$$(\mathcal{F} \pm \mathcal{G}, \ \mathcal{F}\mathcal{G}, \ \mathcal{F}/\mathcal{G}, \ \mathcal{G} \circ \mathcal{F}, \ \mathcal{F}|_{D_1})$$

определяются поэлементно (с канонизацией) и результатом каждой является одной или несколькими ${\rm A}\Phi$ на D.

Сложение

Рассмотрим операцию сложения

$$\mathcal{F} + \mathcal{G}$$
.

где \mathcal{F} , \mathcal{G} – $A\Phi$ в области $D \subset \mathbb{C}$. Берем \forall точку $a \in D$ и \forall элементы

$$F = (U, f) \in \mathcal{F},$$

$$G = (V, g) \in \mathcal{G}$$

c центром a.

Рассмотрим элемент

$$(U \cap V, f + g)$$

и расширим его до канонического. По свойству Вейерштрасса (утверждение 2.5), \exists единственный канонический элемент Φ , \sim данному элементу, с центром a.

Совокупность полученных таким образом канонических элементов (по всем $a \in D, F \in \mathcal{F}$ и $G \in \mathcal{G}$ с центром a) обозначается

$$\mathcal{F} + \mathcal{G}$$
.

Пример 4.1. Рассмотрим

$$\sqrt{z} + \sqrt{z}$$
.

Возможны три варианта:

$$\begin{cases} 2\sqrt{z} = \begin{cases} f + f = 2f \\ (-f) + (-f) = -2f \\ -f + f = 0 \end{cases}$$

Итого получаем, что

$$\sqrt{z} + \sqrt{z} = \begin{cases} 2\sqrt{z} \\ 0 \end{cases}$$

Итак, сумма 2 АФ на $\mathbb{C} \setminus \{0\}$ с числом листов 2 каждая есть совокупность одной АФ с числом листов 2 и одной АФ с числом листов 1 на $\mathbb{C} \setminus \{0\}$.

 $^{^{7}}$ Сложение, вычитание, умножение, разность, композиция и сужение на подобласть D_{1} соответственно.

Задача 4.1. *1. Сумма*

$$\sqrt{z} + \sqrt[3]{z}$$

есть одна $A\Phi$ на $\mathbb{C}\setminus\{0\}$ с числом листов 6;

2. Сумма

$$\ln z + \ln z = \begin{cases} 2\ln z \\ 2\ln z + 2\pi i \end{cases}$$

есть 2 $A\Phi$ на $\mathbb{C}\setminus\{0\}$ с числом листов ∞ каждая;

3. Разность

$$\ln z - \ln z$$

представляет собой счетное множество $A\Phi$ на $\mathbb{C}\setminus\{0\}$ с числом листов 1.

4. Для $\forall \ a \in \mathbb{C}$ описать, сколько $A\Phi$ на $\mathbb{C} \setminus \{0\}$ задается формулой

$$\ln z + a \ln z$$

(возможны все варианты: $1, 2, 3, ..., \infty$).

Композиция

Рассмотрим операцию композиции. Пусть \mathcal{F} – $A\Phi$ на $D\subset\mathbb{C}$, \mathcal{G} – $A\Phi$ на $G\subset\mathbb{C}$ и значения всех элементов \mathcal{F} в точках из D лежит в G. Тогда совокупность элементов вида

$$\zeta = g \circ f(z),$$

подвергшихся канонизированию, есть одна или несколько ${\bf A}\Phi$ в D, обозначаемых через

$$\mathcal{G}\circ\mathcal{F}$$

и называемых композицией \mathcal{F} и \mathcal{G} .

Пример 4.2. • Рассмотрим

$$\sqrt{z^2} = \begin{cases} z \\ -z \end{cases}$$

Такая композиция дает две $A\Phi$ на $\mathbb{C}\setminus\{0\}$.

• Однако композиция

$$(\sqrt{z})^2 = z$$

дает одну $A\Phi$ на $\mathbb{C} \setminus \{0\}$.

• Композиции

$$\cos(\sqrt{z})$$

И

$$\sin\sqrt{z}\sqrt{z}$$

(получаемая как композиция $\sin w/w$ и $w=\sqrt{z}$) дают по одной $A\Phi$ на $\mathbb{C}\setminus\{0\}$, как и любая четная целая функция G(w).

Сужение

Перейдем к операции cyжения. Пусть \mathcal{F} – $A\Phi$ на области $D\subset \mathbb{C}$ и $D_1\subset D$ – подобласть. Тогда

$$\mathcal{F}|_{D_1} := \{ F \in \mathcal{F} | \text{центр } (F) \in D_1 \}$$

есть одна или несколько $A\Phi$ на D_1 .

Если функция $f \in \mathcal{O}(D_1)$ такова, что \mathcal{F}_{f_1} , определяемая как совокупность тейлоровских разложений f с центрами $a \in D_1$, содержится в $\mathcal{F}|_{D_1}$, то f называется (odnosnaчnoй) ветвью $A\Phi \mathcal{F}$ в области D_1 .

Теорема о продолжении вдоль гомотопных путей

Теорема 4.1. Пусть

$$\Gamma: [0,1] \times [0,1] \rightarrow \mathbb{C}$$

- непрерывное отображение, осуществляющее гомотопию путей

$$\gamma_0(t) := \Gamma(0, t), \quad \gamma_1(t) := \Gamma(1, t)$$

в \mathbb{C} (puc. 4.1), причем

$$\Gamma(s,0) = a, \quad \Gamma(s,1) = b, \quad \forall \ s \in [0,1].$$

Пусть канонический элемент $F_0 = (U_0, f_0)$ с центром а допускает аналитическое продолжение $\{F_{st} \mid t \in [0,1]\}$ вдоль

$$\gamma_s(t) := \Gamma(s,t), \quad 0 < t < 1$$

npu любом $s \in [0, 1]$.

Тогда результаты продолжений вдоль γ_0 и γ_1 совпадают:

$$F_{01} = F_{11}$$

 $(u, вообще говоря, = F_{s1} \ для \ всех \ s \in [0,1]).$

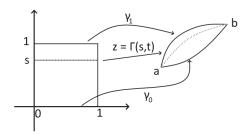


Рис. 4.1. Непрерывное отображение $\Gamma(s,t)$

Доказательство. Фиксируем $s_0 \in [0,1]$ и покажем, что \exists окрестность $v \subset [0,1]$ точки s_0 такая, что

$$F_{s1} = F_{s_01}, \quad \forall \ s \in v. \tag{19}$$

По свойству 2 АП вдоль пути (утверждение 3.1) $\exists \ \varepsilon > 0$ такое, что радиусы всех элементов $F_{s_0t}, \ t \in [0,1],$ будут $\geq \varepsilon$.

Выберем v так, $s \in v$. Отсюда следует, что

$$|\Gamma(s,t) - \Gamma(s_0,t)| < \frac{\varepsilon}{4}, \quad \forall \ t \in [0,1]$$

в силу равномерной непрерывности Γ на $[0,1] \times [0,1]$.

Для $\forall s \in v, t \in [0,1]$ определим \tilde{F}_{st} как единственный канонический элемент с центром $\Gamma(s,t)$, который $\sim F_{s_0t}$ (по свойству Вейерштрасса, утверждение 5).

Тогда

$$\{\tilde{F}_{st}|t\in[0,1]\}$$

есть АП элемента

$$\tilde{F}_{s0} = F_0$$

вдоль γ_s . Действительно, пусть

$$\tilde{u}_t := \left\{ \tau \in u_t \mid |\gamma_s(\tau) - \gamma_s(t)| < \varepsilon/4 \right\},\,$$

где u_t – окрестности из определения АП F_0 вдоль γ_{s_0} , причем можно считать, уменьшая u_t , что

$$|\gamma_{s_0}(\tau) - \gamma_{s_0}(t)| < \varepsilon/4$$

(см. рис. 4.2).

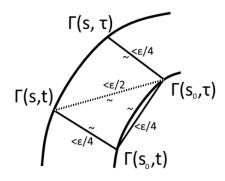


Рис. 4.2. Свойство треугольника для $\Gamma(s,t)$

Воспользуемся свойством треугольника (утверждение 2.5). Здесь

$$\tilde{F}_{st} \sim F_{sot}$$

по определению,

$$F_{s_0t} \sim F_{s_0\tau}$$

по АП, а следовательно,

$$\tilde{F_{st}} \sim F_{s_0 \tau}$$
.

Так как по определению

$$\tilde{F}_{s\tau} \sim F_{so\tau}$$

получим, что

$$\tilde{F}_{s\tau} \sim \tilde{F}_{st}, \ \forall \ \tau \in \tilde{u}_t.$$

При этом \tilde{F}_{s1} , который определяется как единственный канонический элемент с центром в $\gamma_s(1)$, который $\sim F_{s_01}$, совпадает с F_{s_01} , так как у них общий центр.

В силу единственности АП вдоь пути это означает, что результат продолжения F_0 вдоль γ_s равен результату продолжения F_0 вдоль γ_{s_0} (оба равны F_{s_01}). Утверждение (19) доказано.

Из (19) вытекает, что результат F_{s1} продолжения F_0 вдоль γ_s является локально постоянной функцией от $s \in [0,1]$. Другими словами, в окрестности \forall точки s_0 она постоянна.

По условию, эта функция определена на всем [0,1]. Следовательно, обозначая через δ число Лебега покрытия окрестностями, в которых эта функция постоянна, мы за конечное число шагов длины $<\delta$ получим, что эта функция глобально постоянна на [0,1], то есть

$$F_{01} = Fs1 = F_{11}, \ \forall \ s \in [0, 1].$$

Следствие. Любая АФ $\mathcal F$ на *односвязной* области $D\subset \mathbb C$ имеет число листов 1, то есть $\in \mathcal O(D)$.

Доказательство. Фиксируем $a \in D$. Тогда \mathcal{F} есть множество результатов продолжений любого своего элемента F с центром a вдоль всех непрерывных путей

$$\gamma: [0,1] \to D,$$

с $\gamma(0) = a$, причем АП вдоль любого такого пути \exists по определению АФ в D.

Но любые 2 таких пути с общим концом в D гомотопны в D по определению односвязного пути. Следовательно, результаты продолжений F вдоль γ_0 и γ_1 совпадают по теореме 4.1, а значит, число элементов $G \in \mathcal{F}$ с центром b равно 1, и, наконец, число листов \mathcal{F} в D равно 1

Следствие. Если \mathcal{F} – $A\Phi$ в области D и $D_1 \subset D$ – односвязная подобласть, то сужение $\mathcal{F}|_{D_1}$ распадается на столько голоморфных в D_1 функций, каково число листов \mathcal{F} в D.

Доказательство. Доказательство вытекает из определений и следствия.

Теорема Пуанкаре – Вольтерра

Теорема 4.2. Если $\mathcal{F} - \Pi A \Phi$, то $\forall \ a \in \mathbb{C}$ мощность множества всех $F \in \mathcal{F}$ с центром а конечна или счетна.

B частности, число листов любой $A\Phi$ в любой области $D\subset\mathbb{C}$ либо конечно, либо равно счетной $\infty.$

Доказательство. Зафиксируем \forall элемент $F_0 \in \mathcal{F}$ с центром a. Любой другой элемент $F \in F$ с центром a получается из F_0 продолжением вдоль замкнутой γ (утверждение 3.1, пункт 4).

Небольшой гомотопией можно сделать все вершины γ лежащими в $\mathbb{Q}+i\mathbb{Q}$, причем результат продолжение не изменится в силу доказательства утверждения (19).

Но множество ломаных с вершинами в счетном множестве $\mathbb{Q}+i\mathbb{Q}$ не более чем счетно. Это можно показать индукцией по числу вершин.

Следовательно, число элементов $F \in \mathcal{F}$ с центром a не более чем счетно. \square

Лекция 5. Теорема о монодромии

Теорема о монодромии

Теорема 5.1. Пусть $D \subset \mathbb{C}$ – односвязная область,

$$F = (U, f)$$

– канонический элемент с центром $a\in D$, допускающий $A\Pi$ вдоль \forall непрерывного пути

$$\gamma: [0,1] \to D$$

 $c \gamma(0) = a$.

Тогда $\exists \ \Phi \in \mathcal{O} \ maкая, что$

$$\Phi = f$$

в окрестности точки а.

Доказательство. Утверждение теоремы вытекает из следствия теоремы 4.1 о продолжении вдоль гомотопных путей, так как результаты всех АП элемента F являются АФ в D, и, следовательно, \mathcal{F}_{Φ} для некоторой $\Phi \in \mathcal{O}(D)$.

Замечание 5.1. Следствия и теоремы 4.1 о продолжении вдоль гомотопных путей дают альтернативную формулировку утверждения теоремы 5.1.

Замечание 5.2. Нельзя утверждать, что $\Phi = f$ на $D \cap U$. Можно утверждать только то, что $\Phi = f$ в связной компоненте $D \cap U$, содержащей точку a.

Рассмотрим следующий пример. Пусть

$$D = \mathbb{C} \setminus (-\infty, 0],$$

$$\Phi(z) = \ln|z| + \arg z, \quad -\pi < \arg z < \pi,$$

а F – канонический элемент Φ с центром $a \in D$, где $\mathrm{Im} a < 0$. Тогда в компоненте области $D \cap U$ (рис. 5.1), не содержащей точку $a, \Phi \neq f$.

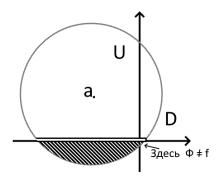


Рис. 5.1. Контрпример $\Phi \neq f$

Лемма о корнях и логарифмах

Лемма 5.1. (О корнях и логарифмах) Если $D \subset \mathbb{C}$ – односвязная область и $f \in O$ не имеет нулей в D, то $\exists g \in \mathcal{O}$ такая, что

$$f = g^2 \ e \ D,$$

 $u \exists h \in \mathcal{O}(D)$ такая, что

$$f = e^h \ e \ D.$$

Доказательство. Вытекает из любой из трех формулировок теоремы о монодромии (теорема 5.1, следствия и теоремы 4.1), примененной к

$$\mathcal{G} := \sqrt{f}$$

И

$$\mathcal{H} := \ln f$$
,

здесь, напомним, $\sqrt{\cdot}$ и $\ln(\cdot)$ являются $A\Phi$ на $\mathbb{C}\setminus\{0\}$.

Любую (из двух) ветвь $\mathcal G$ в D можно взять за y, а любую (из ∞) ветвей $\mathcal H$ — за h.

Классификация изолированных особых точек АФ

Определение 5.1. Точка $a \in \overline{\mathbb{C}}$ называется *изолированной особой точкой* для $A\Phi$ \mathcal{F} , если \exists проколотая окрестность U точки a, то есть

$$U = \{0 < |z - a| < \varepsilon\}, \quad a \in \mathbb{C},$$

или

$$\{|z| > R\}, \quad a = \infty,$$

такая, что \mathcal{F} является $A\Phi$ в U.

Обозначим через # \mathcal{F} число элементов А Φ \mathcal{F} в области U.

Перейдем к классификации изолированных особых точек АФ F.

Если $\#\mathcal{F}=1$, то это изолированная особая точка однозначного характера ($\mathcal{F}\in\mathcal{O}(U)$). Такие особые точки делятся на следующие категории.

• Устранимая особая точка. Пример в точке a = 0:

$$\frac{\sin z}{z}$$
.

• Полюс. Пример в точке a = 0:

$$\frac{1}{z^n}, n \in \mathbb{N}.$$

• Существенная особая точка. Пример в точке a = 0:

$$e^{1/z}$$
.

Если $\#\mathcal{F} > 0$, то эта особая точка является точкой ветвления.

• Если $\#\mathcal{F} = n \in \{2,3,\ldots\}$, то особая точка – точка ветвления конечного порядка n. Пример в точке a=0:

 $\sqrt[n]{z}$.

• Если $\#\mathcal{F} = \infty$, то особая точка – логарифмическая точка ветвления. Пример в точке a=0:

 $\ln z$.

Замечание 5.3. Если \mathcal{F} – $A\Phi$ на $D \setminus \{a\}$ для некоторой области D такой, что $a \in D$, то сужение $\mathcal{F}|_U$ на проколутую окрестность $U \subset D \setminus \{a\}$ точки a может состоять из нескольких $A\Phi$, каждая из которых может иметь свою особенность.

Лемма 5.2. Пусть $f \in \mathcal{O}(a)$. Если $f(a) \neq 0$ или если порядок нуля f в точке a четен, то $\sqrt{f(z)}$ имеет при z = a две устранимых особых точки, то есть

$$\exists \ g \in \mathcal{O}(|z - a| < \varepsilon)$$

такая, что $f = g^2$, и, следовательно,

$$\sqrt{f} = \pm g.$$

Если же порядок нуля f в точке а нечетен, то $\sqrt{f(z)}$ имеет при z=a точку ветвления 2 порядка (то есть является $A\Phi$ на $\{0<|z-a|<\varepsilon\}$ с такой особой точкой.

Доказательство. 1. Если $f(a) \neq 0$, то $f = g^2$ в окрестности точки a для некоторой $g \in \mathcal{O}(a)$ по лемме 5.1 о корнях и логарифмах (или непосредственно композицией с элементом \sqrt{w}).

Следовательно, $\sqrt{f}=\pm g$ имеет 2 устранимых особых точки.

2. Пусть порядок нуля f в точке a четен, то есть

$$f(z) = (z - a)^{2n} f_1(z), \quad n \in \mathbb{N}$$

где $f_1 \in \mathcal{O}(a)$ такая, что $f_1(a) \neq 0$.

Следовательно, $\exists g_1 \in \mathcal{O}(a)$ такая, что $f_1 = g_1^2$ (по пункту 1).

Тогда

$$\sqrt{f(z)} = \pm (z - a)^n g_1(z)$$

имеет при z = a две устранимых особых точки.

3. Если порядок нуля f(z) при z = a нечетен, то

$$f(z) = (z - a)^{2k+1} f_1(z), k \in \{0, 1, 2, \ldots\},\$$

где $f_1 \in \mathcal{O}(a)$ такая, что $f_1(a) \neq 0$. Следовательно,

$$f_1 = g_1^2$$

для некоторой $g \in \mathcal{O}(a)$, и, следовательно,

$$\sqrt{f(z)} = \sqrt{z - a}(z - a)^k g_1(z)$$

имеет при z=a ту же особенность, что и $\sqrt{z-a}$, то есть точку ветвления 2-го порядка.

Задача 5.1. Доказать, что обратная функция Жуковского⁸

$$w = z + \sqrt{z^2 - 1}$$

имеет при $z = \infty$ один полюс 1-го порядка и одну устранимую особую точку.

Описание особых точек функции $w=\mathcal{F}(z)=\sqrt{1+\sqrt{z}}$

Утверждение 5.1. Формула

$$w = \sqrt{1 + \sqrt{z}}$$

задает одну или несколько $A\Phi$ на $\mathbb{C}\setminus\{0,1\}$. При этом

- (*) Сужение $\mathcal{F}|_{V_0}$ является двумя $A\Phi$ с точкой ветвления 2-го порядка каж-дая (при z=0);
- (**) Сужение $\mathcal{F}|_{V_1}$ является тремя $A\Phi$, две из которых имеют при z=1 устранимую особую точку, а третья точку ветвления 2-го порядка.

Здесь

$$V_0 := \{0 < |z| < 1\},$$

$$V_1 := \{0 < |z - 1| < 1\}.$$

Прежде, чем перейти к доказательству, проиллюструем утверждение 5.1. Заметим, что

$$w = \sqrt{1 + \sqrt{z}} \iff w^2 = 1 + sqrtz \iff (w^2 - 1)^2 = z.$$

Построим область

$$\{(z, w) \in \mathbb{R}^2 | z = (w^2 - 1)^2 \}$$

(рис. 5.2).

Доказательство. Если $z \in$ окрестности O, то

$$\zeta = 1 + \sqrt{z}$$

$$z = \frac{1}{2}(w + \frac{1}{w}).$$

⁸Напомним, что это функция, обратная к функции Жуковского

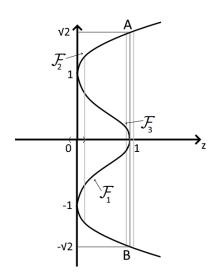


Рис. 5.2. График $z = (w^2 - 1)^2$

принадлежит окрестности точки $\zeta = 1$, то есть

$$\sqrt{\zeta} = \pm f_0(\zeta),$$

где (U_0,f_0) – канонический элемент $\sqrt{\zeta}$ с центром $\zeta=1$. Заметим, что

$$1+\sqrt{z}$$

является $A\Phi$ с точкой ветвления второго порядка при z=0. Следовательно,

$$\mathcal{F}(z) = \sqrt{1 + \sqrt{z}} = \pm f_0(1 + \sqrt{z})$$

имеет при z=0 две (из-за знака \pm) точки ветвления 2 порядка (как у $1+\sqrt{z}$), так как f_0 является конформным отображением на свой образ $f_0(U_0)$. Иллюстрация к доказательству представлена на рис. 5.2.

Утверждение (*) доказано.

Перейдем к доказательству (**). Если $z \in$ окрестности 1, то

$$1 + \sqrt{z} = 1 + \pm f_0(z),$$

где (U_0,f_0) – это канонический элемент \sqrt{z} с центром 1, то есть

$$U_0 = \{|z - 1| < 1\},\$$

$$f_0(z) = \sqrt{|z|}e^{i\arg z/2}, \quad -\pi/2 < \arg z < \pi/2.$$

Следовательно,

$$\mathcal{F}|_{\{0<|z-1|<1\}} = \begin{cases} \sqrt{1 + f_0(z)} \\ \sqrt{1 - f_0(z)} \end{cases}$$

Так как $f_0(1) = 1$, то

$$1 + f_0(1) = 2 \neq 0,$$

а следовательно (лемма 5.2),

$$\sqrt{1+f_0(z)}$$

имеет при z=1 две устранимые особые точки со значениями $\pm\sqrt{2}$ (рис. 5.2). Теперь,

$$1 - f_0(1) = 0,$$

но, дифференцируя $f_0^2(z) = z$, получим

$$f_0'(1) = 1/2 \neq 0.$$

Следовательно, по лемме 5.1 $\sqrt{1-f_0(z)}$ имеет при z=1 точку ветвления 2-го порядка.

Замечание 5.4. АФ

$$w = \sqrt{1 + \sqrt{1}}$$

допускает выделение (однозначной = голоморфной) ветви на области

$$V_1 = \{0 < |z - 1| < 1\},\$$

но не распадает на (однозначные) ветви на V_1 .

А именно,

$$\mathcal{F}|_{V_1} = \{ \pm \Phi(z), \mathcal{F}_3(2) \},$$

где

$$\Phi(z) := f_0(1 + f_0(z)) \in \mathcal{O}(V_1),$$

$$\mathcal{F}_3(2) := \sqrt{1 - f_0(z)}$$

– ${
m A}\Phi$ на V_1 , содержит как однозначные, так и не однозначные функции.

Замечание 5.5. ПАФ, порожденная любым элементом нашей АФ \mathcal{F} , отличается от \mathcal{F} только добавлением 2-х канонических элементов с центром z=1 (графиков функций Ф и $-\Phi$).

В частности, ПАФ может иметь различное число элементов с центрами в разных точках своей области определения (4 для всех $a \in \mathbb{C} \setminus \{0,1\}$, 2 для a=1). Нет понятия числа листов ПАФ (в отличие от АФ в области).

Замечание 5.6. Покажем, что

$$\mathcal{F}(z) = \sqrt{1 + \sqrt{z}}$$

– это одна АФ на $\mathbb{C}\setminus\{0,1\}$ и что она имеет при $z=\infty$ точку ветвления четвертого порядка. Здесь F_1 – результат АФ F_0 вдоль окружности γ_R , F_2 – результат АП F_1 вдоль γ_R и так далее:

$$F_0 \stackrel{\gamma_R}{\to} F_1 \stackrel{\gamma_R}{\to} F_2 \stackrel{\gamma_R}{\to} F_3 \stackrel{\gamma_R}{\to} F_0 \dots$$

Любой из 4-х элементов F_0 , F_1 , F_2 и F_3 нашей $A\Phi$ \mathcal{F} с центром z=R может быть получен из \forall другого посредством $A\Pi$ вдоль нужное число раз пройденной окружности γ_R . Следовательно, \mathcal{F} – одна $A\Phi$ на $\mathbb{C}\setminus\{0,1\}$ с числом листов 4, а так же на $\{|z|>R-\varepsilon\}$. Тогда

$$\#\mathcal{F}|_{\{|z|>R-\varepsilon\}}=4,$$

41

откуда следует, что $z=\infty$ является точкой ветвления порядка 4 для \mathcal{F} .

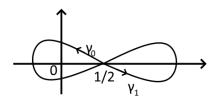


Рис. 5.3. Пути γ_0 и γ_1

Задача 5.2. Пусть F_1 , F_2 , F_3 и F_4 – все элементы \mathcal{F} с центром 1/2, занумерованные сверху вниз, а γ_0 и γ_1 – пути (рис. 5.3).

Доказать, что результаты АП вдоль γ_0 и γ_1 таковы:

$$F_2 \stackrel{\gamma_0}{\leftarrow} F_1 \stackrel{\gamma_1}{\rightarrow} F_1$$

$$F_1 \stackrel{\gamma_0}{\leftarrow} F_2 \stackrel{\gamma_1}{\rightarrow} F_3,$$

$$F_4 \stackrel{\gamma_0}{\leftarrow} F_3 \stackrel{\gamma_1}{\rightarrow} F_2,$$

$$F_3 \stackrel{\gamma_0}{\leftarrow} F_4 \stackrel{\gamma_1}{\rightarrow} F_4,$$

Вывести отсюда, что пути $\gamma_0 \circ \gamma_1$ и $\gamma_1 \circ \gamma_0$ не гомотопны в $\mathbb{C} \setminus \{0,1\}$.

Лекция 6. Точки ветвления

Лемма о фундаментальной группе проколотого круга

Лемма 6.1. Пусть

$$V := \{0 < |z - a| < \varepsilon\},\,$$

a

$$\gamma_0^n: [0,1] \to V$$

задается формулй

$$\gamma_0^n(t) = a + (z_0 - a)e^{2\pi i nt}, \quad 0 \le t \le 1.$$

Тогда любой непрерывный путь

$$\gamma: [0,1] \to V$$

 $c\ \gamma(0)=\gamma(1)=z_0$ гомотопен в области V пути γ_0^n Для некоторого $n\in\mathbb{Z}.$

$$z_0 - a = |z_0 - a|e^{ic_0}.$$

По лемме о непрерывной ветви аргумента вдоль пути \exists непрерывная функция

$$c: [0,1] \to \mathbb{R}$$

такая, что $c(0) = c_0$ и

$$\gamma(t) - a = |\gamma(t) - a|e^{ic(t)}$$

для всех $t \in [0, 1]$.

Поскольку $\gamma(0)=\gamma(1),$ то

$$c(1) = c(0) + 2\pi n$$

для некоторого $n \in \mathbb{Z}$. Тогда искомая гомотопия задается формулой

$$\Gamma(s,t) = a + M(s,t)e^{iA(s,t)} \in V,$$

где

$$M(s,t) := |\gamma(t) - a|^{s} |z_0 - a|^{1-s},$$

$$A(s,t) := s \cdot c(t) + (1-s)(c_0 + 2\pi int),$$

где $(s,t) \in [0,1] \times [0,1]$.

Задача 6.1. Доказать, что пути γ_0^n не гомотопны друг другу в V при различных $n \in \mathbb{Z}$.

Эквивалетное описание классификации изолированной точки АФ

Утверждение 6.1. Пусть

$$V = \{0 < |z - a| < \varepsilon\},\,$$

 $z_0 \in V$, $\mathcal{F} - A\Phi$ на V, $F_0 \in \mathcal{F}$ – элемент c центром z_0 , $\forall n \in \mathbb{Z}$ F_n определяется как результат $A\Pi$ F_0 вдоль γ_0^n (до есть вдоль n раз пройденной окружности). Тогда

(число листов
$$\mathcal{F}$$
 в V) = $\min \{ n \in \mathbb{N} | F_n = F_0 \}$.

Иными словами, \mathcal{F} имеет $npu \ z = a$

- Изолированную точку однозначного характера $\iff F_1 = F_0;$
- Точку ветвления порядка $n \in \{2,3,\ldots\}$ \iff $F_n = F_0$, но $F_j \neq F_0$ при $1 \leq j \leq n-1$;
- Логарифмическую точку ветвления $\iff F_n \neq F_0$ при всех $n \in \mathbb{N}$.

Доказательство. Из леммы 6.1 и теоремы 4.1 о продолжении вдоль гомотопных путей вытекает, что \forall элемент $G \in \mathcal{F}$ с центром z_0 равен F_n для некоторого $n \in \mathbb{Z}$ (*).

1. Следовательно, если $F_1 = F_0$, то $F_n = F_0 \ \forall \ n \in \mathbb{Z}$ и число листов \mathcal{F} в V равно число элементов $F \in \mathbb{Z}$ с центром z_0 , то есть 1.

Таким образом, \mathcal{F} имеет изолированную особую точку однозначного характера.

2. Пусть $F_n = F_0$ при некотором $n \ge 2$, но

$$F_i \neq F_0, 1 < j < n-1.$$

Все эти F_i различны, так как если

$$F_k = F_l \tag{20}$$

при некоторых $0 \le k < l \le n-1$, то АП равенства 20 вдоль γ_0^{k-l} дает

$$F_0 = F_{l-k}$$

вопреки определению n.

Следовательно, множество элементов \mathcal{F} с центром z_0 равно

$$\{F_0, F_1, \ldots, F_{n-1}\},\$$

то есть число листов в \mathcal{F} в V равно n.

3. Если $F_n \neq F_0$ ни при каком $n \in \mathbb{N}$, то

$$F_k \neq F_l$$

ни при каких $1 \leq k < l,$ иначе АП вдоль пути γ_0^{k-l} дало бы

$$F_0 = F_{k-l}$$
.

Следовательно, число листов \mathcal{F} в V равно ∞ .

Ряды Пюизо

Утверждение 6.2. Пусть $A\Phi \mathcal{F}$ на

$$V = \{ z \in \mathbb{C} | 0 < |z - a| < \varepsilon \}$$

имеет при z = a точку ветвления порядка $n \in \{2, 3, ...\}$. Тогда $\exists \Phi \in \mathcal{O}(0 < |\zeta| < \sqrt[n]{z})$ такое, что⁹

$$\mathcal{F}(z) = \Phi(\sqrt[n]{z-a}).$$

Доказательство. Пусть

$$F_0 = (U_0, f_0)$$

– любой элемент ${\mathcal F}$ с центром $z_0 \in V$ и

$$\Phi(\zeta) := f_0(a + \zeta^n)$$

для всех $\zeta \in U_0'$, где $U_0' \subset W$ — любой из n прообразов U_0 при отображении

$$z = a + \zeta^n. \tag{21}$$

Образ пути

$$\gamma_0'(t) = \zeta_0 e^{2\pi i t}, \quad 0 \le t \le 1$$

при отображении (21) – это n раз пройденный путь γ_0^n с началом и концом z_0 .

Поэтому результат продолжения канонического элемента функции Φ с центром ζ_0 , где

$$z_0 = a + \zeta_0^n,$$

равен $f_n(a+\zeta^n)$, где

$$F_n(U_0, f_n),$$

есть результат АП элемента F_0 вдоль γ_0^n , то есть $F_n = F_0$ по критерию точки ветвления порядка n (утверждение 6.1).

Следовательно, получим исходный элемент, то есть число листов Φ в W равно 1, а значит, $\Phi \in \mathcal{O}(W)$ (продолжение вдоль \forall пути в W с началом ζ_0 существует по определению композиции $A\Phi$).

Иллюстрацию к доказательству можно видеть на рис. 6.1.

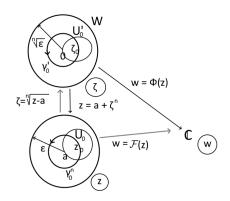


Рис. 6.1. Иллюстрация к доказательству утверждения 6.2

Замечание 6.1. Функция $\Phi \in \mathcal{O}(W)$ с указанными свойством, то есть такая, что

$$\mathcal{F}(n) = \Phi(\sqrt[n]{z-a})$$

не единственна. Таких функций ровно n штук:

$$\Phi_k(\zeta) := \Phi\left(e^{\frac{2\pi ik}{n}\zeta}\right), \quad k = 1, 2, \dots, n-1$$

и сама Φ для k=0.

Замечание 6.2. Обратим внимание на следующее забавное свойство:

$$w^k \sqrt[n]{z-a} = \sqrt[n]{z-a}$$

ДЛЯ

$$w = e^{2\pi i/n},$$

 $k, n \in \mathbb{N}$. В частности,

$$\sqrt{z} = -\sqrt{z}$$
.

Задача 6.2. Выяснить, верно ли, что $\exists \ m \ A\Phi \ \mathcal{F} \neq 0 \ на \ \mathbb{C} \setminus \{0\} \ makux, что$

$$\mathcal{F} = 5\mathcal{F}$$
.

Вернемся к замечанию 6.1. Композиция $\circ \pi$, где

$$\pi(\zeta) := a + \zeta^n$$
,

состоит из n однозначных функций:

$$\mathcal{F} \circ \pi = \{\Phi, \Phi_1, \dots, \Phi_{n-1}\}\$$

на W.

 $^{^9}$ Иными словами, любая АФ с точкой ветвления порядка n при z=a является в окрестности этой точки однозначной гломорфной функцией от $\sqrt[n]{z-a}.$

Замечание 6.3. Раскладывая $\Phi(\zeta)$ в ряд Лорана

$$\Phi(\zeta) = \sum_{k \in \mathbb{Z}} c_k \zeta^k, \quad 0 < |\zeta| < \sqrt[n]{\varepsilon}$$

и подставляя

$$\zeta = (z - a)^{1/n},$$

получим разложение АФ $\mathcal F$ в ряд Пюизо на кольце $V=\{0<|z-a|<\varepsilon\}$

$$\mathcal{F}(z) = \sum_{k \in \mathbb{Z}} c_k (z - a)^{k/n},$$

где правая часть понимается не как сумма бесконечного числа $A\Phi$, а как композиция $\Phi\left((z-a)^{1/n}\right)$.

Пример 6.1. Рассмотрим снова

$$w = \mathcal{F}(z) = \sqrt{1 + \sqrt{z}}$$

(рис. ??). Пусть

$$F_0 = (|z - 1| < 1, f_0(z))$$

– канонический элемент АФ $w=\sqrt{z}$ с центром $z_0=1$ и

$$f_0(z) = (1 + (z - 1))^{1/2} = \sum_{n=0}^{\infty} C_{1/2}^m (z - 1)^m$$

таким, что $f_0(1) = 1$. Тогда

$$\mathcal{F}_1(z) = -f_0(1+z^{1/2}) = -\sum_{m=0}^{\infty} C_{1/2}^m z^{m/2} =$$

$$= -\left(1 + \frac{1}{2}z^{1/2} - \frac{1}{8}z + \ldots\right), \quad 0 < |z| < 1,$$

так как, например,

$$C_{1/2}^2 = \frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)}{2!} = -\frac{1}{8}.$$

Далее,

$$\mathcal{F}_2 = -\mathcal{F}_1,$$

$$\mathcal{F}_3(z) = \sqrt{1 - f_0(z)} = \sqrt{1 - \left(1 + \frac{1}{2}(z - 1) - \frac{1}{8}(z - 1)^2 \cdot 9 \dots\right)} = 0$$

$$=\frac{i}{\sqrt{2}}(z-1)^{1/2}\sqrt{1-\frac{1}{4}(z-1)+\ldots}=\frac{i}{\sqrt{2}}(z-1)^{1/2}\left(\underbrace{1-\frac{1}{8}(z-1)+\ldots}_{\sum\limits_{m=0}^{\infty}c_m(z-1)^m}\right),\ 0<|z-1|<1.$$

Аналогично,

$$\Phi(z) = \sqrt{1 + f_0(z)} = \sqrt{2 + \frac{1}{2}(z - 1) - \frac{1}{8}(z - 1)^2 + \dots} =$$

$$= \sqrt{2} \left(1 + \frac{1}{4}(z - 1) - \frac{1}{16}(z - 1)^2 + \dots \right)^{1/2} =$$

$$= \sqrt{2} \left(1 + \frac{1}{8}(z - 1) - \frac{5}{128}(z - 1)^2 \right), \quad |z - 1| < 1,$$

где

$$-\frac{5}{128} = -\frac{1}{32} - \frac{1}{8} \left(\frac{1}{4}\right)^2.$$

При |z| > 1

$$\mathcal{F}(z) = \sqrt{1 + \sqrt{z}}.$$

Пусть $1/z = t^4$. Тогда

$$\mathcal{F} = \sqrt[4]{z} \sqrt{1 + \frac{1}{\sqrt{z}}} = \frac{1}{t} \left(1 + t^2 \right)^{1/2} = \frac{1}{t} \left(1 + \frac{1}{2} t^2 - \frac{1}{8} t^4 + \dots \right), \quad 0 < |t| < 1.$$

Перейдя обратно к записи через z, получим, что

$$\mathcal{F}(z) = \sqrt[4]{z} \left(1 + \left(\frac{1}{\sqrt[4]{z}} \right)^2 \right) = z^{1/4} \left(1 + \frac{1}{2} z^{-1/2} - \frac{1}{8} z^{-1} + \dots \right), \quad |z| > 1.$$

Алгебраическая точка ветвления

Определение 6.1. Точка ветвления конечного порядка $n \in \{2, 3, \ldots\}$ называется алгебраической, если $\exists \ l \in \mathbb{N}$ такое, что

$$\lim_{z \to a} (z - a)^l \mathcal{F}(z) = 0$$

для любого из n значений $\mathcal{F}(z)$.

Замечание 6.4. Определению выше эквивалентна следующая запись:

$$F(z) = \Phi\left(\sqrt[n]{z-a}\right),\,$$

где

$$\Phi \in \mathcal{O}\left(0 < |\zeta| < \sqrt[n]{z}\right)$$

имеет при $\zeta = 0$ устранимую особую точку или полюс.

Замечание 6.5. При n=1 определение тоже справедливо:

$$f \in \mathcal{O}\left(0 < |z - a| < \varepsilon\right)$$

имеет при z=a алгебраическую точку, то есть $\exists\ l\in\mathbb{N}$ такое, что

$$\lim_{z \to a} (z - a)^l f(z) = 0,$$

тогда и только тогда, когда f имеет устойчивую особую точку или полюс при z=a.

Пример 6.2. • У $\sqrt{1+\sqrt{z}}$ все 6 особых точек алгебраические (рис. 5.2).

- У $e^{-1/\sqrt{z}}$ z=0 не алгебраическая особая точка, так как Φ имеет существенную особую точку.
- У $\ln z \ z = 0$ не алгебраическая особая точка, так как имеет бесконечное число листов.

Определение 6.2. Алгебраичской функцией называется $A\Phi \mathcal{F}$ на $\mathbb{C} \setminus \{a_1, \dots, a_k\}$ такая, что

- 1. число листов \mathcal{F} на $\mathbb{C}\setminus\{a_1,\ldots,a_k\}$ конечно;
- 2. все особенности \mathcal{F} над точками a_1, \ldots, a_k, ∞ алгебраические.

Пример 6.3. $\sqrt{1+\sqrt{z}}$ является алгебраической функцией.

Теорема 6.1. Если \mathcal{F} – алгебраическая функция, то \exists неприводимый полином P(z,w) такой, что

$$P(z, \mathcal{F}(z)) \equiv 0$$

на $\mathbb{C} \setminus \{a_1, \ldots, a_k\}$, или, эквивалентно,

$$w = \mathcal{F}(z) \iff P(z, w) = 0.$$
 (22)

Теорема 6.2. Обратно, \forall неприводимого полинома $P(z,w) \exists$ единственная алгебраическая функция $w = \mathcal{F}(z)$ на $\mathbb{C} \setminus \{a_1, \ldots, a_k\}$, где a_1, \ldots, a_k зависят от P, такая, что выполняется (22).

Лекция 7. Теоремы об алгебраических функциях

Изолированная алгебраическая точка

Определение 7.1. Изолированная особая точка $a \in \overline{\mathbb{C}}$ АФ \mathcal{F} называется алгебраической, если

- 1. Число листов \mathcal{F} в проколотой окрестности точки a конечно;
- 2. $\exists N \in \mathbb{N}$ такое, что

$$\lim_{z \to a} (z - a)^N \mathcal{F}(z) = 0,$$

то есть $\forall \ \varepsilon > 0 \ \exists \ \delta > 0$ такое, что из того, что $0 < |z-a| < \delta$ следует, что

$$|z - a|^N |\mathcal{F}| < \varepsilon$$

для всех значений \mathcal{F} в точке z.

Если $a=\infty$, то требуется $\exists \ N\in\mathbb{N}$ такого, что

$$\lim_{z \to \infty} z^{-N} \mathcal{F}(z) = 0.$$

Замечание 7.1. Написанное выше эквивалентно следующему:

$$\mathcal{F}(z) = \Phi(\sqrt[n]{z-a})$$

или

$$\Phi\left(\frac{1}{\sqrt[n]{z}}\right), \quad a = \infty,$$

где $\Phi \in \mathcal{O}(0 < |\zeta| < \varepsilon_0)$ имеет при $\zeta = 0$ устранимую особенность или полюс, то есть главная часть ряда Пюизо $\mathcal{F}(z)$ с центром z = a содержит лишь конечное число ненулевых членов.

Определение 7.2. АФ \mathcal{F} на $\mathbb{C}\setminus\{a_1,\ldots,a_k\}$ называется алгебраической, если

- 1. Число листов \mathcal{F} на $\mathbb{C} \setminus \{a_1, \ldots, a_k\}$ конечно;
- 2. Все особые точки АФ \mathcal{F} над a_1,\ldots,a_k,∞ алгебраические.

Теоремы об алгебраических функциях

Теорема 7.1. \forall алгебраической функции \mathcal{F} на $\mathbb{C} \setminus \{a_1, \ldots, a_k\}$ \exists неприводимый полином P(z, w) с комплексными коэффицентами такой, что $P \not\equiv 0$ и

$$P(z, \mathcal{F}(z)) \equiv 0, \quad z \in \mathbb{C} \setminus \{a_1, \dots, a_k\}.$$

 $\Pi pu этом^{10}$

$$\deg_w P(z,w) =$$
 числу листов \mathcal{F} на $\mathbb{C} \setminus \{a_1,\ldots,a_k\}.$

Доказательство. Пусть

$$F_l = (U_l, f_l), \quad l = 1, \dots, n$$

– все элементы АФ \mathcal{F} с центром $z_0 \in \mathbb{C} \setminus \{a_1, \ldots, a_k\}$, где n равно числу листов \mathcal{F} . Тогда выражения

$$\sigma_1(z) := f_1(z) + \ldots + f_n(z),$$

$$\sigma_2 := \sum_{1 \le i < j \le n} f_i(z) f_j(z),$$

и так далее до

$$\sigma_n(z) := f_1(z) \cdot \ldots \cdot f_n(z),$$

 $z\in U$, где U такая, что $z_0\in U$ и $U\subset U_l$ для всех $l=1,\ldots,n$, переходят в себя при АП вдоль ∀ непрерывного пути

$$\gamma: [0,1] \to \mathbb{C} \setminus \{a_1,\ldots,a_k\}$$

с $\gamma(0)=(1)=z_0$, так как f_1,\dots,f_n при этом только переставляются.

Следовательно, $\sigma_1, \sigma_2, \ldots, \sigma_n$ задают АФ на $\mathbb{C} \setminus \{a_1, \ldots, a_k\}$ с числом листов 1, то есть

$$\sigma_1, \sigma_2, \ldots, \sigma_n \in \mathcal{O}(\mathbb{C} \setminus \{a_1, \ldots, a_k\}.$$

Особенность голоморфной функции $\sigma_1(z)$ при $z=a_j,\ j=1,\ldots,k$ или $z=\infty$ – алгебраическая, так как σ_1 – это одна из $A\Phi$, на которые распадается выражение

$$\underbrace{\mathcal{F} + \ldots + \mathcal{F}}_{n, \text{ pas}}$$

то есть сумма n функций, каждая из которых имеет алгебраическую особенность при $z = a_i$.

Следовательно, особенность голоморфной функции $\sigma_1(z)$ является полюсом или устранимой особенностью (так как это изолированная особая точка однозначного

Следовательно, $\sigma_1(z)$ – мероморфная функция на $\overline{\mathbb{C}}$, то есть рациональная функция.

С помощью аналогичных рассуждений получим, что $\sigma_2, \ldots, \sigma_n$ тоже являются рациональными функциями.

$$P(z,w) = \sum_{j=0}^{k} c_j(z)w^j,$$

где $c_k(z) \neq 0$, то

$$\deg_w P(z, w) = k.$$

 $^{^{10}{}m E}$ сли полином имеет вид

Равенство

$$(w - f_1)(w - f_2) \dots (w - f_n) = w^n - \sigma_1 w^{n-1} + \sigma_2 w^{n-2} + \dots + (-1)^n \sigma^n$$

можно умножить на произведение $a_0(z)$ всех знаменателей рациональных функций $\sigma_1, \ldots, \sigma_n$ и получить, что полином

$$P(z,w) = a_0(z)w^n - a_1(z)w^{n-1} + a_2(z)w^{n-2} + \dots + (-1)^n a_n(z),$$
(23)

где

$$a_j(z) := \sigma_j(z)a_0(z),$$

и можно считать, что полиномы

$$a_0(z), a_1(z), \ldots, a_n(z)$$

не имеют общих множителей, является искомым полиномом, так как

$$P(z, \mathcal{F}(z)) = 0$$

для всех элементов \mathcal{F} в окрестности точки z_0 по построению, а значит, по теореме единственности и всюду на $\mathbb{C}\setminus\{a_1,\ldots,a_k\}$.

Покажем, что полином (23) неприводим, то есть если

$$P = P_1 P_2$$

где P_1 и P_2 – полиномы от z и w, то либо $P_1 \equiv {\rm const.}$ действительно, из

$$P_1(z, f(z))P_2(z, f(z)) \equiv 0$$

на U для элемента $F = (U, f) \in \mathcal{F}$ вытекает, что либо

$$P_1(z, f(z)) \equiv 0 \text{ Ha } U, \tag{24}$$

либо

$$P_2(z, f(z)) \equiv 0$$
 на U .

Пусть выполняется (24). Тогда по теореме единственности вдоль ∀ пути

$$P_1(z, f(z)) \equiv 0$$

для \forall элемента $(U, f) \in \mathcal{F}$.

Но из принципа изолированности нулей вытекает, что всегда \exists точка $z_0 \in \mathbb{C} \setminus \{a_1, \ldots, a_k\}$ такая, что значения всех элементов \mathcal{F} в точке z_0 различны.

Следовательно,

$$\deg_w P_1(z_0, w) > n, \quad z: |z - z_0| < \varepsilon.$$

Так как этот полином имеет n различных корней, и для всех $z \in$ окрестности z_0 это тоже так.

Следовательно,

$$\deg_w P_2(z, w) = 0$$

для всех z, то есть P_2 зависит только от z. Тогда в силу того, что полиномы

$$a_0(z), a_1(z), \ldots, a_n(z)$$

не имеют общих множителей, $P_2 \equiv \text{const.}$

Теорема 7.2. Пусть P(z,w) – неприводимый полином с комплексными коэффииентами. Тогда \exists конечное мнжество

$$A := \{a_1, \dots, a_k\} \subset \mathbb{C}$$

и алгебраическая функция \mathcal{F} на $\mathbb{C}\setminus A$ такие, что

$$P(z, \mathcal{F}(z)) \equiv 0$$

 $\mu a \mathbb{C} \setminus A$.

Более того, для $z \in \mathbb{C} \setminus A$ имеем

$$P(z, w) - 0 \iff w = \mathcal{F}(z),$$

то есть w есть одно из значений $\mathcal F$ в точке z. При этом число листов $\mathcal F$ на $\mathbb C\setminus A$ равно $\deg_w P(z,w)$.

Доказательство. Пусть

$$Q(z, w) := \frac{\partial P}{\partial w}(z, w).$$

Тогда

$$\deg_w Q(z, w) = n - 1,$$

где $n := \deg_w P(z, w)$.

Будем делить с остатком полиномы от w с коэффицентами, которые являются рациональными функциями от z. Получим

$$P = A_1Q + B_1, \quad \deg_w B_1 < \deg_w Q,$$

 $Q = A_2B_1 + B_2, \quad \deg_w B_2 < \deg_w B_1,$
 $B_1 = A_3B_2 + B_3, \quad \deg_w B_3 < \deg_w B_2,$

и так далее до

$$B_{n-2} = A_{n+1}B_{n-1} + B_n$$
, $\deg_w B_n < \deg_w B_{n-1}$,
 $B_{n-1} = A_{n+2}B_n + R$, $\deg_w R = 0$,

то есть R – рациональная функция от z.

Заметим, что R(z) обладает следующими свойствами:

1. Если $(z_0, w_0) \in \mathbb{C}^2$ такая, что

$$P(z_0, w_0) = Q(z_0, w_0) = 0,$$

то $R(z_0) = 0$. Это следует непосредственно из определения.

2. Если $R(z) \equiv 0$, то P(z, w) приводим.

Действительно, если $R \equiv 0$, то

$$B_{n-1}:B_n \Rightarrow B_{n-2}:B_n \Rightarrow \ldots \Rightarrow Q:B_n \Rightarrow P:B_n.$$

При этом

$$\deg_w B_n \ge 1$$

по определению R и

$$\deg_w B_n \le \deg Q = n - 1,$$

так как $Q : B_n$. Из неравенств

$$1 \leq \deg_w B_n \leq \deg_w P - 1$$

вытекает, что для следующих полиномов от w с коэффицентами, которые являются рациональными функциями от z,

$$B_n \not\equiv \text{const}, \ P/B_n \not\equiv \text{const}$$

Тогда

$$a(z)P = \underbrace{P_1}_{a(z)B_n} \underbrace{P_2}_{P/B_n},$$

для некоторого полинома a(z) и полиномов P_1, P_2 от z, w.

Тогда все коэффиценты одного из P_1 , P_2 должны делиться на a(z), так как для \forall нуля z_0 полинома a(z) имеем

$$P_1(w, z_0)P_2(w, z_0) \equiv 0, \quad \forall w \in \mathbb{C}.$$

Предположим, что

$$P_1(w, z_0) \equiv 0$$

(по теореме единственности), тогда все коэффиценты P_1 равны 0 в точке z_0 . Можем сократить полином на $z-z_0$, и так для всех нулей a(z).

Свойство 2 доказано.

Определим теперь

$$A := \{ z \in \mathbb{C} | a_0(z) = 0 \} \cup \{ z \in \mathbb{C} | R(z) = 0 \}, \tag{25}$$

где $a_0(z)$ – старший коэффицент полинома

$$P(z,w) = \sum_{k=0}^{\infty} a_k(z)w^{n-k}.$$

Тогда $\forall z_0 \in \mathbb{C} \setminus A$ и $\forall w_0 \in \mathbb{C}$ таких, что

$$P(z_0, w_0) = 0$$

имеем

$$\begin{cases} P(z_0, w_0) = 0 \\ Q(z_0, w_0) := P'_w(z_0, w_0) \neq 0 \end{cases}$$

по свойству 1 функции R(z). Таким образом, функция от $w P(z_0, w)$ имеет в $w = w_0$ нуль 1-го порядка (*).

Множество A (25) конечно по свойству 2 функции R(z) в силу неприводимости P(z,w).

Пусть $\varepsilon > 0$ такое, что

$$P(z_0, w) \neq 0$$

при $|w_0-w|=\varepsilon$. Такое $\varepsilon>0$ существует по признаку изолируемости нулей. Положим

$$\rho := \min_{|w - w_0| = \varepsilon} |P(z_0, w)| > 0.$$

Тогда

$$N(P(z,w),|w-w_0|<\varepsilon)=N\left(\underbrace{P(z,w)-P(z_0,w)}_{|\cdot|<\rho}+\underbrace{P(z_0,w)}_{|\cdot|>\rho},|w-w_0|<\varepsilon\right)=$$

$$= N(P(z_0, w), |w - w_0| < \varepsilon) = 1$$

по теореме Руше и согласно (*), если $|z-z_0|<\delta$, где $\delta>0$ таково, что

$$|P(z,w) - P(z_0,w)| < \rho$$

при $|z-z_0| < \delta$, $|w-w_0| = \varepsilon^{11}$ (такое δ существует в силу равномерной непрерывности P).

Для всех z в круге

$$|z-z_0|<\delta$$

обозначим через f(z) единственный нуль функции от w P(z,w) в круге $|w-w_0|<\varepsilon$. Тогда по теореме Коши о вычетах

$$f(z) = \frac{1}{2\pi i} \int_{\substack{|\eta - w_0| = \varepsilon}} \frac{Q(z, \eta)}{P(z, \eta)} \eta d\eta, \tag{26}$$

где $Q := \partial P/\partial w$.

Действительно, единственная особая точка в круге $|\eta-w_0|<\varepsilon$ – это $\eta=f(z)$. Вычет в ней равен

$$\underbrace{\frac{Q(z,f(z))}{Q(z,f(z))}}_{=\psi(f(z))} = \frac{Q(z,f(z))}{Q(z,f(z))} f(z) = f(z).$$

¹¹Или $|w - w_0| \le \varepsilon$.

Из (26) по теореме о голоморфной зависимости интеграла от параметра вытекает, что

$$f \in \mathcal{O}\left(|z - z_0| < \delta\right)$$
.

Итак, показано, что $\forall z_0 \in \mathbb{C} \setminus A$ и $\forall w_0 \in \mathbb{C}$ таких, что

$$P(z_0, w_0) = 0$$

 \exists окрестность W точки (z_0,w_0) в \mathbb{C}^2 такая, что множество

$$\{(z, w) \in W \mid P(z, w) = 0\}$$

совпадает с графиком

$$\{(z, f(z)) \mid |z - z_0| < \delta\}$$

некоторой голоморфной функции $f \in \mathcal{O}(|z-z_0| < \delta)$.

Продолжение доказательства см. в начале следующей лекции.

Лекция 8. Аналитическое продолжение элементов

Окончание доказательства теоремы 7.2

Теорема 7.2. Пусть P(z,w) – неприводимый полином с комплексными коэффицентами. Тогда \exists конечное мнжество

$$A := \{a_1, \dots, a_k\} \subset \mathbb{C}$$

и алгебраическая функция \mathcal{F} на $\mathbb{C}\setminus A$ такие, что

$$P(z, \mathcal{F}(z)) \equiv 0$$

 $\mu a \mathbb{C} \setminus A$.

Более того, для $z \in \mathbb{C} \setminus A$ имеем

$$P(z, w) - 0 \iff w = \mathcal{F}(z),$$

то есть w есть одно из значений $\mathcal F$ в точке z. При этом число листов $\mathcal F$ на $\mathbb C\setminus A$ равно $\deg_w P(z,w)$.

Доказательство. (Продолжение доказательства) Напомним, что на прошлой лекции построили

$$A = \{ z \in \mathbb{C} \mid a_0(z) \neq 0, \ R(z) \neq 0 \},\$$

где a_0 – коэффицент

$$P(z, w) = \sum_{k=0}^{n} a_k(z)w^{n-k}, \quad n = \deg_w P,$$

а R(z) – рациональная функция такая, что $R \not\equiv 0$ в силу неприводимости P и

$$R(z_0) = 0 \iff \exists w_0 \in \mathbb{C}$$

такая, что

$$P(z_0, w_0) = 0, \ \partial P/\partial w(z_0, w_0) = 0$$

$$P(z_0, w_0) = 0$$

 \exists окрестность $\Omega \in \mathbb{C}^2$ точки (z_0, w_0) такая, что

$$\{(z, w) \in \Omega \mid P(z, w) = 0\} = \{(z, f(z)) \mid z \in U\}$$

для некоторой функции $f \in \mathcal{O}(U)$.

Проиллюстрируем это с помощью функции

$$P(z, w) = z - (w^2 - 1)^2.$$

Тогда

$$\mathcal{F}(z) = \sqrt{1 + \sqrt{z}}$$

(рис. 5.2).

Вернемся к доказательству теоремы 7.2.

1. Заметим, что $\forall z_0 \in \mathbb{C} \setminus A$ все нули полинома $P(z_0, w)$ простые (кратности 1), так как $R(z_0) \neq 0$ и степень этого полинома равна n, так как $a_0(z_0) \neq 0$.

Следовательно, этот полином имеет n различных нулей и графики соответствующих им функций $f_1, f_2, \ldots, f_n \in \mathcal{O}(U)$ над окрестностью U точки z_0 не пересекаются (в случае необходимости можно уменьшить U).

2. Покажем, что ∀ непрерывного пути

$$\gamma: [0,1] \to \mathbb{C} \setminus A$$

с $\gamma(0)=z_0$, где z_0 – произвольная фиксированная точка из $\mathbb{C}\backslash A,\exists$ АП каждого из элементов

$$F_i = (U, f_i)$$

(точнее, F_j определяется как канонический элемент с центром z_0 такой, что $F_j \sim (U, f_j)$) вдоль пути γ .

Действительо, $\forall t \in [0,1]$ точки $\gamma(t)$ имеет окрестность $U_{\gamma(t)} \subset \mathbb{C}$ такую же, как U для z_0 , и n канонических элементов в центром $\gamma(t)$, как f_1, \ldots, f_n для z_0 .

Пусть δ – число Лебега покрытия

$$\left\{ U_{\gamma(t)} \mid t \in [0,1] \right\}$$

и пусть

$$0 = t_0 < t_1 < \ldots < t_m = 1$$

таковы, что

$$t_j - t_{j-1} < \delta, \quad j = 1, 2, \dots, m.$$

Тогда

$$\gamma([t_0,t_1])\subset U_{\gamma(t_1)}$$

для некоторого τ_1 . Следовательно, для всех $t \in [t_0, t_1]$ имеем n элементов

$$\Phi_1^0,\ldots,\Phi_n^0$$

с центрами $\gamma(t)$,

$$\Phi_j^0 \sim F_j^{\gamma(\tau_1)},$$

состовляющих АП исходных элементов

$$F_1,\ldots,F_n$$

вдоль пути $\gamma([t_0, t_1])$.

Перейдем ко второму шагу. $\gamma([t_1,t_2])\subset U_{\gamma(\tau_2)}$ для некоторого τ , и есть n элементов с центрами $\gamma(tau_2)$ $F_j^{\gamma(\tau_2)}$ таких, что

$$F_j^{\gamma(\tau_2)} \sim F_j^{\gamma(\tau_1)}, \quad j = 1, \dots, n.$$

Получим АП всех элементов F_1, \ldots, F_n вдоль $\gamma([t_1, t_2])$, и, следовательно, вдоль $\gamma([t_0, t_2])$.

Продолжая рассуждения аналогичным образом, за m шагов получим АП элементов F_1, \ldots, F_n вдоль всего пути $\gamma([0,1])$.

Итак, получили, что все элементы

$$(U, f_i), j = 1, \ldots, n, z \in \mathbb{C} \setminus A$$

образуют одну А Φ на $\mathbb{C} \setminus A$ с числом листов n.

Обозначим эту $A\Phi$ через \mathcal{F} .

3. Покажем, что все особые точки $a \in A$ (а также $a = \infty$) аналитической функции \mathcal{F} – алгебраические, и, следовательно, сама \mathcal{F} алгебраическая.

Если $a = z_0 \in A$ – конечная особая тчка, то величина

$$\eta = (z - z_0)^N \mathcal{F}(z) \tag{27}$$

для любого $N \in \mathbb{N}$ удовлетворяет уравнению

$$P\left(z, \frac{\eta}{(z-z_0)^N}\right) = 0,$$

то есть

$$a_0(z)\frac{\eta^n}{(z-z_0)^{Nn}} + a_1(z)\frac{\eta^{n-1}}{(z-z_0)^{N(n-1)}} + \dots + a_n(z) = 0,$$

или, по-другому,

$$a_0(z)\eta^n + a_1(z)\eta^{n-1}(z - z_0)^N + \ldots + a_n(z)(z - z_0)^{Nn} = 0.$$
 (28)

Если $a_0(z_0) \neq 0$, то утверждение о том, что $\eta \to 0$ при $z \to z_0$ вытекает из следующей леммы.

Π емма 8.1. Π усть

$$|c_1| + \ldots + |c_n| \to 0.$$

Тогда все нули полинома

$$w^n + c_1 w^{n-1} + \dots c_n = 0$$

тоже $\rightarrow 0$. Точнее, $\forall \varepsilon > 0 \exists \delta > 0$ такое, что

$$|c_1| + \ldots + |c_n| < \delta,$$

а значит, все нули w этого полинома лежат в круге $|w| < \varepsilon$.

$$|c_1| + \ldots + |c_n| < \delta,$$

TO

$$\varepsilon^n > |c_1|\varepsilon^{n-1} + |c_2|\varepsilon^{n-2} + \dots + |c_n|.$$
 (29)

Тогда

$$N(P(w), |w| < \varepsilon) = N(\underbrace{w^n}_{f(w)} + c_1 w^{n-1} + \dots + c_{ng(w)}, |w| < \varepsilon) =$$

$$=N(w^n, |w|<\varepsilon)=n$$

по теореме Руше, так как, с учетом (29),

$$|f(w)| = \varepsilon^n > |g(w)|, |w| = \varepsilon.$$

Таким образом, все нули P(w) лежат в круге $|w| < \varepsilon$.

Подытожим сказанное выше. Если $a_0(z_0) \neq 0$, то

$$(z-z_0)^N \mathcal{F}(z) \to 0, \quad z \to z_0$$

для надлежащего $N \in \mathbb{N}$, то есть z_0 – флгебраическая особая точка.

Если $a_0(z_0)=0$, то найдем наименьшее $j\in\mathbb{N}$ такое, что $a_j(z_0)\neq 0$ и применим те же рассуждения к полиному (28) степени n-j по w. Получим, что z_0 – алгебраическая особая точка.

Bce

$$a_j(z_0), \quad j = 0, 1, \dots, n$$

не могут быть одновременно равны 0, так как тогда P(z,w) делится на $z-z_0$, и, стало быть, приводим.

Случай $a = \infty$ рассматривается аналогично с заменой (27) на

$$\eta = \frac{\mathcal{F}(z)}{z^N},$$

а $z \to z_0$ на $z \to \infty$.

Задача

Задача 8.1. Пусть $w = \mathcal{F}(z)$ – $A\Phi$, задаваемая уравнением

$$z = w^n - w^{n+1},$$

 $r\partial e \ n \geq 2$ – целое число.

- 1. Описать все особые точки \mathcal{F} : это точки 0, $n^n/(n+1)^{n+1}$ и ∞ .
- 2. Для любого заданного типа изолированной особой точки однозначного характера (устранимая, полюс, существенная особенность) привести пример $A\Phi$ с числом листов n+1 на $\mathbb{C}\setminus\left\{0,\frac{n^n}{(n+1)^{n+1}}\right\}$, имеющей при z=0 одну точку ветвления порядка n и устранимую особенность, полюс или существенную особенность.
- 3. Пусть $D\subset\mathbb{C}$ односвязная область, $f\in\mathcal{O}(D)$ не принимает значений 0 и $n^n/(n+1)^{n+1}$.

Доказать, что $\exists g \in \mathcal{O}(D)$ такая, что

$$f = g^n - g^{n+1}$$

в области D.

Лемма о стирании отрезка

Лемма 8.2. (О стирании отрезка) Пусть $D \in \mathbb{C}$ – открытое множество, $l \subset \mathbb{C}$ – прямая, u

$$f \in \mathcal{O}(D \setminus l) \cap C(D)$$
.

Тогда $f \in \mathcal{D}$.

Доказательство. Достаточно считать, что

$$D = \{|z| < R\}, \quad l = \mathbb{R}.$$

По теореме Морера, достаточно проверить, что

$$\int_{\partial T} f(z)dz = 0 \tag{30}$$

 \forall открытого треугольника такого, что $\overline{T}\subset D$ (рис. 8.1).

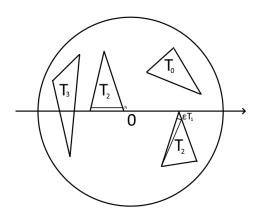


Рис. 8.1. Возможные виды треугольников $\subset D$

- 0. Для треугольника T_0 такого, что $T_0 \cap R = \emptyset$, равенство (30) вытекает из интегральной теоремы Коши.
- 1. Для треугольника T_1 такого, что $\overline{T_1} \cap \mathbb{R} = \{a\}$, разобьем T_1 на гомотетичный ему εT_1 , $\varepsilon > 0$ и несколько треугольников типа T_0 (рис. 8.1) (интеграл от f по их границам равен 0 в силу доказанного). Тогда

$$\left| \int\limits_{\partial T_1} f(z) dz \right| = \left| \int\limits_{\partial (\varepsilon T_1)} f(z) dz \right| \leq \max_{z \in \partial (\varepsilon T_1)} |f(z)| (\text{периметр } \varepsilon T_1) \leq \text{const} \varepsilon \to 0$$

при $\varepsilon \to 0$. Следовательно,

$$\left| \int_{\partial T_1} f(z) dz \right| = 0.$$

2. Для треугольника T_2 такого, что

$$\overline{T_2} \cap \mathbb{R} = \text{сторона } [a, b],$$

можно записать

$$\int_{\partial T_2} f(z)dz = \int_{\partial \Pi_h} f(z)dz,$$

где

$$\Pi_h = [a, b] \times [0, h]$$

— прямоугольник с основанием [a,b] произвольной высоты h.

Но

$$\int\limits_{\partial\Pi_h} f(z)dz = \int\limits_a^b \left(f(x) - f(x+ih)\right)dz + \int\limits_b^{b+ih} f(z)dz - \int\limits_a^{a+ih} f(z)dz.$$
 по стандартной оценке

Заметим, что

$$\int_{\partial \Pi_{b}} f(z)dz = \int_{a}^{b} (f(x) - f(x+ih)) dz \le (b-a) \max_{x \in [a,b]} |f(x) - f(x+ih)| \to 0$$

при $h \to 0$ в силу равномерной непрерывности f(z).

Следовательно,

$$\int_{\partial \Pi_h} f(z)dz \to 0, \quad h \to 0+,$$

и, значит,

$$\int_{\partial T_2} f(z)dz = 0.$$

3. Общий треугольник T_3 разбивается на треугльники вида T_0, T_1, T_2 , а значит

$$\int_{\partial T_3} f(z)dz = 0.$$

Принцип симметрии

Утверждение 8.1. (Принцип симметрии) Пусть D_1 , $D_2 \subset \overline{\mathbb{C}}$ – открытые множества такие, что граница ∂D_j содержит дугу γ_j (непустой открытый интервал) окружности Γ_j , j=1,2, причем¹²

$$D_j \cap D_j^* = \emptyset,$$

и множество

$$G_j := D_j \cup \gamma_j \cup D_j^*$$

открыто (рис. 8.2).

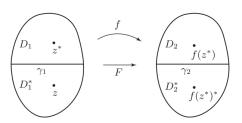


Рис. 8.2. Принцип симметрии

Пусть w = f(z) – конформное отображение D_1 на D_2 , причем f непрерыви на $D_1 \cup \gamma_1$ и биективно отображает γ_1 на γ_2 .

Тогда функция

$$F(z) := \begin{cases} f(z), & z \in D_1 \cup \gamma_1 \\ \overbrace{f(\underbrace{z^*}_{omn. \ \Gamma_1})^*}, & z \in D_1^* \end{cases}$$

конформно отображает G_1 на G_2 . ¹³

Доказательство. 1. Пусть

$$\Gamma_1 = \Gamma_2 = \mathbb{R}$$
.

Тогда функция

$$g(z) := \overline{f(\overline{z})} = f(z^*)^*$$

 $^{^{12}}$ Здесь * означает симметрию относительно Γ_{j} .

 $^{^{13}}$ Точки, симметричные относительно $\Gamma_1,$ переходят при F в точки, симметричные относительно $\Gamma_2.$

голоморфна на D_1^* , так как $\forall a \in D_1^*$ имеем

$$f(z) = \sum_{n=0}^{\infty} c_n (z - \overline{a})^n, |z - \overline{a}| < \varepsilon.$$

Следовательно,

$$g(z) = \overline{f(\overline{z})} = \sum_{n=0}^{\infty} \overline{c_n} (z-a)^n, \quad |z-a| < \varepsilon$$

- голомофрная в точке a функция как сумма сходящегося степенного ряда.

Далее, функция

$$F(z) = \begin{cases} f(z), & \text{Re} z \ge 0\\ \overline{f(\overline{z})}, & \text{Re} z < 0 \end{cases}$$

непрерывна на G_1 (то есть в точках вещественной оси) в силу условия

$$f(\gamma_1) \subset \Gamma_2$$

то есть 14

$$f(z) \in \mathbb{R}, r \in \mathbb{R}.$$

Следовательно, $f \in \mathcal{O}(G_1)$ по лемме 8.2 о стирании отрезка. По построению и условию, что f биективно отображает γ_1 на γ_2 , F биективно отображает G_1 на G_2 . Следовательно, по окончательной формулировке теремы об обратной функции, F есть конформное отображение.

2. Общий случай сводится к случаю 1 дробно-линейной заменой

$$\zeta = \Phi(z), \quad \eta = \Psi(w),$$

приводящей Γ_1 и Γ_2 в вещественную ось. При этом используется свойство сохранения симметрии при дробно-линейных отображениях.

Пример 8.1. Рассмотрим контрпример. Пусть D_1 – верхняя полуплоскость, кроме отрезка [0,i], а $\gamma_1 = \Gamma_1 = \mathbb{R}$. Тогда

$$0 \in D_1 \cup \gamma_1 \cup D_1^*$$

не является открытым множеством.

 $^{^{14}}$ Пределы при $z \to x_0 \pm i0$ совпадают.

Лекция 9. Теорема Каратеодори

Принцип соответствия границ

Определение 9.1. Область $D \in \mathbb{C}$ называется локально связной в точке $a \in \partial D$, если $\exists \varepsilon > 0$ такое, что $\forall r \in (0, \varepsilon)$ множество $D \cap \partial B(a, r)$ непусто и связно, то есть является одно открытой дугой окружности $\partial B(a, r)$.

Здесь

$$B(a,r) = \{ |z - a| < r \},\$$

$$\partial B(a,r) = \{|z - a| = r\}.$$

Теорема 9.1. (Каратеодори) Если $D_1, D_2 \subset \mathbb{C}$ – ограниченные области, локально связные в каждой своей граничной точке u

$$f: D_1 \to D_2$$

– конформное отображение, то \exists гомеоморфизм

$$F: \overline{D_1} \to \overline{D_2}$$

такой, что F = f на D_1 . 15

Прежде, чем перейти к доказательству, сформулируем замечения к теореме 9.1.

Замечание 9.1. Если D локально связна в точке $a \in \partial D$, то $\forall r \in (0, \varepsilon)$ открытое множество $D \cap B(a, r)$ непусто и линейно связно.

Доказательство. Действительно, $\forall z_0, z_1 \in M := D \cap B(a,r)$ (можно считать $|z_0| \ge |z_1|$) \exists ломаная

$$\gamma:\ [0,]\to D,$$

такая, что $\gamma(0) = z_0, \, \gamma(1) = z_1$. Пусть

$$t_0 = \max\{t \in [0,1] \mid |\gamma(t) - a| = |z_0|\}$$

(множество таких t конечно, как пересечение ломаной и окружности).

Тогда

$$|\gamma(t) - a| < |z_0|, t_0 < t \le 1,$$

то есть путь $\gamma([t_0,1])$ лежит в M.

Заменим $\gamma([0,t_0])$ на дугу окружности

$$|z - a| = |z_0 - a|,$$

соединяющую z_0 и $\gamma(t_0)$ в $D \cap \partial B(a,|z_0-a|)$. Получим путь, соединяющий z_0 и z_1 в M.

 $^{^{15}}$ Иными словами, любое конформное отображение таких областей продолжается по непрерывности до гомеоморфизма замыканий.

Замечание 9.2. Примеры показывают, что если D_1 не является локальной связной областью в точке $a \in \partial D_1$, то конформное отображение

$$f: D_1 \to D_2$$

не продолжается непрерывно в точку а.

Например, это не выполняется для w = f(z),

$$f: D_1 \to D_2$$

где

$$D_1 = \{|z| < 1, \quad z \notin [0, 1]\},$$

$$D_2 = \{|z| < 1, \quad \Im z > 0\},$$

$$z = w^2.$$

Окрестность точки $z=a\in[0,1]$ в пределе будет переходить \sqrt{a} и $-\sqrt{a}$ одновременно.

Замечание 9.3. В классической формулировке теоремы Каратеодори D_1 , D_2 – области, ограниченные замкнутыми жордановыми кривыми, то есть образами $S = \{|z| = 1\}$ при гомеоморфном вложении в \mathbb{R}^2 .

Доказательство. (теоремы 9.1 Каратеодори)

1 шаг Покажем, что $\forall a \in \partial D_1$

$$\exists \lim_{\substack{z \in D_1 \\ z \to a}} f(z) \in \overline{D_2}.$$

Если это не так, то \exists последовательности $\in D_1$

$$z_n^{(1)} \to a, z_n^{(2)} \to a$$

такие, что

$$f(z_n^{(1)}) \to w_1,$$

 $f(z_n^{(2)}) \to w_2$

для некоторых $w_1, w_2 \in \partial D_2, w_1 \neq w_2$. Априори $w_1, w_2 \in \overline{D_2}$, но в D_2 быть не могут в силу непрерывности отображения z = g(w), обратного к w = f(z), в этих точках. Пусть U_1, U_2 – открытые круговые окрестности w_1 и w_2 такие, что

$$\operatorname{dist}(\overline{U_1}, \overline{U_2}) \ge \alpha > 0.$$

В силу замечания 9.1, $D \cap U_1$ и $D \cap U_2$ линейно связаны, то есть \exists непрерывные отображения

$$\gamma_1: [0,1) \to D \cap U_1,$$

 $\gamma_2: [0,1) \to D \cap U_2$

такие, что

$$\gamma_j \left(1 - \frac{1}{n} \right) = f(z_n^{(j)}), \quad j = 1, 2, \quad n \ge n_0.$$

Тогда

$$\eta_j := f^{-1} \circ \gamma_j$$

– непрерывные пути в D_1 , причем $|\eta_j(t)-a|$ принимает на [0,1) все значения из $(0,r_0)$ по теореме о промежуточном значении.

Следовательно, $\forall r \in (0, r_0) \exists$ точки $a_r \in \eta_1 \cap \partial B(a, r)$ и $b_r \in \eta_2 \cap \partial B(a, r)$ такие, что дуга окружности $\partial B(a, r)$ между ними лежит целиком в D_1 (по определению локальной связности).

Для всех $r \in (0, r_0)$ имеем

$$\alpha \underbrace{\leq}_{\text{onp. dist}(\overline{U_1}, \overline{U_2})} |\underbrace{f(a_r)}_{\in U_1} - f(b_r)_{\in U_2}| =$$

$$= \left| \int_{a_r}^{b_r} f'(z) dz \right|,$$

где интеграл берется по дуге $\partial B(a,r)$ между a_r и b_r . Далее, сделав замену

$$z = z_0 + re^{i\theta}, \quad \theta_1(r) \le \theta_2(r),$$

получим

$$\left| \int_{\theta_1(r)}^{\theta_2(r)} f'(z_0 + re^{i\theta}) i r e^{i\theta} d\theta \right| \leq \int_{\theta_1(r)}^{\theta_2(r)} |f'(z_0 + re^{i\theta})| r d\theta.$$

Воспользуемся неравенством Коши – Буняковского

$$|\int\limits_{I} h(\theta) \cdot 1d\theta|^{2} \le \int\limits_{I} |h(\theta)|^{2} d\theta \cdot \int\limits_{I} 1^{2} d\theta.$$

Тогда

$$\int_{\theta_{1}(r)}^{\theta_{2}(r)} |f'(z_{0} + re^{i\theta})| r d\theta \leq \sqrt{\int_{\theta_{1}(r)}^{\theta_{2}(r)} |f'(z_{0} + re^{i\theta})|^{2} r^{2} d\theta} \sqrt{\int_{\theta_{1}(r)}^{\theta_{2}(r)} 1 d\theta}$$

Это неравенство возведем в квадрат, поделим на r и проинтегрируем по r от ε до r_0 :

$$\alpha^{2} \ln \frac{r_{0}}{\varepsilon} \leq 2\pi \int_{\varepsilon}^{r_{0}} \int_{\theta_{1}(r)}^{\theta_{2}(r)} |f'(z_{0} + re^{i\theta})|^{2} \underbrace{rdrd\theta}_{dxdy} <$$

$$< 2\pi \int \int_{D_{1}} |f'(x + iy)|^{2} dxdy = 2\pi \int \int_{D_{1}} \left| \frac{\partial(u, v)}{\partial(x, y)} \right| dxdy =$$

$$= 2\pi \int \int_{D_{2}} dudv = 2\pi (\text{площадь } D_{2}) = \text{const.}$$
(31)

При $\varepsilon \to 0$ неравнество

$$\alpha^2 \ln \frac{r_0}{\varepsilon} \le C$$

дает противоречие.

Заметим, что равенство (31) вытекает из условий Коши – Римана:

$$\frac{\partial(u,v)}{\partial(x,y)} = \det(d_z f) = \det\begin{pmatrix} A & -B \\ B & A \end{pmatrix} = A^2 + B^2 = |f'(z)|^2,$$

где $A = u_x$, $B = v_x$ и $A + iB = u_x + iv_x = f'(z)$.

Шаг 1 закончен.

2 шаг Полученное на 1 шаге отображение

$$F(z) := \lim_{\substack{\zeta \in D_1 \\ \zeta \to z}} f(\zeta), \quad z \in \overline{D_1}$$

является непрерывным отображением

$$F: \overline{D_1} \to \overline{D_2}.$$

Действительно, непрерывность F в точках $z \in D_1$ ясна из того, что F = f на D_1 . Если же $z_0 \in D_1$ и $z_k \in D_1$, любая последовательность с $z_n \to z_0$, то выберем $\forall n$ точку $z'_n \in D_2$ такую, что

$$|z_n - z_n'| < \frac{1}{n}.$$

По определению $F(z_n)$,

$$|F(z_n) - f(z'_n)| < \frac{1}{n}$$
 (32)

Тогда $z'_n \to z_0$ при $n \to \infty$, $z'_n \in D_1$ и $f(z'_n) \to F(z_0)$ по определению $F(z_0)$. Тогда $F(z_n) \to F(z_0)$ по неравенству (32), то есть F непрерывна в точке z_0 .

3 шаг Пусть z = g(w) – обратное к f отображение

$$q: D_2 \to D_1.$$

Согласно шагам 1 и 2 \exists непрерывное

$$G: \overline{D_2} \to \overline{D_1}$$

такое, что G = g на D_2 .

Тогда

$$G \circ F : \overline{D_1} \to \overline{D_1}$$

– непрерывное отображение, равное¹⁶

$$g \circ g = \mathrm{Id}$$

на D_1 , то есть

$$G \circ F = \mathrm{Id}_{\overline{D_1}}$$

по непрерывности. Аналогично,

$$F \circ G = \mathrm{Id}_{\overline{D_2}}.$$

68

Следовательно, F – гомеоморфизм $\overline{D_1}$ на $\overline{D_2}$.

¹⁶Здесь Id означает непрерывное отображение.

Задача 9.1. Пусть $D \subset \mathbb{C}$ – односвязная ограниченная область, локальная связная в каждой граничной точке.

- 1. Доказать, что \overline{D} гомеоморфна замкнутому кругу $\{|w| \leq 1\}$, а ∂D гомеоморфна окружности $\{|w| = 1\}$.
- 2. Доказать, что $\forall a, b, c \in \partial D$ с положительным направлением обхода ∂D от $a \kappa c$ через $b u \forall a', b', c' \in \partial U$ с тем же направлением обхода \exists единственное конформное отображение D на U, приводящее a, b, c в a', b', c' соответственно.

АФ на
$$\mathbb{C}\setminus\{0,1\}$$
 с значениями $\{|w|<1\}$

Утверждение 9.1. \exists $A\Phi$ $w = \mathcal{F}$ на $\mathbb{C} \setminus \{0,1\}$ такая, что $\mathcal{F} \not\equiv const$ $u \,\forall$ элемента $F = (U, f) \in \mathcal{F}$ выполнено включение

$$f(U) \subset U_0 := \{|w| < 1\}.$$

Доказательство. Пусть $a, b, c \in \partial U_0$ – произвольные точки и $\Delta \in U_0$ – треугольник с вершинами a, b, c и сторонами, $\perp \partial U_0$ (т.н. гиперболический треугольник). Такой треугольник \exists и единственнен, поскольку существует отображение (рис. 9.1).

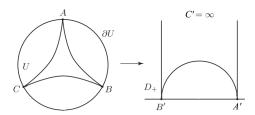


Рис. 9.1. ДЛО гиперболического треугольника

Область Δ односвязна, так как гомеоформна кругу вдоль радиусов. Следовательно, по теореме Римана \exists конформное отображение 17 $\Delta \to \Pi_0$ на верхнюю полуплоскость, причем после дробно-линейного преобразования можно считать, что

$$a \to 0$$
. $b \to 1$. $c \to \infty$.

Обозначим полученное конформное отображение $\to \Pi_0$ через f_0 . По теореме 9.1 Каратеодори \exists гомеоморфизм

$$F_0: \overline{\Delta} \to \Pi$$

равный f_0 на Δ .

Тогда по принципу симметрии ∃ конформное отображение

$$F_i: \Delta \cup \Delta_i \cup \gamma_i \to \mathbb{C} \setminus I_k \cup I_l$$

(рис. 9.2).

 $^{^{17}}$ Заметим, что это не то же самое отображение, которое изображено на рис. 9.1.

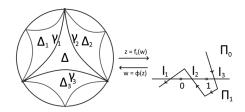


Рис. 9.2. Отображение гиперболического треугольника на С

Покажем, что $\forall z_0 \in \Pi_0$ элемент $w = \varphi(z)$ с центром z_0 функции, обратной к f_0 , допускает АП вдоль \forall ломаной

$$\gamma: [0,1] \to \mathbb{C} \setminus \{0,1\},$$

не содержащей отрезков (этого достаточно по теореме 4.1 о продолжении вдоль гомотопных путей).

Это делается применением принципа симметрии столько раз, сколько γ пересекает вещественную ось.

Малая теорема Пикара

Теорема 9.2. (Малая теорема Пикара) Целая функция, не принимающая значений $0\ u\ 1$, постоянна.

Доказательство. Рассмотрим функцию $z = f(\zeta)$.

Композиция $\mathcal{F} \circ f$ определена как одна или несколько $\mathrm{A}\Phi$ на $\mathbb C$ и все эти функции по теореме 5.1 о монодромии однозначны, то есть $\in \mathcal{O}(\mathbb C)$ (так как $\mathbb C$ односвязна). Тогда по теореме Луивилля они все $\equiv \mathrm{const.}$

Тогда f как композиция f_0 или одной из f_j , j=1,2,3 с одной из функций, $\in \mathcal{O}(\mathbb{C})$ или $\equiv \text{const.}$

Лекция 10. Формула Кристоффеля – Шварца

Дополнение к построению АФ в единичном круге

Добавим к доказательству утверждения в соответствующем пункте следующее соображение.

Образ $\mathcal F$ лежит в U_0 , так как U_0 переходит в себя при симметрии относительно любой окружности $\perp \partial U_0$.

Задача 10.1. Доказать, что не \exists конечнозначных (в том числе голоморфных) $A\Phi$ \mathcal{F} на $\mathbb{C}\setminus\{0,1\}$ с образом в U_0 , кроме

$$\mathcal{F} \equiv const.$$

Замечание 10.1. Следует доказать, что особые точки 0, 1 и ∞ такой функции \mathcal{F} – алгебраические. Следовательно, \exists неприводимый полином P(z,w) такой, что

$$P(z, \mathcal{F}(z)) \equiv 0.$$

Проверьте, что $\forall w_0 \in \mathbb{C} \; \exists$ сколь угодно близкая к w_0 точка $w_1 \in \mathbb{C}$ такая, что уравнение

$$P(z, w_1) = 0$$

имеет решение $z \in \mathbb{C}$, отичное от 0 и 1. Тогда $w_1 \in$ образу \mathcal{F} в точке z, то есть образ \mathcal{F} не лежит в U_0 .

Задача 10.2. Доказать, что на $\mathbb{C} \setminus \{0\}$ не $\exists A \Phi \mathcal{F} \not\equiv const \ c$ образом в U_0 .

Замечания к малой теореме Пикара

Замечание 10.2. Теорема 9.2 эквивалентна тому, что если $f \in \mathcal{O}(\mathbb{C})$ не принимает двух значений $a \neq b \in \mathbb{C}$, то

$$f \equiv \text{const.}$$

Для доказательства этого факта следует применить малую теорему Пикара к функции

$$g(z) = \frac{f(z) - a}{b - a},$$

не принимающей значений 0 и 1.

Заметим также, что данное утверждение будет окончательным усилением теоремы Луивилля (если $f \in \mathcal{O}(\mathbb{C})$ и $f(\mathbb{C}) \subset U$ для некоторого круга, то $f \equiv \text{const}$).

Замечание 10.3. Покажем, что если $f,g \in \mathcal{O}(\mathbb{C})$ и

$$f^3(z) + g^3(z) \equiv 1,$$

To $f, g \equiv \text{const.}$

Доказательство. Запишем равенство

$$f^3(z) + g^3(z) = 1$$

как

$$(f - ag)(f - bg)(f - cg) = 1,$$
 (33)

где

$$\{a, b, c\} = \{-1, e^{\pi i/3}, e^{-pii/3}\}$$

- все кубические корни из -1.

Будем считать, что $g \not\equiv 0$. Тогда функция h := f/g мероморфна на \mathbb{C} , так как голоморфна всюду вне нулей g(z), а в нулях g(z) имеет полюсы. Кроме того, h(z) не принимает значений a,b,c, так как в таких точках правая часть (33) равна 0.

Пусть

$$\Phi: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$$

— дробно-линейное отображение, переводящее a,b,c в $0,1,\infty$ (оно существует по свойству 3-х точек). Тогда

$$\Phi \circ h \in M(\mathbb{C})$$

не принимает значения $0, 1, \infty$. Из этого следует, что

$$\Phi \circ h \equiv \text{const}$$

по теореме 9.2 (малой теореме Пикара).

Тогда

$$h = \Phi^{-1} \circ \Phi \circ h \equiv C = \text{const.}$$

Подставляя f = Cg в уравнение

$$f^3 + g^3 = 1,$$

видим, что $g \equiv \text{const}$ и $g \equiv \text{const}$.

Задача 10.3. Доказать, что при $n \geq 4$ из того, что $f, g \in \mathcal{O}(\mathbb{C})$ и

$$f^n + g^n = 1$$

вытекает, что $f, g \equiv const.$

Задача 10.4. Доказать, что если $f, g \in \mathcal{O}$ и

$$f^2 + g^2 \equiv 1,$$

 $mo \exists h \in \mathcal{O}$ такая, что

$$\begin{cases} f(z) = \cos h(z) \\ g(z) = \sin h(z) \end{cases}$$

Замечание 10.4. Следует применить теорему о монодромии.

Формула Кристоффеля – Шварца

Утверждение 10.1. Пусть $f \in \mathcal{O}(\Pi_+) \cap C(\overline{\Pi_+} \cap \{\infty\})$ конформно отображает верхнюю полуплоскость Π_+ на ограниченный многоугольник $D \subset \mathbb{C}$ с внутренними углами $\pi \alpha_j$, $0 < \alpha_j \le 2$ при вершинах A_j , где $A_1 A_2 \dots A_n$ – положительное положение обхода ∂D (рис. 10.1), и биективно отображает $\mathbb{R} \cup \{\infty\}$ на ∂D , причем $a_1 < a_2 < \dots < a_n$ – прообразы A_1, A_2, \dots, A_n , в частности, $f(\infty) \in A_n A_1$ – не вершина.

Тогда $\exists C_1, C_2 \in \mathbb{C}$ такие, что

$$f(z) = C_1 \int_{x_0}^{z} \underbrace{\prod_{j=1}^{n} (\zeta - a_j)^{\alpha_j - 1} d\zeta}_{\varphi(\zeta)} + C_2$$

для $z \in \overline{\Pi}_+$, где $x_0 \in \mathbb{R}$, $\varphi \in \mathcal{O}(G)$ – любая ветвь $A\Phi$

$$(\zeta - a_1)^{\alpha_1 - 1} \dots (\zeta - a_n)^{\alpha_n - 1}$$

в односвязной области

$$G = \mathbb{C} \setminus (L_1 \cup \ldots \cup L_n),$$

 $r \partial e L_i$, $i = 1, \ldots, n$ – лучи $e u \partial a (a_i, a_i - i \infty)$.

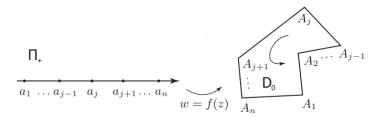


Рис. 10.1. Отображение Π_+ на ограниченный многоугольник D

$$g(z) := \frac{f''(z)}{f'(z)} \in \mathcal{O}(\Pi_+)$$

допускает АП до голоморфной функции на $\mathbb{C} \setminus \{a_1, a_2, \dots, a_n\}$.

Действительно, f допускает АП в нижнюю полуплоскость через любой $[a_j, a_{j+1}]$, включая «отрезок»

$$[a_n, a_1] = (-\infty, a_1] \cup [a_n, \infty) \cup \{\infty\}$$

по принципу симметрии 20 , то есть до голоморфной функции на

$$\Pi_+ \cup (a_j, a_{j+1}) \cup \Pi_-.$$

 $^{^{18}}$ От другого выбора x_0 и другой ветви изменятся только константы $C_1,\,C_2.$

 $^{^{19}}f'(0) \neq 0$ в Π_{+} по критерию локальной однолистности.

 $^{^{20}}$ То есть по формуле $f(\overline{z})^*$, где \overline{z} симметрично относительно $\mathbb{R},$ а * – относительно $[A_j,A_{j+1}]$

Полученная в Π_- функция допускает АП в Π_+ через любой другой отрезок $[a_k, a_{k+1}]$ и так далее.

Следовательно, исходный элемент (Π_+, f) допускает АП вдоль \forall ломаной

$$\gamma: [0,1] \to \mathbb{C} \setminus \{a_1,\ldots,a_n\}$$

с $\gamma(0) \in \Pi_+$ и без ребер, лежащих в \mathbb{R} (применяя принцип симметрии столько раз, сколько γ пересекает \mathbb{R}).

Итак, $f \in \mathcal{O}(\Pi_+)$ допускает АП до некоторой \mathcal{F} на $\mathbb{C} \setminus \{a_1, \dots, a_n\}$ (по замечанию в теореме о продолжении вдоль гомотонных путей).

При этом для любых 2 ветвей $f_1, f_2 \in \mathcal{O}(\Pi_+)$ нашей $A\Phi \mathcal{F}$ в односвязной области Π_+ значение $f_2(z)$ получается из $f_1(z)$ конечным (и даже счетным) числом отражений относительно прямых в плоскости w (сторон многоугольника D).

Следовательно, композиция четного числа отражений = композиции сдвигов и поворотов = сдвиг и поворот.

Значит, $\forall z \in \Pi_+$

$$f_2(z) = e^{i\theta} f_1(z) + w_0$$

для каких-то чисел $\theta \in \mathbb{R}$, $w_0 \in \mathbb{C}$, зависящих только от расположения строн многоугольника D.

Следовательно,

$$f_2'(z) = e^{i\theta} f_1'(z),$$

 $f_2''(z) = e^{i\theta} f_1''(z),$

откуда следует, что

$$\frac{f_2''}{f_2'} = \frac{f_1''}{f_1'}$$

в Π_+ . То есть, полагая

$$g := \begin{cases} f''/f' \text{ B } \overline{\Pi_+} \\ h''/h' \text{ B } \Pi_- \end{cases}$$

для \forall ветвей f, h нашей $A\Phi \mathcal{F}$ в Π_+ , Π_- соответственно, получим функцию

$$g \in \mathcal{O}(\mathbb{C} \setminus \{a_1, a_2, \dots, a_n\}),$$

что и требовалось доказать на шаге 1.

2 шаг. В каждой точке $z=a_j$ функция g(z) имеет полюс 1-го порядка с вычетом α_j-1 .

Для окрестности точки a_j положим $\zeta = h(z)$ как композицию w = f(z) и $\zeta = (w - A_j)^{1/\alpha_j}$, где A_j – угол многоугольника D, в который f(z) переводит кусок прямой с a_j , а $\pi\alpha_j$ – величина соответствующего угла.

По принципу симметрии отображение $\zeta = h(z)$ продолжается до конформного отображения $h \in \mathcal{O}(|z-a_0| < \varepsilon)$ некоторой окрестности точки a_j на некоторую окрестость точки $\zeta = 0$, приводящую \mathbb{R} в прямую L.

Следовательно, $h'(a_i) \neq 0$ по критерию локальной однолистности. То есть,

$$h(z) = (z - a_j)H(z), H \in O(a_j), H(a_j) \neq 0,$$

откуда

$$h(z) = (z - a_i)e^{\Phi(z)}$$

в окрестности точки a_j , где $\Phi \in O(a_j)$.

Итак,

$$(f(z) - A_j)^{1/\alpha_j} = (z - a_j)e^{\Phi(z)}$$

для $z \in \overline{\Pi_+ \cap \{|z - a_j| < \varepsilon\}}$.

Следовательно,

$$f(z) = A_j + (z - a_j)^{\alpha_j} e^{\alpha_j \Phi(z)},$$

откуда

$$f'(z) = \alpha_j (z - a_j)^{\alpha_j - 1} e^{\alpha_j \Phi(z)} + (z - a_j)^{\alpha_j} e^{\alpha_j \Phi(z)} \alpha_j \Phi'(z) =$$

$$= (z - a)^{\alpha_j - 1} \left[1 + (z - a_j) \Phi'(z) \right] \alpha_e^{\alpha_{\Phi}'(z)}, \quad 0 < \alpha_j \le 2\pi,$$

где

$$[1 + (z - a_j)\Phi'(z)] \alpha_e^{\alpha'_{\Phi}(z)}$$

является голомофрной для $n \neq 0$ в точке $z = a_j$ функция, то есть e^{Ψ} для некоторой $\Psi \in \mathcal{O}(a_j)$.

Итак,

$$f'(z) = (z - a_j)^{\alpha_j - 1} e^{\Psi(z)}, \quad \Psi \in \mathcal{O}(a_j),$$

откуда

$$\ln f'(z) = (\alpha_j - 1) \ln(z - a_j) + \Psi(z),$$

$$\frac{f''(z)}{f'(z)} = (\ln f'(z))' = \frac{\alpha_j - 1}{z - a_j} + \underbrace{\frac{\Psi'(z)}{\Psi(z)}}_{\mathcal{O}(a_j)}$$

для $z \in \Pi_+ \cap \{|z - a_j| < \varepsilon\}$, и, следовательно, по теореме единственности для всех z таких, что $0 < |z - a_j| < \varepsilon$.

Значит, f''/f' имеет при $z=a_j$ полюс 1-го порядка с вычетом α_j-1 .

3 шаг. Покажем, что особенность g(z) при $z=\infty$ устранима, причем $g(\infty)=0$. Действительно,

$$f(z) - f(\infty) = \frac{c_1}{z} + \frac{c_1}{z^2} + \dots,$$

причем $c_1 \neq 0$ по критерию локальной однолистности. Отсюда

$$f'(z) = -\frac{c_1}{z^2} + O\left(\frac{1}{z^3}\right) = \frac{c_1}{z^2} \left(1 + O\left(\frac{1}{z}\right)\right),$$

$$f''(z) = \frac{2c_1}{z^3} + O\left(\frac{1}{z^3}\right) = \frac{2c_1}{z^3} \left(1 + O\left(\frac{1}{z}\right)\right).$$

Следовательно,

$$g(z) = \frac{f''(z)}{f'(z)} = -\frac{2}{z} \left(1 + O\left(\frac{1}{z}\right) \right),$$

что и требовалось доказать.

4 шаг. В итоге по теореме о формулах, мероморфных на $\overline{\mathbb{C}}$, имеем

$$g(z) = \sum_{j=1}^{n} \frac{\alpha_j - 1}{z - a_j}, \quad \forall \ z \in \mathbb{C} \setminus \{a_1, \dots, a_n\}$$

(сумма главных частей рядов Лорана во всех особых точках, включая ∞). Следовательно,

$$[\ln f'(z)]' = \sum_{j=1}^{n} \frac{\alpha_j - 1}{z - a_j},$$

где по крайней мере для $z\in\Pi_+$, где $f'\neq 0$, и $\ln f'\in\mathcal{O}(\Pi_+)$ такой логарифм определен. Отсюда

$$\ln f'(z) = \sum_{j=1}^{n} (\alpha_j - 1) \ln(z - a_j) + C_0,$$

и, наконец,

$$f'(z) = C_1 \prod (z - a_j)^{\alpha_j - 1},$$

где

$$C_1 = e^{C_0}.$$

Константа C_2 получается путем повтороного интегрирования.

Задача 10.5. Выражая $\int\limits_{\substack{R>>0 \ |z|=R}} g(z)dz$ двумя способами: из разложения

$$g(z) = -\frac{2}{z} + O\left(\frac{1}{z^2}\right), \quad |z| \ge R_0$$

(шаг 3 доказательства) и по теореме о сумме вычетов из формулы (??) шага 4 доказательства, получить, что 21

$$\sum_{j=1}^{n} \pi \alpha_j = \pi(n-2).$$

Задача 10.6. Пусть D == полоса или полуплоскость, из которой удалено несколько лучей, \parallel ее границе, а

$$f \in \mathcal{O}(\Pi_+) \cap C(\Pi_+ \cup \{\infty\})$$

- конформное отображение Π_{+} на D.

Доказать, что f'(z) – рациональная функция (подсказка: следует повторить доказательство формулы Кристоффеля – Шварца до определенного момента).

 $[\]overline{^{21}\Phi_{0}}$ рмула для суммы углов n-угольника.

Лекция 11. Эллиптические функции

Конформное отображение полуплоскости на прямоугольник

По теореме Римана и Каратеодори ∃ конформное отображение

$$\varphi: \Pi_+ \to P_0,$$

где P_0 – прямоугольник, такое, что

$$0, 1, \infty \to 0, K, iK'$$

(возможно, после дробно-линейного отображения $\Pi_+ \to \Pi_+$ в плоскости ζ). Тогда продолжение $f \in O(\Pi_+)$ отображения

$$f(z) = \varphi(z^2)$$

на Π_+ по принципу симметрии конформно отображает Π_+ на прямоугольник P с вершинами $\pm K = f(\pm 1), \pm K + iK',$ причем $f(\infty) = iK'.$

Обозначим

$$f^{-1}(K + iK') = 1/k, \quad 0 < k < 1.$$

Тогда f(-1/k) = -K + iK' по принципу симметрии. По формуле Кристоффеля — Шварца $\exists C_1, C_2 \in \mathbb{C}$ такие, что

$$f(z) = C_1 \int_0^z (\zeta - 1)^{-1/2} (\zeta + 1)^{-1/2} (\zeta - 1/k)^{-1/2} (\zeta + 1/k)^{-1/2} d\zeta + C_2 =$$

$$= C \int_{0}^{z} \frac{d\zeta}{\sqrt{(1-\zeta^{2})(1-k^{2}\zeta^{2})}},$$

где $\sqrt{p(\zeta)}$ при

$$p(\zeta) = (1 - \zeta^2)(1 - k^2 \zeta^2)$$

означает ветвь на односвязной области такой, что $\sqrt{p(0)}=1,$ а не -1. Заметим, что $C_2=0,$ так как f(0)=0.

Фактически, мы доказали следующее утверждение.

Утверждение 11.1. При любом $k \in (0,1)$ функция

$$F(z,k) := \int_{0}^{z} \frac{d\zeta}{\sqrt{(1-\zeta^{2})(1-k^{2}\zeta^{2})}}$$

конформно отображает Π_{+} на прямоугольник

$$P = \{ w \in \mathbb{C} \mid -K < Rew < K, \quad 0 < Imw < K' \},$$

e

$$K := F(1, k) = \int_{0}^{1} \frac{dx}{\sqrt{(1 - x^{2})(1 - k^{2}x^{2})}} > 0$$

u

$$K' := F(,k) = \int \frac{dy}{\sqrt{(1+y^2)(1+k^2y^2)}} > 0,$$

где для K' формула получена интегрирванием по мнимой оси $\zeta = iy, \ 0 \le y < \infty$.

Доказательство. Положим F(z,k) = f(z)/C. Доказательство утверждения следует из соображений, записанных выше.

Замечание 11.1. Когда k возрастает от 0 до 1, число

$$K = \int_{0}^{1} \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}}$$

монотонно возрастает от

$$K(+0) = \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = \text{const} = \pi/2$$

ДО

$$K(1-0) = \int_{0}^{1} \frac{dx}{1-x^2} = +\infty$$

(по теореме Беппо Леви о монотонной сходимости), а число

$$K' = \int_{0}^{\infty} \frac{dy}{\sqrt{(1+y^2)(1+k^2y^2)}}$$

монотонно убывает от

$$K'(0+) = \int_{0}^{\infty} \frac{dy}{\sqrt{1+y^2}} = +\infty$$

до

$$K'(1-0) = \int_{0}^{\infty} \frac{dy}{1+y^2} = \arctan \infty = \pi/2.$$

Следовательно, отношение сторон $\frac{K'}{2K}$ (непрерывная функция от $k \in (0,1)$) прямоугольника P монотонно убывает от $+\infty$ при k=0 до 0 при k=1.

Следовательно, конструкция дает прямоугольник с любым заданным отношеием сторон при надлежащем $k \in (0,1)$.

Эллиптический синус

Утверждение 11.2. При $\forall k \in (0,1) \exists$ мероморфная функция $G \in M(\mathbb{C}^1)$ такая, что $\forall w \in P$ функция z = G(w) совпадает с конформным отображением P на Π_+ , обратном $\kappa w = F(z,k)$.

 Φ ункция G(w) называется эллиптическим синусом, обозначается

$$G(w) = sn(w, k)$$

и обладает следующими свойствами:

1.

$$G(w+4K) = G(W), \quad G(w+2K'i) = G(w), \quad \forall w \in \mathbb{C}.$$

Тем самым G(w) имеет 2 линейно независимых над \mathbb{R} периода: 4K и 2iK'. Множество всех периодов функции G(w) есть

$$L := \{ n \cdot 4K + m \cdot 2iK' \mid n, m \in \mathbb{Z} \}.$$

2. Множество полюсов G(w) имеет вид

$$\Lambda := \{2n \cdot K + (2m+1)iK' \mid n, m \in \mathbb{Z}\},\$$

и все этим полюсы – 1-го порядка.

3.

$$(G'(w))^2 = (1 - (G(w))^2)(1 - k^2(G(w))^2)$$

 ∂ ля $\forall w \in \mathbb{C} \setminus \Lambda$.

Доказательство. По принципу симметрии, обратное отображение

$$G: P \to \Pi_+$$

допускает АП через каждую сторону прямоугольника P до конформного отображения вдвое большего прямоугольника на всю плоскость без 2 лучей или отрезка (рис. 11.1).

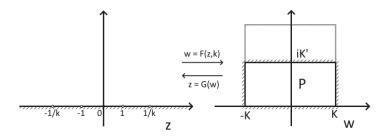


Рис. 11.1. Отображение G

Полученные продолжения тоже допускают такое АП, причем \forall точки $w_0 \in P$ значения продолжения путей в точке w_1 в разных направлениях совпадают.

Тем самым получаем продолжение

$$G: P \to \Pi_+$$

на всю плоскость C, кроме вершин прямоугольников. Но в них особенности устранимы, так как \exists предел $\in \{\pm 1, \pm 1/k\}$.

Прямоугольник с вершинами $\pm K \pm 2iK'$ отображается функцией G конформно на $\overline{\mathbb{C}} \setminus [-1/k,1/k]$, причем

$$G(iK') = \infty,$$

то есть iK' – полюс G(w) по определению, и, кроме того, iK' – полюс 1-го порядка по критерию лкальной однолистности.

Образы точки iK' при всех отражених образуют решетку Λ . Других полюсов нет по построениию, следовательно, доказано свойство 2/.

Перейдем к доказательству свойства 1. Композиция симметрий относительно двух соседних вертикальных сторон есть $w_0 \to w_0 + 4K$. Следовательно,

$$G(w_0) = G(w_0 + 4K)$$

по принципу симметрии для всех $w_0 \in P$. Тогда это верно по теореме единственности и для всех $w_0 \in \mathbb{C}$.

Доказательство свойства 3. Свойство 3 вытекает по теореме о производной обратной функции для всех $w \in P$. Следовательно, по теореме единственности свойство 3 выполняется и всюду на $\mathbb{C} \setminus \Lambda$.

Упражнения

Задача 11.1. Показать, что $\forall \ w \in \mathbb{C}$

$$\lim_{k \to 0+} sn(n,k) = \sin w.$$

Указание. Сначала для $w \in P = P(k) \supset \{|\text{Re}w| < \pi/2\}$, затем рассмотреть обратную функцию F(z,k) и ее предел при $k \to 0+$, затем рассмотреть для всех w.

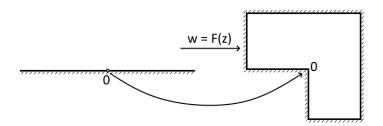


Рис. 11.2. Отображение w = F(z)

Задача 11.2. Рассмотрим конформное отображение (рис. 11.2). Доказать, что

$$F(z) = \int_{0}^{z} \frac{\zeta d\zeta}{\sqrt{P_6(z)}}$$

для некоторого полинома $P_6(\zeta)$ степени 6 и что множество точек ветвление аналитических продолжений обратной функции z=G(w) на всю плоскость $\mathbb C$ будет всюду плотно в $\mathbb C$, если числа h_1/h_2 и k_1/k_2 иррациональны.

Следовательно, $\exists \Pi A \Phi^{22}$, сужение которой ни на какое открытое подмножество $D \subset \mathbb{C}$ не является одной или несколькими $A \Phi$ в D.

Определение и свойства эллиптических функций

Определение 11.1. Функция $f \in M(\mathbb{C})$, не равная тождественно const, называется эллиптической, если $\exists \tau_1, \tau_2 \in \mathbb{C} \setminus \{0\}$, линейно независимые над \mathbb{R} и такие, что $\forall k_1, k_2 \in \mathbb{Z}$ имеем

$$f(z+k_1\tau_1+k_2\tau_2)=f(z), \ \forall \ z\in\mathbb{C}.$$

В этом случае f также называется L-периодической, где

$$L := \{k_1 \tau_1 + k_2 \tau_2 \mid k_1, k_2 \in \mathbb{Z}\}\$$

— решетка, то есть некоторая подгруппа аддитивной группы \mathbb{C} , имеющая 2 линейно независимые над \mathbb{R} образующие.

Пример 11.1.

$$\operatorname{sn}(z, k), \quad 0 < k < 1.$$

Утверждение 11.3. Множество всех L-периодических функций $f \in M(\mathbb{C}^1)$ вместе с функциями \equiv const является полем, замкнутым относительно дифференцирования.

Утверждение 11.4. *Множеество полюсов любой эллиптической функции непусто.*

Доказательство. Для любой точки $z_0 \in \mathbb{C}$ и любых линейно независимых над \mathbb{R} периодов τ_1, τ_2 функции f множество

$$\Pi := \{ z_0 + c_1 \tau_1 + c_2 \tau_2 \mid 0 \le c_1 < 1, \quad 0 \le c_2 < 1 \}$$

называется фундаментальным параллелограммом.

Если f-L-периодическая функция без полюсов, то f непрерывна на $\overline{\Pi}$ (замыкании фундаментального параллелограмма, компакт). Следовательно, |f| ограничена на $\overline{\Pi}$. Тогда |f| ограничена всюду на $\mathbb C$ той же константной в силу периодичности. Значит, $f\equiv {\rm const}$ по теореме Лиувилля. Получаем противоречие с определением.

 $^{^{22}}$ Нельзя сказать, на чем именно.

Определение 11.2. Количество полюсов эллиптической функции f в ее фундаментальном параллелограмме (с учетом кратностей) называется $nopn\partial kom\ f$.

Утверждение 11.5. Сумма вычетов любой эллиптической функции по всем полюсам в Π равна 0. В частности, порядок любой эллиптической функции ≥ 2 .

Доказательство. 1. Считая, что на $\partial \Pi$ нет полюсов (это всегда допустимо сдвигом значений z_0),

$$2\pi i \sum \text{res} = \int_{\partial \Pi} f(z) dz = 0,$$

так как в силу периодичности сумма интегралов от f по противоположным сторонам равна 0.

2. Если полюс только 1, причем 1-го порядка, то получается, что вычет в этом полюсе равна 0, а значит, главна часть ряда Лорана функции равна 0. Получили противоречие.

Лекция 12. Свойства эллиптических функций

Свойства эллиптических функций

Напомним следующие соображения, обсуждавшиеся на предыдущей лекции.

Зафиксируем решетку $L = \mathbb{Z}\tau_1 + \mathbb{Z}\tau_2$, где $\operatorname{Im}(\tau_2/\tau_1) > 0$.

Эллиптические функции определяются как L-периодические функции $f\in M(\mathbb{C}),$ то есть

$$f(z+\tau) = f(z), \quad \forall \ z \in \mathbb{C}, \quad \tau \in L,$$

и, кроме того, $f \not\equiv \text{const.}$

Фундаметальным параллелограммом называется множество

$$\Pi := \{ z_0 + s_1 \tau_1 + s_2 \tau_2 \mid 0 \le s_1 < 1, \quad 0 \le s_2 < 1 \},$$

где $z_0 \in \mathbb{C}$.

На прошлой лекции успели обсудить следующие свойства эллиптических функций (утверждения 11.3 – 11.5).

- 1. (L-периодические функции) = поле, замкнутое относительно дифференцирования.
- 2. Если $f \in M(\mathbb{C})$ L-периодическая без полюсов в Π , то $f \equiv \text{const.}$
- 3. Сумма вычетов \forall эллиптической функции по всем особым точкам в Π равна 0.

В частности, порядок \forall эллиптической функции (число ее полюсов в Π с учетом кратностей) всегда ≥ 2 .

Утверждение 12.1. (Свойство 4) $\forall a \in \mathbb{C}$ число а-точек эллиптической функции f в фундаментальном параллелограме (с учетом кратностей) равно порядку f.

Доказательство. Функция

$$g(z) := \frac{f'(z)}{f(z) - a}$$

является L-периодической по свойству 1 и $\not\equiv$ const, так как из предположения, что

$$\frac{f'}{f-a} \equiv C = \text{const}$$

вытекает, что

$$f(z) = a + e^{z/C + b}$$

при $C \neq 0$ или $f \equiv {\rm const}$ при C = 0, что невозможно по свойству 2.

Значит, g — эллиптическая функция и по теореме о логарифмическом вычете разности числа a-точек f в Π и числа полюсов f в Π равна

$$\frac{1}{2\pi i} \int_{\partial \Pi} \frac{f'(z)}{f(z) - a} dz,$$

что равно сумме вычетов g(z) по всем особым точкам в z и = 0 (по свойству 3). \square

Утверждение 12.2. (Свойство 5) Пусть a_1, \ldots, a_n – список всех нулей эллиптической функции f в Π (с учетом кратностей), b_1, \ldots, b_n – список полюсов в Π (тоже с учетом кратностей), где n равно порядку f. Тогда

$$\sum_{j=1}^{n} a_j \equiv \sum_{j=1}^{n} b_j \pmod{L},$$

то есть число

$$S := (a_1 + \ldots + a_n) - (b_1 + \ldots + b_n)$$

принадлежит решетке L.

Доказательство. Пусть на $\partial \Pi$ нет ни нулей, ни полюсов f (иначе можно немного изменить z_0). Тогда

$$2\pi i S = \int_{\partial \Pi} z \frac{f'(z)}{f(z)} dz \tag{34}$$

по теореме Коши о вычетах, так как $\operatorname{res}_{z=a}(zf'(z)/f(z))$ равно ak, где $k\in\mathbb{Z}$ удовлетворяет равенству

$$f(z) = (z-a)^k g(z), \quad |z-a| < \varepsilon, \quad g \in \mathcal{O}(a), \quad g(a) \neq 0,$$

то есть k – это кратность a как нуля f или порядок a как полюса f. Запишем

$$\int_{\partial\Pi} z \frac{f'(z)}{f(z)} dz = \underbrace{\left(\int_{z_0}^{z_0 + \tau_1} - \int_{z_0 + \tau_1}^{\tau_0 + \tau_1 + \tau_2}\right) z \frac{f'(z)}{f(z)} dz}_{=A} + \underbrace{\left(\int_{z_0 + \tau_1}^{z_0 + \tau_1 + \tau_2} - \int_{z_0}^{z_0 + \tau_2}\right) z \frac{f'(z)}{f(z)} dz}_{B}.$$

Вычислим

$$A = \int_{z_0}^{z_0 + \tau_1} \left[z \frac{f'(z)}{f(z)} - (z + \tau_2) \frac{f'(z + \tau_2)}{f(z + \tau_2)} \right] dz = -\tau_2 \int_{z_0}^{z_0 + \tau_1} \frac{f'(z)}{f(z)} dz$$

в силу периодичности f. Так как

$$\ln|f(z_0+t\tau_1)|+i\theta(t)$$

является первообразной функции вдоль пути, где $0 \leq t \leq 1, \; \theta: \; [0,1] \to \mathbb{R}$ непрерывна и

$$f(z_0 + t\tau_1) = |f(z_0 + t\tau_1)|e^{i\theta(t)}, \quad 0 \le t \le 1,$$

$$A = -\tau_2 \cdot i \underbrace{\Delta \arg_{[z_0, z_0 + \tau_1]} f(z)}_{\in 2\pi \mathbb{Z}},$$

так как $f(z_0) = f(z_0 + \tau_1)$, аргументы этих чисел отличаются на целое кратное 2π . Следовательно,

$$A/2\pi i \in (-\tau_2) \cdot \mathbb{Z} \subset L.$$

Аналогично $B \in 2\pi i L$, а значит, $S \in L$ (34).

Пример

Пример 12.1. Рассмотрим

$$f(z) = \operatorname{sn}(z, k), \quad 0 < k < 1.$$

Тогда

$$L = 4K \cdot \mathbb{Z} + 2iK' \cdot \mathbb{Z}.$$

В качестве П выберем прямоугольник, изображенный на рис. 12.1. Нули в Π – это 0 и 2K (оба первого порядка). Полосы в Π – это iK', 2K+iK' (оба первого порядка). Выполнены свойства 4 (2=2) и 5 ($0+2K-iK'-(2K+iK')=-2iK'\in L$).

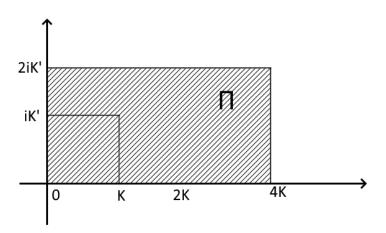


Рис. 12.1. Прямоугольник П

℘-функция Вейерштрасса

Определение 12.1. По определению, \wp -функция²³ Вейерштрасса

$$\wp(z) := \frac{1}{z^2} + \sum_{\tau \in L'} \left(\frac{1}{(z - \tau)^2} - \frac{1}{\tau^2} \right), \tag{35}$$

где $L' := L \setminus \{0\}.$

Утверждение 12.3. Ряд (35) сходится равномерно на компактах в \mathbb{C} (если отбросить конечное число членов ряда с полюсами на данном компакте). При этом $\wp \in \mathcal{O}(\mathbb{C} \setminus L)$ имеет во всех точках $\tau \in L$ полюсы 2-го порядка, так что $\wp \in M(\mathbb{C}^1)$.

Доказательство. Запишем

$$a_{\tau} := \frac{1}{(z-\tau)^2} - \frac{1}{\tau^2} = \frac{z^2 + 2\tau z}{(z-\tau)^2 \tau^2} = \frac{1}{\tau^3} \frac{2z - z^2/\tau}{(1-z/\tau)^2}.$$

 $^{^{23}}$ Читается, как «пэ».

Следовательно,

$$|a_{\tau}| \le \frac{\text{const}}{|\tau|^3}$$

для всех $z \in K$, где K – фиксированный компакт, и всех $\tau \in L$, кроме конечного их числа.

Пусть

$$S_m := \{k_1\tau_1 + k_2\tau_2 \mid k+1, k_2 \in \mathbb{Z}, \max(|k_1|, |k_2|) = m\}.$$

Ряд

$$\sum_{\tau \in L'} \frac{1}{|\tau|^3} = \sum_{m=1}^{\infty} \sum_{\tau \in S_m} \frac{1}{|\tau|^3} \le \sum_{m=1}^{\infty} 8m \frac{1}{(mh)^3} = \frac{8}{h^3} \sum_{m=1}^{\infty} \frac{1}{m^2} < \infty,$$

где 8m – число точек в S_m ,

$$h := dist(0, S_1),$$

и, значит, $|\tau| \geq mh$ для $\forall \tau \in S_m$.

Следовательно, ряд $\sum_{\tau \in L} a_{\tau}(z)$ сходится абсолютно и равномерно на K.

Утверждение 12.4. $\wp(z)$ – эллиптическая функция, то есть

$$\wp(z+\tau) = \wp(z), \quad \forall \ z \in \mathbb{C}, \quad \tau \in L.$$

 Π ри этом она четная, ее множество полюсов совпадает с решеткой L и порядок равен 2.

Утверждение 12.5. Для

$$\wp'(z) = \sum_{\tau \in L} \frac{-2}{(z - \tau)^3}$$

ясно, что $\wp'(z+\tau)=\wp'(z)$ для $\forall\ z\in\mathbb{C},\ \tau\in L.$

Следовательно,

$$\wp'(z+\tau) - \wp'(z) = 0$$

на \mathbb{C} , а значит,

$$\wp(z+\tau) - \wp(z) \equiv C_{\tau} = const. \tag{36}$$

Ясно, что $\wp(-z) = \wp(z) \; \forall \; z \in \mathbb{C}$. В этом можно убедиться, заменив τ на $-\tau$ в ряде (35).

Поэтому (36) при $z = -\tau/2$ в силу четности дает

$$0 = \wp(-\tau/2) - \wp(\tau/2) = C_{\tau},$$

то есть $C_{\tau}=0$ и функция \wp является L-периодической.

Выражение эллиптических функций через \wp -функцию

Утверждение 12.6. Если $f \in M(\mathbb{C}^1)$ – четная эллиптическая функция, то \exists рациональная функция R(w) такая, что

$$f(z) = R(\wp(z)), \quad \forall \ z \in \mathbb{C}.$$

Доказательство. Если a — нуль (или полюс) порядка k функции f, то -a — тоже. Для нулей это вытекает из формулы

$$f(z) = f(-z),$$

откуда

$$f'(z) = -f'(-z),$$

а значит,

$$f^{(n)}(z) = (-1)^n f^{(n)}(-z). (37)$$

Для полюсов следует рассмотреть функцию 1/f.

При этом, если 24 $a \equiv -a \pmod{L}$, то порядок нуля (или полюса) f в точке a четен. Действительно, для всех n в силу периодичности

$$f^{(n)}(a) = f^{(n)}(-a) = (-1)^n f^{(n)}(a)$$

в силу (37). Следовательно,

$$f^{(n)}(a) = 0$$

при всех нечетных n, то есть порядок нуля f в точке a четен. Аналогично, для полюсов следует рассмотреть 1/f.

Следовательно, порядок четной эллиптической функции f четен (обозначим его через 2n) и список всех нулей f в Π (с учетом кратностей) имеет вид

$$\{a_1,\ldots,a_n,-a_1,\ldots,-a_n\},\$$

причем среди a_j и $-a_j$ могут быть совпадающие, а список всех полюсов f в Π имеет вид

$$\{b_1,\ldots,b_n,-b_1,\ldots,-b_n\}.$$

Пусть среди a_j , b_k нет точки $z \equiv 0 \pmod{L}$. Тогда

$$R(w) := \prod_{j=1}^{n} \frac{w - \wp(a_j)}{w - \wp(b_j)}$$

– искомая рациональная функция с точностью до умножения на const $\neq 0$. Действительно,

$$R(\wp(z)) = \prod_{j=1}^{n} \frac{\wp(z) - \wp(a_j)}{\wp(z) - \wp(b_j)}$$

$$a \equiv -a \pmod{L}$$

ровно 4 в П: $0, \tau_1/2, \tau_2/2, (\tau_1 + \tau_2)/2.$

 $[\]overline{^{24}}$ Точек с

есть L-периодическая функция по свойству 1, имеющая в Π нули $\pm a_j$, $j=1,\ldots,n$ 1-го порядка каждый (так как $\wp(z)$ имеет порядок 2) и полюсы $\pm b_j$, $j=1,\ldots,n$ тоже 1-го порядка.

Следовательно, $f(z)/R(\wp(z))$ – это L-периодическая функция без нулей и полюсов в Π , а значит, равна const $\neq 0$ по свойству 2. Итак,

$$f(z) = CR(\wp(z)),$$

что и требовалось доказать.

Если же среди a_j есть точки $\equiv 0 \pmod{L}$, то соответствующие им сомножители в числители R(w) надо опустить. Тогда

$$R(\wp(z)) \sim \frac{1}{\wp^l(z)}, \quad z \to 0,$$

где l — число этих a_j . Тогда $f(z)/R(\wp(z))$ будет иметь при $z\to 0$ ненулевой предел, то есть особая точка устранима, и рассуждения выше справедливы.

Аналогично, если среди b_j есть точки $\equiv 0 \pmod{L}$, надо опустить соответствующие множители в знаменателе R(w).

Следствие. Любая эллиптическая функция $f \in M(\mathbb{C}^1)$ имеет вид

$$f(z) = R_1(\wp(z)) + \wp'(z)R_2(\wp(z))$$

для некоторых рациональных функций R_1 и R_2 .

Доказательство. Представим

$$f(z) = \frac{f(z) + f(-z)}{2} + \frac{f(z) - f(-z)}{2}$$

(как сумму четной L-периодической функций). Любая нечетная L-периодическая функция есть $\wp'(z) \cdot ($ четная L-периодическая функция).

Задачи

Задача 12.1. Доказать, что $f \in M(\mathbb{C}^1)$ является эллиптической функцией с полюсами только на $L \iff$

$$f = R_1 \circ \wp + wp'R_2 \circ \wp,$$

где $R_1 \not\equiv const\ u\ R_2$ – полиномы.

Задача 12.2. Доказать, что \forall эллиптической функции $f \exists$ неприводимый полином P(u,v) степени ≤ 2 по v такой, что

$$P(\wp(z), f(z)) \equiv 0.$$

то есть любая эллептическая функция – это алгебраическая функция от $\wp(z)$.

Задача 12.3. Доказать, что $sn^2(z,k)$ – четная эллиптическая функция с решеткой $2K\mathbb{Z} + 2iK'\mathbb{Z}$, где $\wp(z)$ отвечает такой решетке, и что

$$sn^{2}(z,k) = \frac{1}{\wp(z) - \wp(iK')}.$$

Лекция 13. Выражение эллиптических функций

Дифференциальное уравнение для $\wp(z)$

Выведем дифференциальное уравнение для $\wp(z)$.

 $[\wp'(z)]$ – четная эллиптическая функция с единственным полюсом z=0 (порядок равен 6). С учетом нечетности и периодичности,

$$\wp'(\omega_i) = -\wp'(-\omega_i) = -\wp'(\omega_i),$$

откуда получаем, что

$$\wp'(\omega_i) = 0, \quad i = 1, 2, 3$$

(рис. 13.1). Других нулей у \wp' в фундаментальном параллелограмме нет, а эти три имеют кратность 1, так как порядок \wp' равен 3.

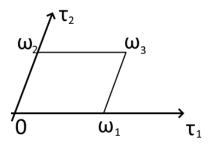


Рис. 13.1. Расположение ω_i

Следовательно, эллиптическая функция

$$(\wp(z) - e_1)^2 (\wp(z) - e_2)^2 (\wp(z) - e_3)^2$$
,

где

$$e_i := \wp(\omega_i), \quad j = 1, 2, 3,$$

имеет те же нули и полюсы в фундаментальном параллелограмме (с учетом кратностей), что и $(\wp'(z))^2$.

Следовательно,

$$\wp^{2}(z) = C (\wp(z) - e_1)^{2} (\wp(z) - e_2)^{2} (\wp(z) - e_3)^{2}$$
(38)

для некоторого $C \in \mathbb{C} \setminus \{0\}$.

Чтобы найти C, запишем

$$\wp(z) = \frac{1}{z^2} + \frac{c_{-1}}{z} + c_0 + c_1 z + \dots, \quad 0 < |z| < \varepsilon.$$

Тогда

$$\wp'(z) = -\frac{2}{z^3} + \dots$$

Следовательно, коэффицент при z^{-6} в левой части (38) равен 4, а в правой части – C. Отсюда получаем, что C=4.

Подведем итог. $\wp(z)$ удовлетворяет дифференциальному уравнению

$$\wp'^{2}(z) = 4 (\wp(z) - e_{1})^{2} (\wp(z) - e_{2})^{2} (\wp(z) - e_{3})^{2}.$$

Задача 13.1. Показать, что если \mathcal{F} , \mathcal{G} – алгебраические функции, то \mathcal{F}^{-1} и $\mathcal{F} \circ \mathcal{G}$ (все компоненты) – тоже алгебраические функции.

Пользуясь этим фактом, доказать, что любая эллиптическая функция есть алгебраическая функция от любой другой (c той же решеткой переменных), то есть \forall эллиптических функций f, g \exists неприводимый полином $P \not\equiv 0$ такой, что

$$P(f(z), g(z)) \equiv 0.$$

B частности, \forall эллиптической функции f \exists неприводимый полином $Q\not\equiv 0$ такой, что

$$Q(f(z), f'(z)) \equiv 0,$$

то есть f удовлетворяет полиномиальному дифференциальному уравнению.

Лорановское разложение $\wp(z)$ при 0<|z|<arepsilon

Запишем

$$\wp(z) = \frac{1}{z^2} + \sum_{\tau \in \Lambda \setminus \{0\}} \frac{1}{(z - \tau)^2} - \frac{1}{\tau^2},$$

где

$$\frac{1}{(z-\tau)^2} = \frac{1}{\tau^2} \frac{1}{(1-z/\tau)^2} = \sum_{n=0}^{\infty} \frac{(n+1)z^n}{\tau^{2+n}} = \frac{1}{\tau^2} + \frac{2z}{\tau^3} + \frac{3}{z^2}\tau^4 + \dots$$

при $|z| < \min_{\tau \in \Lambda \setminus \{0\}} |\tau|$. Тогда

$$(z) = \frac{1}{z^2} + \sum_{n=1}^{\infty} (n+1)G_{n+2}z^m, \quad 0 < |z| < \varepsilon,$$

где

$$G_k := \sum_{\tau \in \setminus \{0\}} \frac{1}{\tau^k}.$$

Замена au o - au показывает, что

$$G_{2l+1}=0, l\in\mathbb{N}.$$

В частности,

$$\wp(z) = \frac{1}{z^2} + 3G_4 z^2 + 5G_6 z^4 + \dots$$
 (39)

Задача 13.2. Показать, что все G_{2m} , $m \ge 4$, являются полиномами с рациональными коэффицентами от G_4 и G_6 . Например,

$$11G_{10} = 5G_4G_6$$
.

Указание: после переписывания дифференциального уравнения подставить (39) в

$$\wp'' = 6\wp^2 + const \cdot G_4.$$

Другая форма дифферинцального уравнения для $\wp(z)$

Подберем $b, c, d \in \mathbb{C}$ такие, что уравнение имеет вид

$$\wp'^2 = 4\wp^3 + b\wp^2 + c\wp + d. \tag{40}$$

Для этого из (39) получим

$$\wp'(z) = -\frac{2}{z^3} + 6G_4 z + 20G_6 z^3 + \dots$$
 (41)

$$\wp^{\prime 2}(z) = \frac{4}{z^6} + \frac{0}{z^4} - \frac{24G_4}{z^2} - 80G_6 + \dots$$
 (42)

Сравнение коэффицентов в (40) дает при z^{-6} :

$$4 = 4$$
,

при z^{-4} :

$$0 = b$$
.

при z^{-2} :

$$-24G_4 = 9G_4 + c,$$

при z^0 :

$$-80G_6 = 60G_6 + d$$

Отсюда получаем, что

$$c = -60G_4, \quad b = -140G_6.$$

Итак,

$$\wp'^2 = 4\wp^3 - g_2\wp - g_3,$$

где

$$g_2 := 60G_4, \quad g_3 := 180G_6.$$

Следствие.

$$2\wp'\wp'' = 12\wp^2\wp' - g_2\wp',$$

то есть

$$\wp'' = 6\wp^2 - g_2/2.$$

Задача 13.3. Доказать, что $g_2=0 \iff решетка квадратная, то есть <math>\tau_2=i\tau_1,$ а $g_3=0 \iff решетка гексагональная, то есть <math>\tau_2=e^{\pi i/3\tau_1}.$

Задача 13.4. Пусть ретка прямоугольная (как $2K\mathbb{Z} + 2iK'\mathbb{Z}$ для $sn^2(z) = 1/(\wp(z) - e_2)$, $e_2 = \pi(iK')$).

Доказать, что тогда $e_1 > e_2 > e_3$ (и при этом из $e_1 + e_2 + e_3 = 0$ вытекает, что $e_1 > 0 > e_3$) и что $\wp^{-1}(\mathbb{R} \cup \{\infty\})$ есть решетка вдвое меньшего размера, причем $w = \wp(z)$ конформно отображает прямоугольник на $\{Imw < 0\}$.

Алгебраическая теорема сложения

Теорема 13.1. Справедливо

$$\wp(z_1 + z_2) = -\wp(z_1) - \wp(z_2) + \frac{1}{4} \left(\frac{\wp'(z_1) - \wp'(z_2)}{\wp(z_1) - \wp(z_2)} \right)^2$$
(43)

для всех $z_1, z_1 \in \mathbb{C}$ таких, что $z_1, z_2, z_1 + z_2 \notin \wp^{-1}() = \Lambda$, а $z_1 \neq z_2$. При $z_1 z_2 = z$ верна предельная форма этого соотношения:

$$\wp(2z) = -2\wp(z) + \frac{1}{4} \left(\frac{\wp''(z)}{\wp'(z)} \right)^2,$$

причем правая часть является рациональной функцией от $\wp(z)$ в силу уравнений

$$\wp'^{2} = 4p^{3} - g_{2}\wp - g_{3},$$

$$\wp'' = 6\wp^{2} - g_{2}/2.$$

Задача 13.5. Вообще, $\wp(nz)$ есть рациональная функция от $\wp(z)$ для всех $n \in \mathbb{N}$.

Доказательство. Приступим к доказательству теоремы 13.1, а, точнее, (43).

Для данных z_1, z_2 выбираем $a,b \in \mathbb{C}$ такие, что уравнение

$$\wp'(z) = a\wp(z) + b \tag{44}$$

имеет решения z_1 и z_2 (рис. 13.2).

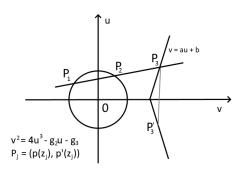


Рис. 13.2. Точки P_i

Поскольку функция

$$f := \wp' - a\wp - b$$

есть эллиптическая функция порядка 3 (имеет единственный полюс 3-го порядка z=0), то ее число нулей равно 3, и третий 0 (кроме z_1 и z_2) $\equiv -z_1-z_2\pmod{\Lambda}$ по свойству 5.

Следовательно,

$$P_3 = (\wp(-z_1 - z_2), \wp'(-z_1 - z_2)) = (\wp(z_1 + z_2) - \wp'(z_1 + z_2)),$$

$$P'_3 = (\wp(z_1 + z_1), \wp'(z_1 + z_2))$$

получается из P_3 изменением знака v.

Получаем, что числа

$$u_1 := \wp(z_1)$$

$$u_2 := \wp(z_2)$$

$$u_3 := \wp(z_1 + z_2)$$

удовлетворяют уравнению третьей степени 25

$$(au+b)^2 = 4u^3 - g_2u - g_3,$$

то есть

$$4u^3 - g_2u - g_3 - (au + b)^2 = 4\prod_{j=1}^{3} (u - u_j).$$

Коэффицент при u^2 :

$$-a^2 = -4(u_1 + u_2 + u_3). (45)$$

Но из системы

$$\begin{cases} \wp'(z_1) = a\wp(z_1) + b \\ \wp'(z_2) = a\wp(z_2) + b \end{cases}$$

находится

$$a = \frac{\wp'(z_1) - \wp'(z_2)}{\wp(z_2) - \wp(z_2)}.$$

Следовательно, (45) совпадает с (43).

Задача 13.6. Доказать, что

$$sn(z_1 + z_2) = \frac{sn(z_1)sn'(z_2) + sn(z_2)sn'(z_1)}{1 - k^2sn(z_1)sn(z_2)}.$$

Указание: подобрать а, b такие, что точки

$$\wp_j := (sn(z_j), sn'(z_j))$$

лежат на параболе

$$v = 1 + au + bu^2.$$

Тогда 4-я точка пересечения (кроме P_1 , P_2 и (0,1)) этой параболы с кривой

$$v^2 = (1 - u^2)(1 - k^2 u^2)$$

отвечает $sn(z_1 + z_2)$. Далее опять следует сравнить коэффиценты, как для \wp -функции.

 $[\]overline{^{25}}$ Здесь учли (44).

Теорема Вейерштрасса о функциях с алгебраической теремой сложения

Теорема 13.2. Пусть $f \in M(\mathbb{C})$ и \exists полином $P(\xi, \eta, \zeta)$ степени ≥ 1 по ζ с комплексными коэффицентами такой, что

$$P(f(z_1 + z_2), f(z_1), f(z_2)) = 0$$

для всех $z_1, z_2 \in \mathbb{C}$ таких, что $z_1, z_2, z_1 + z_2 \notin f^{-1}(\infty)$. Тогда

- либо f эллиптическая функция для некоторой решетки Λ ;
- либо $f(z) = R(e^{Cz})$, где $C \in \mathbb{C} \setminus \{0\}$, R рациональная функция;
- либо f рациональная функция.

Замечание 13.1. Все указанные в заключении теоремы 13.2 функции действительно обладают алгебраической теоремой сложения. Доказывать это мы не будем.

Прежде, чем перейти к доказательству теоремы 13.2, докажем сначала следующую лемму.

Лемма 13.1. Если $f \in M(\mathbb{C})$ не рациональна, то $\forall N \in \mathbb{N} \exists w_0 \in \mathbb{C}$ такое, что уравнение

$$f(z) = w_0$$

имеет $\geq N$ различных решений.

Доказательство. Если $\exists w_1$ такое, что $f^{-1}(w_1)$ бесконечно, то все доказано.

Иначе заменим f(z) на $1/(f(z)-w_1)$. Эта функция имеет при $z=\infty$ изолированную особую точку, а значит, существенную особую точу, так как f(z) не рациональна. Будем считать, что f(z) имеет при $z=\infty$ существенную особую точку.

Проведем теперь доказательство индукцией по N. При N=1 достаточно взять любую точку $w_0 \in f(|z| > R)$.

Обоснуем переход от N к N+1. Пусть точка w_0 такая, что $f^{-1}(w_0)$ содержит различные a_1,\ldots,a_N . Выберем

$$R > \max_{j=1,\dots,N} |a_j|$$

такое, что $f \in \mathcal{O}(|z| > R)$. Тогда по теореме Сохоцкого \exists последовательность $z_n \to \infty$, $|z_n| > R$ такая, что $f(z_n) \to w_0$.

По принципу сохранения области все точки w_1 из некоторой окрестности точки w_0 тоже имеют $\geq N$ различных прообразв (близких к a_1, \ldots, a_N соответственно).

Следовательно, $f(z_n)$ при достаточно большом n, при котором она попадает в обговоренную ранее окрестность точки w_0 , имеет N прообразов вблизи a_1, \ldots, a_N и еще прообраз z_n в области |z| > R.

Следовательно, всего имеем $\geq N+1$ прообразов.

Доказательство. (теоремы 13.2)

1. Пусть f не рациональна. Выберем $N > \deg_{\zeta} P(\xi, \eta, \zeta)$. По лемме 13.1, $\exists w_0$ такое, что $f^{-1}(w_0)$ содержит N различных точек a_1, \ldots, a_N . Тогда $\forall z \in \mathbb{C}$ таких, что $z + a_1, \ldots, z + a_N \in f^{-1}(\infty)$, уравнение

$$P(\xi, f(z), w_0) = 0$$

имеет все числа

$$\xi = f(z + a_i), \quad j = 1, \dots, N$$

в качестве решений, так как

$$P(f(z+a_j), f(z), f(a_j)) \equiv 0.$$

Следовательно, какие-то из этих решений должны совпадать: $\forall z \exists k(z), l(z) \in \{1, \dots, N\}$ такие, что

$$f(z + a_{k(z)}) = f(z + a_{l(z)}).$$

Поскольку пар (k,l) конечное число, то найдется пара (k,l) такая, что

$$f(z + a_k) = f(z + a_l)$$

для бесконечно многих z (ограниченных по модулю единицей).

Тогда по теореме единственности

$$f(z+a_k) = f(z+a_l), \quad \forall \ z \in \mathbb{C}.$$

Следовательно, $a_k - a_l \neq 0$ – период функции f.

2. Можно считать, сделав замену переменных вида $z \to Az + B$, что f(z) имеет период 2π и меньших по модулю вещественных периодов нет. Иначе $f \equiv {\rm const}$ по теореме единственности.

Функция

$$g:=f\circ\varphi\in\mathcal{O}(\mathbb{C}\setminus[0,\infty))$$

непрерывна на $\mathbb{C}\setminus\{0\}$ в силу 2π -периодичности f и, следовательно, $g\in\mathcal{O}(\mathbb{C}\setminus\{0\})$ по лемме 8.2 о стирании отрезка.

Если хотя бы одна из особых точек $\xi=0$ и $\xi=\infty$ существенно особая, то по доказательству леммы $13.1 \ \forall \ N \in \mathbb{N} \ \exists \ w_n \in \mathbb{C}$ такое, что

$$g^{-1}(w_0)$$

содержит N различных точек $\tilde{a_1}, \ldots, \tilde{a_N}$.

Выберем $N > \deg_{\xi} P(\xi, \eta, \zeta)$ и обозначим через a_1, \dots, a_N прообразы точек $\tilde{a_1}, \dots, \tilde{a_N}$ в полосе $0 \leq \operatorname{Re} z < 2\pi \ (ai \neq a_j, i \neq j)$.

Тогда можно использовать 1-ю часть доказательства. Получим, что $a_k - a_l$ является периодом функции f при некоторых k и l.

Этот период $\notin \mathbb{R}$ в силу минимальности 2π как вещественного периода. Следовательно, f – эллиптическая функция.

Если же = 0 и $\xi = \infty$ – не существенные особые точки, то есть полюсы или устранимые, то функция $g(\zeta)$ рациональная по описанию мероморфных функций на $\mathbb C$.

Следовательно,

$$f = g(e^{iz})$$

– рациональная функция от экспоненты.

Лекция 14. Асимптотический закон распределения простых чисел

Асимптотический закон распределения простых чисел

Ранее в курсе уже упоминался *асимптотический закон распределения простых чисел* (АЗРПЧ):

$$\lim_{x \to \infty} \frac{\pi(x) \ln x}{x} = 1,$$

где

$$\pi(x) := \sum_{p \le x} 1$$

– число простых чисел $\leq x$.

Эта лекция будет посвящена его доказательству.

Функция Чебышёва $\theta(x)$ и переформулировка АЗРПЧ

Определение 14.1. Функцией Чебышёва называется

$$\theta(x) := \sum_{p \le x} \ln p.$$

Лемма 14.1. *Если*

$$\lim_{x \to \infty} \frac{\theta(x)}{x} = 1,$$

mo

$$\lim_{x \to \infty} \frac{\pi(x) \ln x}{x} = 1.$$

Доказательство. $\forall \ \varepsilon > 0 \ \forall \ x > 0$ имеем

$$\underbrace{\frac{\theta(x)}{x}}_{x \to \infty} \le \frac{\pi(x) \ln x}{x} \le \frac{1}{1 - \varepsilon} \underbrace{\frac{\theta(x)}{x}}_{1 + o(1), x \to \infty} + \frac{\ln x}{x^{\varepsilon}}.$$
 (46)

Устремляя $x \to \infty$, получим

$$1 \le \lim_{x \to \infty} \frac{\pi(x) \ln x}{x} \le \overline{\lim_{x \to \infty}} \frac{\pi(x) \ln(x)}{x} \le \frac{1}{1 - \varepsilon}.$$

При $\varepsilon \to 0$ утверждение доказано.

Убедимся теперь, что левое неравенство (46) справедливо:

$$\theta(x) = \sum_{p \le x} \ln p \le \sum_{p \le x} \ln x = \pi(x) \ln x.$$

И, наконец, докажем правую часть (46):

$$\theta(x) \ge \sum_{x^{1-\varepsilon}$$

Здесь последнее неравенство следует из того, что $\pi(y) \leq y$. Деля на x, получим правое неравенство (46).

Лемма 14.2. Если ∃

$$\lim_{x \to \infty} \int_{1}^{x} \frac{\theta(y) - y}{y^2} dy,$$

mo

$$\lim_{x \to \infty} \frac{\theta(x)}{x} = 1.$$

Доказательство. (От противного) Если

$$\overline{\lim_{x \to \infty}} \frac{\theta(x)}{x} > 1,$$

то $\exists R > 1$ такое, что $\theta(x) > R$ для $x = x_n \to \infty$.

Тогда, так как θ монотонно убывает,

$$\int_{x}^{Rx} \frac{\theta(y) - y}{y^2} dy \le \int_{x}^{Rx} \frac{\theta(x) - y}{y^2} dy = I_1.$$

Так как $\theta(x) > Rx$,

$$I_1 > \int_{x}^{Rx} \frac{Rx - y}{y^2} dy = I_2.$$

Сделаем замену $y = sx, 1 \le s \le R, dy = xds$. Тогда

$$I_{2} = \int_{1}^{R} \frac{(R-s)x}{y^{2}} x ds = \int_{1}^{R} \frac{R-s}{s^{2}} ds > 0$$

и не зависит от x.

Отсюда получаем, что интеграл от $\frac{\theta(y)-y}{y^2}$ по $[1,\infty)$ расходится по критерию Коши. Аналогично, если

$$\underline{\lim}_{x \to \infty} \frac{\theta(x)}{r} < 1,$$

то $\exists \ r \in (0,1)$ такое, что $\theta(x) < rx$ Для $x = x_n \to \infty$. Тогда

$$\int_{rx}^{x} \frac{\theta(y) - y}{y^2} dy < \int_{r}^{1} \frac{r - s}{s^2} ds < 0$$

не зависит от x. Аналогично первому случаю, получим, что по критерию Коши интеграл расходится.

Лемма 14.3. Если существует

$$\lim_{T \to \infty} \int_{0}^{T} \left(\frac{\theta(e^{t})}{e^{t}} - 1 \right) dt,$$

то существует

$$\lim_{x \to \infty} \int_{1}^{x} \frac{\theta(y) - y}{y^2} dy. \tag{47}$$

Доказательство. Достаточно сделать замену $y = e^t$ в интеграле (47).

Лемма 14.4. (Чебышёва²⁶) $\exists C > 0 \text{ такое, что } \theta(x)/x \leq C \text{ для всех } x > 0.$

Доказательство. Рассмотрим

$$C_{2n}^n = \frac{(2n)!}{(n!)^2} < 2^{2n},$$

так как

$$\sum_{k=0}^{2n} C_{2n}^k = 2^{2n}.$$

Любое простое p такое, что $n , делит <math>C_{2n}^n$. Следовательно,

$$\sum_{n$$

Следовательно,

$$\theta(2n) - \theta(n) < C_0 n$$

для всех $n\in\mathbb{N},$ где $C_0=\ln 4.$ Положим $n=2^{k-1},$ затем $n=2^{k-2}$ и так далее до n=1 и сложим все такие неравенства. Получим, что

$$\theta(2^k) - \underbrace{\theta(1)}_{=0} \le C_0(2^{k-1} + 2^{k-2} + \dots + 1) < C_0 2^k.$$

Этим доказано требуемое неравенство

$$\theta(x) < C_0 x, \quad x = 2^k \tag{48}$$

Для любого x>0 найдется $k\in\mathbb{C}$ такое, что

$$2^{k-1} < x^2$$
.

Тогда

$$\theta(x) \le \theta(2^k) \le C_0 2^k < 2C_0 x$$

с учетом (48) и того, что $x > 2^{k-1}$. Значит,

$$\theta(x) < 2C_0x$$

для всех x > 0.

$$0.92 < \frac{\theta(x)}{x} < 1.11$$

при $x > x_0$.

99

²⁶Отметим, что Чебышёвым было доказано, что

Преобразование Лапласа и тауберова теорема

Пусть

$$f: [0, +\infty) \to \mathbb{R}$$

– кусочно-непрерывная функция, причем $\exists \ \alpha \in \mathbb{C} \ \text{и} \ C > 0 \ \text{такиe}^{27}$, что

$$|f(t)| \le Ce^{\alpha t}, \ \forall \ t.$$

Тогда функция

$$\mathcal{L}f(x) := \int_{0}^{\infty} f(t)e^{-tz}dt$$

определена и голоморфна в полуплоскости $\{\text{Re}z > \alpha\}$, так как по признаку Вейерштрасса интеграл сходится равномерно на компактах в этой полуплоскости.

Итак, $\mathcal{L}f \in \mathcal{O}(\text{Re}z > \alpha)$ (в нашем случае $\mathcal{L}f \in \mathcal{O}(\text{Re}z > 0)$).

Лемма 14.5. Пусть

$$f: [0, +\infty) \to \mathbb{R}$$

– кусочно-непрерывная ограниченная по модулю функция, причем $\exists \ g \in \mathcal{O}(Rez \geq 0)$ такая, что²⁸

$$g(z) = \mathcal{L}f(z), \quad Rez > 0.$$

Доказательство. Пусть

$$g_T(z) := \int_0^T f(t)e^{-zt}dt, \quad T > 0, \quad z \in \mathbb{C}.$$

Тогда $g_T \in \mathcal{O}(\mathbb{C})$ для всех T > 0 по теореме о голоморфной зависимсти интеграла от параметра.

Требуется доказать, что

$$g(0) - g_T(0) \to 0, \quad T \to +\infty.$$
 (49)

Для этого запишем интегральную теорему Коши

$$\underbrace{g(0) - g_T(0)}_{h(0)} = \frac{1}{2\pi i} \int_{\partial D_{R\delta}} \underbrace{(g(z) - g_T(z)) e^{Tz} \left(1 + \frac{z^2}{R^2}\right)}_{h(z)} \frac{dz}{z},\tag{50}$$

где $\partial D_{R\delta}$ – граница соответствующей области

$$D_{R\delta} = \{ z \in \mathbb{C} \mid |z| < R, \text{Re}z > -\delta \}.$$

$$f(t) = \frac{\theta(e^t)}{e^t} - 1$$

(см. лемму 14.3) и $\alpha = 0$ годится по лемме 14.4 Чебышёва.

 $^{^{27}}$ У нас будет

²⁸В нашем случае это означает, что если для $f(t) = \theta(e^t)/e^t - 1$ найдется $g \in \mathcal{O}(\text{Re}z \ge 0)$ с этим свойством, то выполнено условие леммы 14.3 и доказан АЗРПЧ.

Кроме того, обозначим

$$A := \partial D_{R\delta} \cap \{ \operatorname{Re} z > 0 \},$$

$$B := \partial D_{R\delta} \cap \{ -\delta < \operatorname{Re} z \le 0 \},$$

$$C := \partial D_{R\delta} \setminus (A \cup B).$$

Для \forall данного $\varepsilon > 0$ подберем столько большое R и столь малое δ , что модуль интеграла будет $< \varepsilon$ для всех $T > T_0(\varepsilon)$. Тогда получим (49) при достаточно большом R.

1. Пусть

$$B := \sup_{t>0} |f(t)|.$$

По стандартной оценке модуль интеграла по $A \leq B/R < \varepsilon/4$. Действительно,

$$|g(z) - g_{T}(z)| \underbrace{=}_{\text{Re}z>0, z=A} |\mathcal{L}f(z) - g_{T}(z)| = \left| \int_{T}^{\infty} f(t)e^{-tz}dt \right| \le$$

$$\le B \int_{T}^{\infty} e^{-t(\text{Re}z)}dt = B \frac{e^{-T\text{Re}z}}{\text{Re}z},$$

$$|e^{Tz}| \le e^{T(\text{Re}z)},$$

$$\left| 1 + \frac{z^{2}}{R^{2}} \right| \underbrace{=}_{z \in A \Rightarrow |z|^{2} = R} |z\overline{z} + z^{2}| = \frac{|z||z + \overline{z}|}{R^{2}} = \frac{2\text{Re}z}{R}.$$

Таким образом,

модуль подинтегрального выражения $\leq B \frac{e^{-T \mathrm{Re}z}}{\mathrm{Re}z} \leq$

$$\leq e^{T \operatorname{Re} z} \frac{2 \operatorname{Re} z}{R} \leq \frac{1}{R}.$$

Следовательно,

$$\left| \frac{1}{2\pi i} \int_{A} \dots \right| \le \frac{1}{2\pi} \frac{2B}{R^2} \pi R = \frac{B}{R}.$$

2. Для интеграла по $B \cup C$ от слагаемого с $g_T(z)$ можно по теореме Коши написать

$$\int_{B \cup C} \dots = \int_{\gamma_{-}} \dots,$$

где

$$\gamma_{-} = \partial D_{R\delta} \cap \{ \operatorname{Re} z \le 0 \}.$$

Теперь

$$\left| \int_{\gamma_{-\dots}} \right| \le \frac{B}{R} < \frac{\varepsilon}{4}$$

аналогично оценке пункта 1.

3. Для слагаемого, содержащего g(z),

(модуль интеграла по
$$B$$
) \leq

$$\leq$$
 (длина B) $\max |g(z)||e^{Tz}||\dots| \leq M$ (длина B),

где M не зависит от T, а (длина B) $\to 0$, $\delta \to 0$.

Следовательно, этот модуль интеграла < $\varepsilon/4$ при всех T>0, если δ достаточно мало.

4. Для слагаемого с g(z)

(модуль интеграла по
$$C$$
) \leq

$$\leq ($$
длина $C)e^{-\delta T}($ вел. не зав. от $T)<rac{arepsilon}{4}$

при $T \geq T_0(\varepsilon)$.

Проверка условий леммы 14.5

Лемма 14.6. Преобразование Лапласа от функции $\theta(e^t)$ равно $\Phi(z)/z$ при Rez > 1, г ∂e

$$\Phi(z) := \sum_{p} \frac{\ln p}{p^z} \in \mathcal{O}(Rez > 1).$$

Доказательство. Функция $\theta(e^t)$ постоянна на интервале

$$\ln p_{n-1} < t < \ln p_n,$$

где

$$p_1 = 2$$
, $p_2 = 3$, $p_3 = 5$, ...

– все простые числа, а $p_0 := 1$.

Следовательно, преобразование Лапласа функции $\theta(e^t)$ равно

$$\begin{split} \sum_{n=1}^{\infty} \int\limits_{\ln p_{n-1}}^{\ln p_n} \theta(p_n) e^{-zt} dt &= \sum_{n=1}^{\infty} \theta(p_n) \frac{1}{z} \left(\frac{1}{p_n^z} - \frac{1}{p_{n-1}^z} \right) = \\ &= \frac{1}{z} \sum \frac{\theta(p_n)}{p_n^z} - \frac{1}{z} \sum \frac{\theta(p_n)}{p_{n-1}^z} = \frac{1}{z} \sum \frac{\theta(p_n) - \theta(p_{n-1})}{p_n^z} = \frac{\Phi(z)}{z}. \end{split}$$

Лемма 14.7. Преобразование Лапласа от функции

$$f(t) = \frac{\theta(e^t)}{e^t} - 1$$

 $paвнo^{29}$

$$\mathcal{L}f(z) = \frac{\Phi(z+1)}{z+1} - \frac{1}{z}, \quad Rez > 0.$$

102

 $^{^{29}}$ Здесь $\alpha=0$.

П

Доказательство. Утверждение следует из леммы 14.6 с помощью замены переменной в интеграле и того, что

$$\mathcal{L}1(z) = \frac{1}{z}.$$

Лемма 14.8. Функция

$$\Phi(z) + \frac{\zeta'(z)}{\zeta(z)}$$

допускает аналитическое продолжение из полуплоскости $\{Rez>1\}$ в полуплоскость $\{Rez>1/2\}$.

Доказательство. По формуле Эйлера

$$\frac{1}{\zeta(z)} = \prod_{p} \left(1 - \frac{1}{p^z} \right), \quad \text{Re} z > 1.$$

Заметим, что

$$\left(\frac{1}{p^z}\right)' = \left(e^{-z\ln p}\right)' = -\ln p \frac{1}{p^z}.$$

С учетм этого возьмем логарифмическую производную

$$-\frac{\zeta'(z)}{\zeta(z)} = \sum_{p} \frac{\ln p 1/p^z}{1 - 1/p^z} = \sum_{p} \frac{\ln p}{p^z - 1} = \Phi(z) + \sum_{p} \frac{\ln p}{p^z(p^z - 1)},\tag{51}$$

так как

$$\frac{1}{s-1} = \frac{1}{s} + \frac{1}{s(s-1)}.$$

Учитывая

$$|p^z(p^z-1)| \ge \frac{1}{2}|p^zp^z| = \frac{1}{2}p^{2\text{Re}z},$$

можно сделать вывод, что правый ряд в (51) сходится равномерно на компактах в полуплоскости $\{\text{Re}z>1/2\}$.

Следствие. Функция $\Phi(z)$ мероморфна в полуплоскости $\mathrm{Re}z>1/2$ и имеет там полюс 1-го порядка в точке z=1 с вычетом 1 (за счет $\zeta'(z)/\zeta(z)$) и полюс 1-го порядка с вычетом -1 во всех нулях $\zeta(z)$, попавших в эту полуплоскость.

Мы хотим указать g(z) из леммы 14.5 по формуле (см. лемму $\ref{eq:goal}$?)

$$g(z) := \frac{\Phi(z+1)}{z+1} - \frac{1}{z}.$$

Тогда у g(z) не будет полюса при z=0, так как вычтена главна часть 1/z ряда Лорана $\Phi(z+1)/(z+1)$ в этой точке, а других полюсов при $\mathrm{Re}z=0$ тоже не будет (и, следовательно, $g\in\mathcal{O}(\mathrm{Re}z\geq0)$, как требуется в лемме 14.5) в силу следующей леммы.

Лемма 14.9. Функция $\zeta(z)$ не имеет нулей и, соответственно,

$$\Phi(z) = -\frac{\zeta'(z)}{\zeta(z)} + \mathcal{O}(Rez > 1/2)$$

не имеет полюсов на прямой Rez = 1.

Доказательство. Пусть t > 0. Тогда \forall простого p имеем

$$p^{-it/2} + p^{it/2} \in \mathbb{R}.$$

Следовательно,

$$0 \le (p^{-it/2} + p^{it/2})^4 =$$

$$= p^{-2it} + 4p^{-it} + 6 + 4p^{it} + p^{2it}.$$

Для $\forall \, \varepsilon > 0$ умножим этим неравенства на $\varepsilon \ln p/p^{1+\varepsilon} > 0$ и сложим по всем простым p. Получим, что по определению $\Phi(z)$

$$0 \le \varepsilon \left(\Phi(1 + \varepsilon + 2it) + 4\Phi(1 + \varepsilon + it) + 6\Phi(1 + \varepsilon) + 4\Phi(1 + \varepsilon - it) + \Phi(1 + \varepsilon - 2it) \right).$$

Допустим, что $\zeta(z)$ имеет в точке z=1+it нуль порядка $k\geq 1$, а в точке z=1+2it нуль порядка $l\geq 0$ (считаем l=0, если $\zeta(l+2it)\neq 0$). Тогда

$$\Phi(z) = -\frac{\zeta'(z)}{\zeta(z)} + \mathcal{O}(\text{Re}z > 1/2)$$

имеет при z=1+it полюс 4 порядка с вычетом -k, а при z=1+2it имеет полюс 1-го порядка или устранимую особую точку с вычетом -l. При z=1 функция $\Phi(z)$ имеет полюс 1-го порядка с вычетом +2. Поэтому при $\varepsilon \to 0$ имеем

$$\begin{split} \varepsilon\Phi(1+\varepsilon) &\to 1, \\ \varepsilon\Phi(1+\varepsilon\pm 2it) &\to -l, \\ \varepsilon\Phi(1+\varepsilon\pm it) &\to -k. \end{split}$$

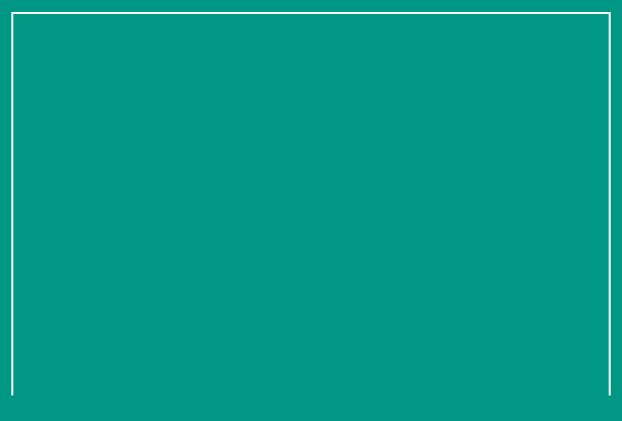
Здесь у аргумента Φ стоит \pm , поскольку $\zeta(\mathbb{R})\subset\mathbb{R}$, так как $\zeta(\overline{z})=\overline{\zeta(z)}$, и, следовательно, ри z=1-it у $\zeta(z)$ (z=1-2it) будет нуль того же прядка, что и у z=1+it (z=1+2it).

Тогда (??) в пределе $\varepsilon \to 0$ дает

$$0 < 6 - 2l - 8k$$
.

Поскольку $k, l \leq 0$ это возможно только при k = 0. Следовательно,

$$\zeta(1+it) \neq 0.$$



МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ МГУ ИМЕНИ М.В. ЛОМОНОСОВА

