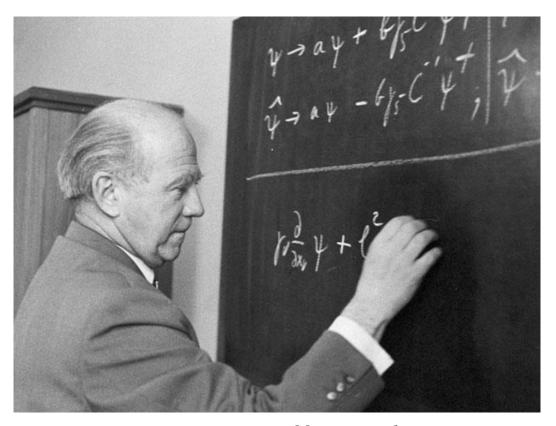
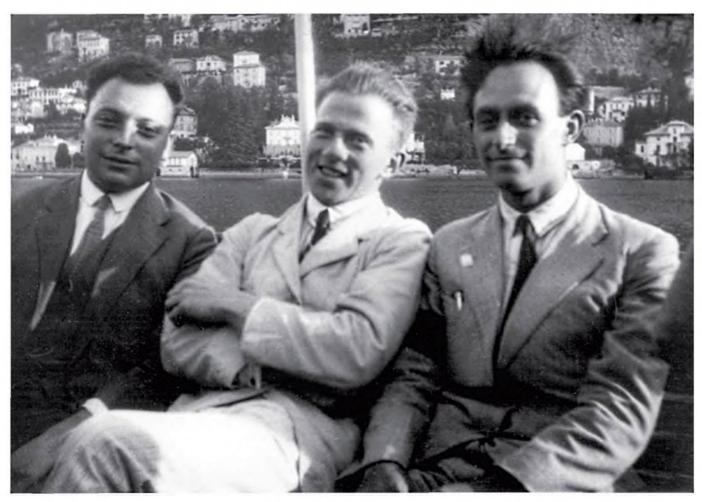
С точки зрения здравого смысла многие результаты квантовой механики кажутся парадоксальными. Но есть простое решение: Отбросьте здравый смысл.

Соотношение неопределённости



Вернер Гейзенберг Werner Karl Heisenberg 1901 - 1976



Паули Гейзенберг Ферми

Темы лекции

- 1. Классическая и квантовая неопределённость. Соотношение неопределённости.
- 2. Заглянем внутрь атомного ядра.
- 3. Угловые моменты микрочастиц. Спин частицы.
- 4. Геометрия квантовых угловых моментов. Их сложение.

Приложение Физический смысл постоянной Планка

Классическая неопределённость

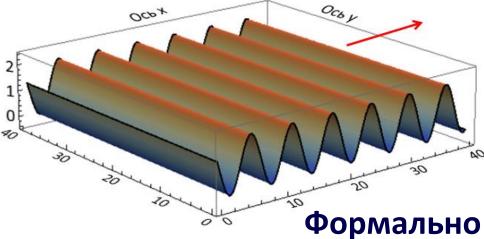
Точное описание состояния объекта в классической физике требует одновременного знания его координаты и импульса. Для волнового движения, однако, это невозможно. Рассмотрим плоскую монохроматическую волну. (волновая функция квантовой механики в форме такой волны описывает свободное движение микрочастицы):

$$\Psi(\vec{r},t)=Ae^{i(\vec{k}\vec{r}-\omega t)}.$$

Эта волна описывает движение

с определённым импульсом $\vec{p} = \hbar \vec{k}$, но её координата \vec{r} полностью неопределённа, т. е. может быть любой от $-\infty$ до $+\infty$.

Плоская волна



координата и импульс

входят в выражение для плоской волны симметрично и возможны два варианта:

1. Импульс \vec{p} фиксирован, меняется координата \vec{r} , 2. Координата \vec{r} фиксирована, меняется импульс \vec{p} :

$$\Psi = Ae^{i(\overrightarrow{k}\overrightarrow{r}-\omega t)} = Ae^{i(\overrightarrow{p}\overrightarrow{r}-Et)} = egin{cases} \Psi(\overrightarrow{r},t) = Ae^{i(\overrightarrow{p}\overrightarrow{r}-Et)} \ \Phi$$
аза волны волны $k=p/\hbar$ $E=\hbar\omega$

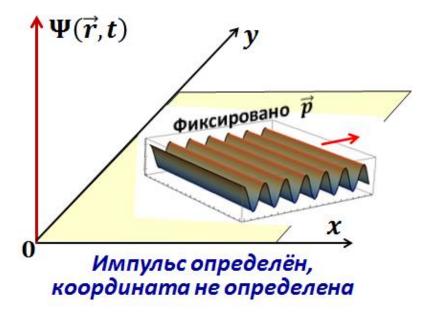
При распространении волны каждая её фаза, сохраняя своё значение, перемещается в определённом и одинаковом для всех элементов волны направлении со скоростью, присущей данной волне.

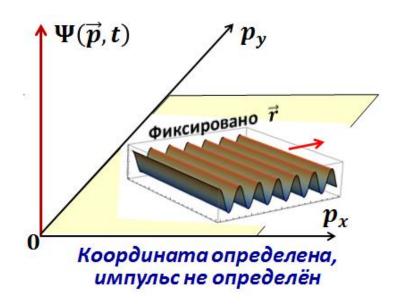
Этому отвечает условие

$$(\overrightarrow{pr} - \omega t) = const$$

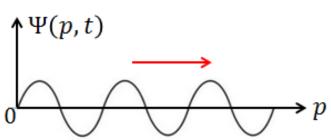
Если импульс определён, а координата не определена, то это отвечает распространению плоской волны в координатном пространстве

Если координата определена, а импульс не определён, то это отвечает распространению плоской волны в пространстве импульсов





Одномерный вариант:



Волновое движение характеризуется переносом фазы, т. е. выполнением условий ———

$$px - Et = const,$$
 $x = \frac{E}{p}t + const,$ если $-\infty < t < +\infty,$ то $-\infty < x < +\infty$

фаза
$$Ae^{\frac{i}{\hbar}(px-Et)}$$

$$px-Et=const,$$
 $p=rac{E}{x}t+const,$ если $-\infty < t < +\infty,$ то $-\infty$

Итак, плоская монохроматическая волна оставляет лишь два варианта связи координат и импульсов:

- фиксирован импульс
 - (неопределенность в импульсе $\Delta p = 0$), координата абсолютно произвольна ($\Delta x = \infty$),
- фиксирована координата ($\Delta x = 0$), импульс абсолютно произволен ($\Delta p = \infty$).

А возможен ли случай, когда состояние волнового движения «концентрируется» в некой ограниченной области пространства? Да, если имеем волновое состояние в виде совокупности плоских волн одинаковой энергии, но с разными и близкими волновыми числами k (импульсами p) — так называемый «волновой пакет».

Рассмотрим в качестве примера пакет волн с однородным распределением волновых чисел в пределах интервала $k_0 - \Delta k \le k \le k_0 + \Delta k$

Поскольку все волны, образующие пакет, имеют одну частоту, то представим волновую функцию в виде произведения «пространственной» и «временной» частей:

$$\Psi(x,t) = \int_{k_0 - \Delta k}^{k_0 + \Delta k} A(k) e^{i(kx - \omega t)} dk = \psi(x) \cdot e^{-i\omega t}.$$

Для однородного распределения волновых чисел k амплитуды A всех парциальных волн одинаковы

$$\psi(x) = A \int_{k_0 - \Delta k}^{k_0 + \Delta k} e^{ikx} dk$$

Говорят о распределении волновых чисел в виде «ящика»:



Рассмотрим волновой пакет с гауссовым распределением волновых чисел:

$$A(k)=rac{1}{a\sqrt{2\pi}}e^{-rac{k^2}{2a^2}}$$
новой функции

Тогда пространственная часть волновой функции определяется выражением

определяется выражением
$$\psi(x) = \int_{-\infty}^{+\infty} A(k) \cdot e^{ikx} dk = \frac{1}{a\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{k^2}{2a^2}} \cdot e^{ikx} dk = e^{-\frac{a^2x^2}{2}}$$
 и $|\psi(x)|^2 = e^{-a^2x^2}$

$$|\psi(x)|^{2} = e^{-a^{2}x^{2}}$$

$$|\psi(x)|^{2} = e^{-a^{2}x^{2}}$$

$$|\psi(x)|^{2} = e^{-a^{2}x^{2}}$$

$$|\Delta x| = \frac{\sqrt{\ln 2}}{a}$$

$$|\lambda x| = \sqrt{\ln 2}$$

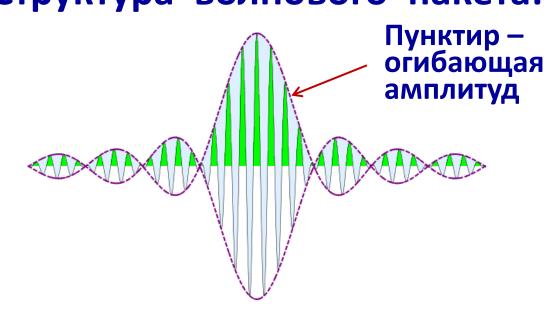
$$|\lambda x| = \sqrt{\ln 2}$$

$$\Delta k \cdot \Delta x = a\sqrt{2\ln 2} \cdot \frac{\sqrt{\ln 2}}{a} = \sqrt{2} \cdot \ln 2 \approx 1,414 \cdot 0,693 \approx 0,98 \approx 1$$

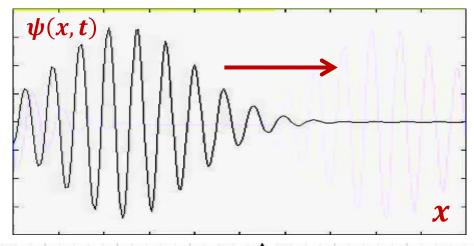
Итак, для гауссового волнового пакета произведение неопределённости Δk в волновом числе на неопределённость Δx в координате можно оценить выражением

 $\Delta k \cdot \Delta x \approx 1$

Это выражение исполняет роль классического соотношения неопределённости Структура волнового пакета:

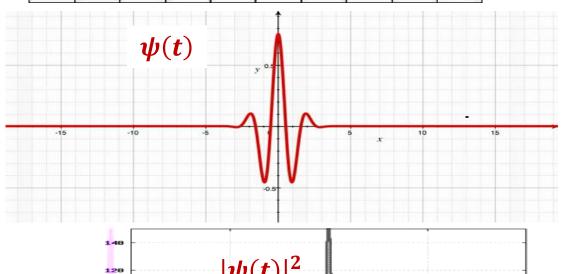


Так как в волновом пакете составляющие его (парциальные) волны имеют разные волновые числа \boldsymbol{k} , т. е. разные импульсы p, а значит перемещаются с разными скоростями, то происходит расплывание (расползание) волнового пакета с течением времени. Поэтому, в частности, нельзя компактную квантовую частицу представлять в виде волнового пакета.



Анимация на Лекции

Движение волнового пакета без расплывания (анимация)



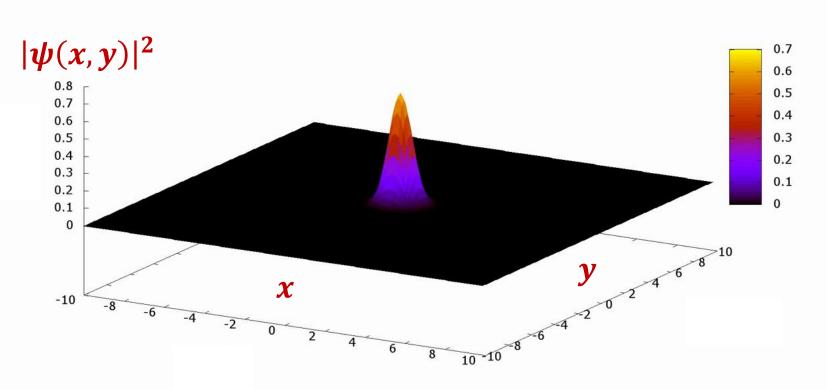
Расплывание волнового пакета (анимация)

 $|\psi(t)|^2$ $= \frac{|\psi(t)|^2}{48}$ $= \frac{48}{9}$ $= \frac{1.5}{2}$

Расплывание плотности распределения изначально узкого волнового пакета (анимация)

Анимация на Лекции

Расплывание гауссового волнового пакета



Квантовое соотношение неопределённости

От классического соотношения неопределенности легко перейти к квантовому.

Учтём, что для квантовой частицы
$$\frac{\lambda}{2\pi}=\frac{\hbar}{p}=\frac{1}{k}.$$
 Поэтому $k=p/\hbar$ и $\Delta k=\Delta p/\hbar$. Получаем: $\Delta k_x\cdot\Delta x\approx 1$ $\Delta p_x\cdot\Delta x\approx \hbar$

Квантовое соотношение будем записывать в виде $\Delta p \cdot \Delta r \approx \hbar$ или $\Delta p \cdot \Delta r \geq \hbar$

Из этого соотношения следует, что в микромире невозможно одновременное точное знание координаты и импульса объекта.

Он не имеет определённой траектории.

Итак, если координата объекта известна абсолютно точно, то его импульс (скорость) абсолютно неизвестны.

Физика останавливает на шоссе полицейский и спрашивает:

«Вы знаете, как быстро Вы ехали, сэр?» На что получает ответ: «Нет, но я точно знаю, где я!».

Неопределённость квантового описания

Состояние частицы в классической физике в любой момент времени описывается заданием 6-ти величин – **3-х** координат и **3-х** проекций импульсов (x, y, z, p_x, p_y, p_z) . Зная эти величины в момент времени t, можно однозначно описать эволюцию системы под действием известных сил во все последующие моменты времени. При этом координаты и импульсы частиц в классической физике сами являются непосредственно измеряемыми (наблюдаемыми) величинами. В квантовом мире не все наблюдаемые величины могут иметь точно определённые значения. Так частица не может иметь одновременно определённые значения импульса и координат. Поэтому понятие движения частицы по строго определённой траектории лишено смысла. В состоянии $\Psi(\vec{r},t)$ можно говорить лишь о вероятностном распределении значений наблюдаемых. Также можно говорить лишь о вероятности реакции (или распада), а не об их протекании наверняка.

Из-за того, что количество величин, характеризующих квантовый объект, в любой момент времени сокращается вдвое по сравнению с классическим (либо три координаты x, y, z, либо три проекции импульса p_x , p_y , p_z , и волновая функция может иметь вид либо $\Psi(\vec{r},t)$, либо $\Psi(\vec{p},t)$), квантовое описание выглядит существенно менее определённым и полным, чем классическое и приобретает статистический (вероятностный) характер.

Пары величин, которые в квантовом мире не могут одновременно иметь определённые значения, называют канонически сопряжёнными (дополнительными, по терминологии Н. Бора). Помимо пары: импульс p и координата r, это: энергия \boldsymbol{E} частицы и момент времени \boldsymbol{t} , в который она измеряется, это: \mathbf{Z} -компонента $\mathbf{J}_{\mathbf{Z}}$ момента количества движения и угол ϕ поворота в плоскости xy.

В любом квантовом состоянии из каждой пары таких величин (p и r, E и t, J_z и φ) определённое значение может иметь только одна из них, либо обе не имеют определённого значения. Количественно это выражается соотношениями неопределённости Гейзенберга.

Произведение неопределённостей двух канонически сопряжённых величин должно быть не менее \hbar :

$$\Delta p \cdot \Delta r \geq \hbar,$$
 $\Delta E \cdot \Delta t \geq \hbar,$
 $\Delta J_z \cdot \Delta \varphi \geq \hbar.$

В частности соотношение *«энергия-время»* означает, что определение энергии с точностью ΔE должно занять интервал времени не менее $\Delta t \approx \frac{\hbar}{\Delta E}$. ИЛИ: баланс энергии можно нарушить на ΔE , но на интервал времени не более чем $\Delta t \approx \hbar/\Delta E$ Получим соотношение неопределённости *«энергия-время»* из соотношения неопределённости *«импульс-координата»*:

$$\Delta p \cdot \Delta r \ge \hbar$$

$$\Delta p \cdot \Delta r = \Delta p c \cdot \frac{\Delta r}{c} = \Delta E \cdot \Delta t \ge \hbar$$

В окружающей нас повседневности степень квантовой неопределённости ничтожна и практически не проявляется

Пример 1:

Пусть автомобиль движется со скоростью 100 км/час. Что можно сказать о квантовой неопределенности $\Delta oldsymbol{v}$ этой скорости, если автомобиль проезжает дорожный знак, положение которого известно с точностью $\Delta r = 1$ см? Примем массу автомобиля m = 3600 кг. Имеем $\Delta \boldsymbol{p} \cdot \Delta \boldsymbol{r} = \boldsymbol{m} \Delta \boldsymbol{v} \cdot \Delta \boldsymbol{r} = \hbar$ Откуда

ћ 1.05.10−34.Пуца

$$\Delta v = \frac{\hbar}{m \cdot \Delta r} = \frac{1,05 \cdot 10^{-34} \, \text{Дж·сек}}{3600 \, \text{кг·1 cm}} pprox \, 10^{-35} \, \, \text{км/час.}$$

Пример 2:

Скорость пешехода известна с точностью $\Delta v = 1$ см/сек, а его координата с точностью $\Delta r = 1$ см. Как эти неопределённости соотносятся с квантовыми неопределённостями?

Примем массу пешехода 100 кг. Имеем для произведения классических неопределённостей:

$$(\Delta p \cdot \Delta r)_{\text{класс}} = m \Delta v \cdot \Delta r = 100 \ \text{кг·1 см/сек·1 см} = 1 \ \text{Дж·сек.}$$
 В то же время произведение квантовых неопределённостей характеризуется величиной $\hbar = 1,05\cdot 10^{-34} \ \text{Дж·сек.}$

Таким образом

$$(\Delta p \cdot \Delta r)_{\mathsf{класс}} >>> \hbar$$

Это условие необходимо для применимости законов классической механики, характеризующих пространственное состояние объектов одновременно определёнными координатами и импульсами и описывающих их движение по чётко сформированным траекториям

Пример 3:

Используя соотношение неопределенности «импульс-координата», оценить минимальную кинетическую энергию нуклона в ядре

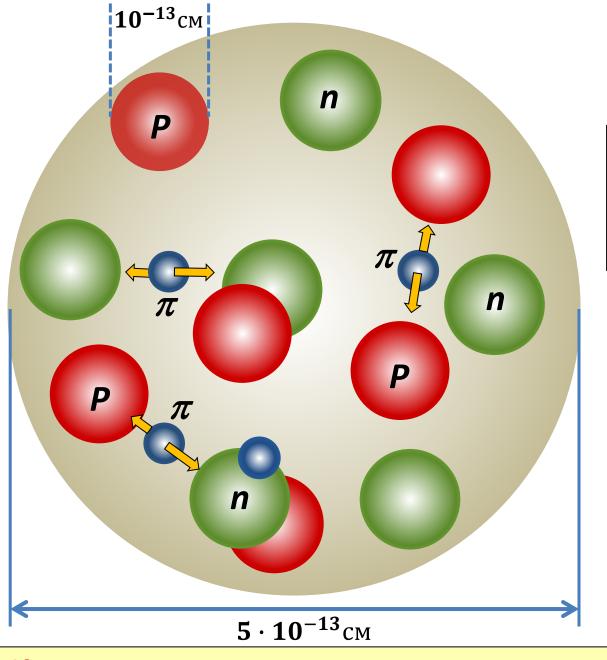
В соотношении $\Delta p \cdot \Delta r \geq \hbar$ для оценок примем $\Delta p \approx p_N$ и $\Delta r \approx R_{\rm H} \approx 2.4$ Фм , где p_N — импульс нуклона в ядре, а p_N — радиус ядра с числом нуклонов 12 (углерод). Нуклоны в ядре нерелятивистские, поэтому их импульс связан с кинетической энергией p_N соотношением

 $p_N = \sqrt{2m_N T_N}$. С учетом этого из соотношения неопределенности для T_N получаем

$$T_N \geq \frac{1}{2m_Nc^2} \left(\frac{\hbar c}{R_{\rm g}}\right)^2 \approx \frac{1}{2.938 \text{ M} ext{ M} ext{B}} \left(\frac{200 \text{ M} ext{ M} ext{B} \cdot \Phi_{\rm M}}{2.4 \text{ }\Phi_{\rm M}}\right)^2 \geq 4 \text{ M} ext{ B}.$$

Известно, что средняя кинетическая энергия нуклона в ядре около 20 МэВ.

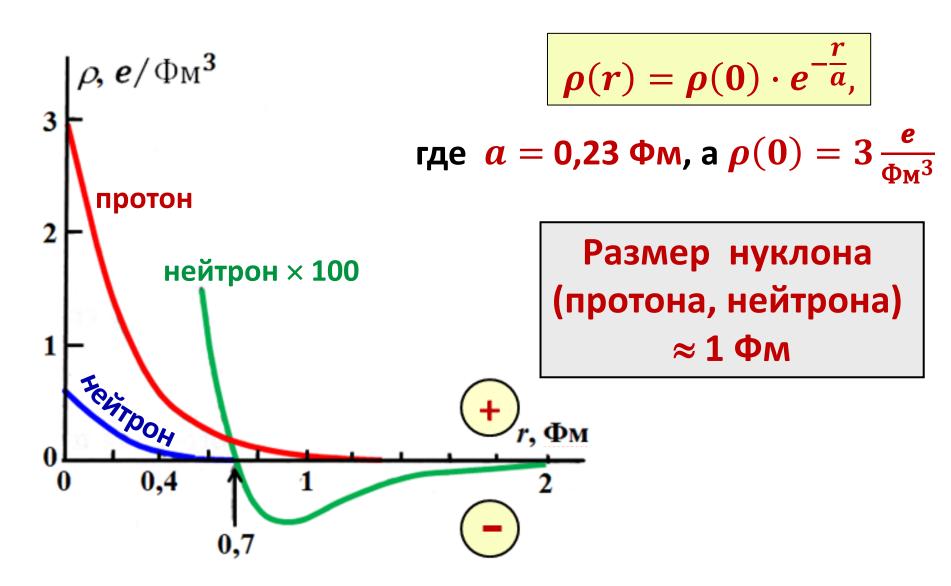
Соотношение $T \geq \frac{1}{2mc^2} \left(\frac{\hbar c}{R}\right)^2$, связывающее кинетическую энергию частицы с размером области, в которой она находится, показывает, что частица, заключенная в конечном объёме, не может иметь нулевую энергию.

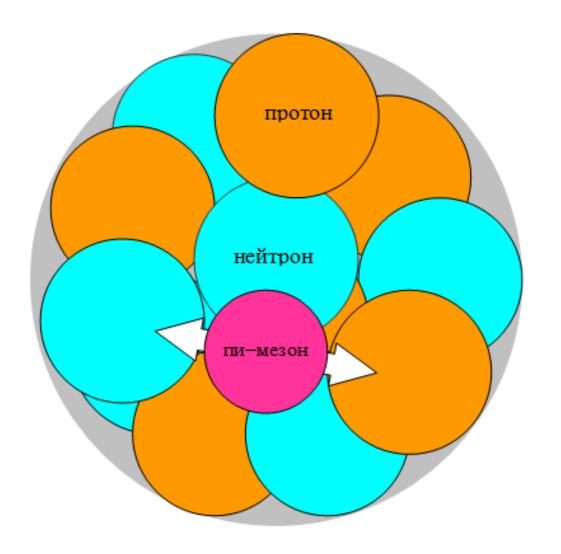


Анимация на Лекции

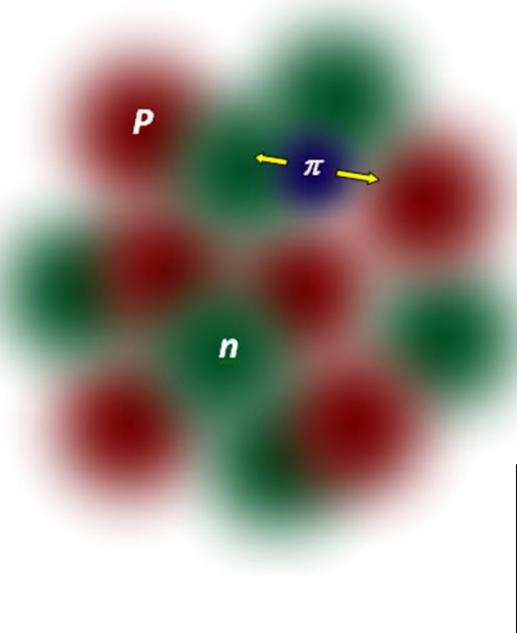
Ядро ¹²С. Как его представляли в 1950-1960 гг.

Распределение заряда в нуклоне и размер нуклона





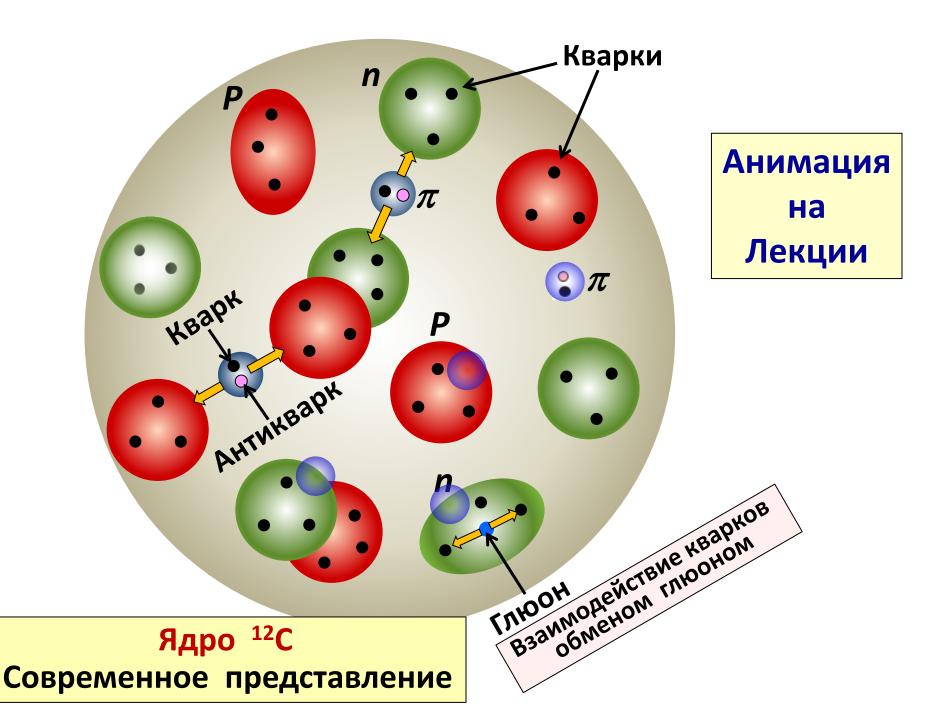
Ядро ¹²С Соблюдены относительные размеры частиц



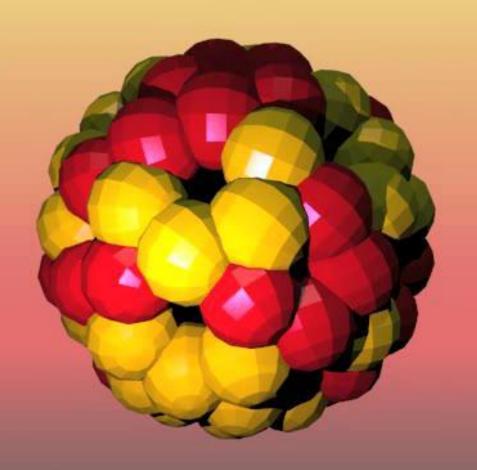
Нуклоны двигаются в ядре хаотически со средней скоростью ≈ 0,2 *с*

Ядро ¹²С

Соблюдены относительные размеры частиц и условно показана их размазанность



Тяжёлое ядро



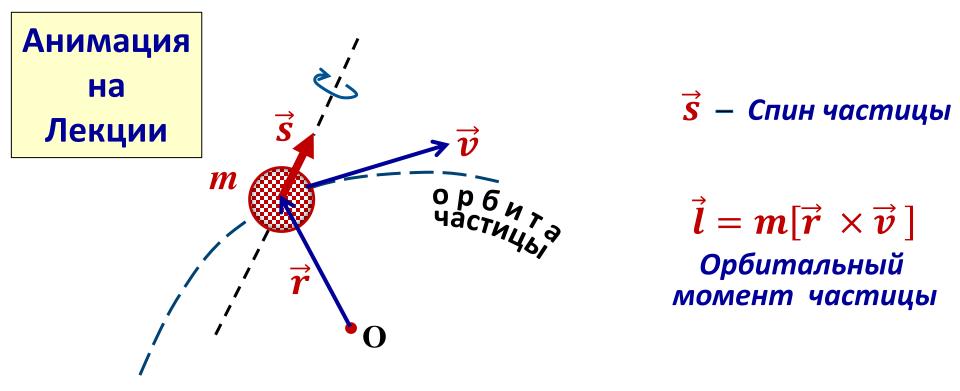
Моменты количества движения (угловые моменты) микрочастиц

У микрочастицы, подчиняющейся квантовым законам, как и у классического тела, различают два типа угловых моментов:

- собственный угловой момент \$\square\$
(в классическом случае это угловой момент, вызванный вращением тела вокруг собственной, т.е. проходящей через центр масс тела, оси),

И

- *орбитальный угловой момент l,* связанный с движением частицы как целого по некоторой траектории (орбите).



Смысл орбитального момента одинаков в классическом и квантовом случае. Собственный момент микрочастицы называют её спином и он не является полным аналогом классического собственного момента. Полным угловым моментом ј микрочастицы называют векторную сумму её орбитального и спинового моментов:

$$\vec{l} = \vec{l} + \vec{s}$$

Угловые моменты частиц (орбитальные, спиновые и полные) квантуются

Так величина орбитального момента $|\vec{l}|$ Определяется соотношением $|\vec{l}| = \hbar \sqrt{l(l+1)}$, где l называется орбитальным квантовым числом и может принимать только целочисленные значения, включая нуль:

$$l = 0, 1, 2, 3, ..., \infty$$
.

Аналогичные выражения имеют место и для величин $|\vec{s}|$ и $|\vec{j}|$ спинового и полного угловых моментов:

$$|\vec{s}| = \hbar \sqrt{s(s+1)}, |\vec{j}| = \hbar \sqrt{j(j+1)},$$

где *s* и *j* — квантовые числа спина и полного моментов. Принято именно квантовые числа *l*, *s* и *j* называть *орбитальным*, *спиновым* (*спином*) и *полным* моментами частицы.

В отличие от орбитального квантового числа *l* спиновое квантовое число *s* может быть как целым, так и полуцелым, т. е., например, 1/2, 3/2 или 5/2, но при этом для каждой элементарной частицы оно может принимать единственное присущее этому типу частиц значение.

Спин – частицы её неотъемлемая и неизменная внутренняя характеристика (как заряд или масса)

Так спины π -мезона и K-мезона равны 0. Спины электрона, протона, нейтрона, кварков, нейтрино и их античастиц равны 1/2. Спин фотона равен 1.

Квантовое число ј для определённой частицы может принимать набор значений, так как для неё возможны разные значения l. При этом, если спин s частицы полуцелый, то это набор полуцелых чисел. Если спин 5 частицы целый или нуль, то возможные ј образуют набор целых чисел, включая нуль.

Это следует из правил сложения двух угловых моментов, например, орбитального и спинового, которые будут сформулированы ниже. Итак, под угловыми моментами частиц (полными, спиновыми и орбитальными) понимают, как правило, их квантовые числа *j*, *s* и *l*, которые связаны с их истинными величинами соотношениями:

$$|\vec{j}| = \hbar \sqrt{j(j+1)},$$

 $|\vec{s}| = \hbar \sqrt{s(s+1)},$
 $|\vec{l}| = \hbar \sqrt{l(l+1)}.$

Спин нуклона s = 1/2, спин фотона s = 1. $l = 0, 1, 2, 3, ..., \infty$.

j может быть как целым (включая нуль), так и полуцелым.

Пример: Спин атомного ядра

Спин ядра $\vec{J}_{\rm ядра}$ это полный момент количества движения покоящегося ядра.

Он является результатом векторного сложения спинов \vec{s}_{α} нуклонов ядра

и их орбитальных (угловых) моментов l_{α} внутри ядра:

$$ec{J}_{
m MZpa} = \sum_{lpha=1}^{A} (ec{l}_{lpha} + ec{s}_{lpha})$$

Геометрия квантовых векторов моментов количества движения (угловых моментов). Пространственное квантование.

В квантовом мире определённые значения имеют величина (*квантовое число*) вектора углового момента и его проекция

на одну из произвольно ориентированных осей (например, осей x, y, z декартовой системы координат).

Обычно в качестве такой оси используют ось Z. Если иметь в виду вектор \vec{j} полного углового момента, его квантовое число j и проекцию j_z этого момента на ось z, то справедливо следующее:

$$j_z = \pm j\hbar, \pm (j-1)\hbar, \pm (j-2)\hbar, ..., 0$$
 или $\pm \frac{1}{2}\hbar$ При этом для величины вектора \vec{j} справедливо соотношение: $|\vec{j}| = \hbar \sqrt{j(j+1)}$.

Три примера: j = 1/2, 1 и 2

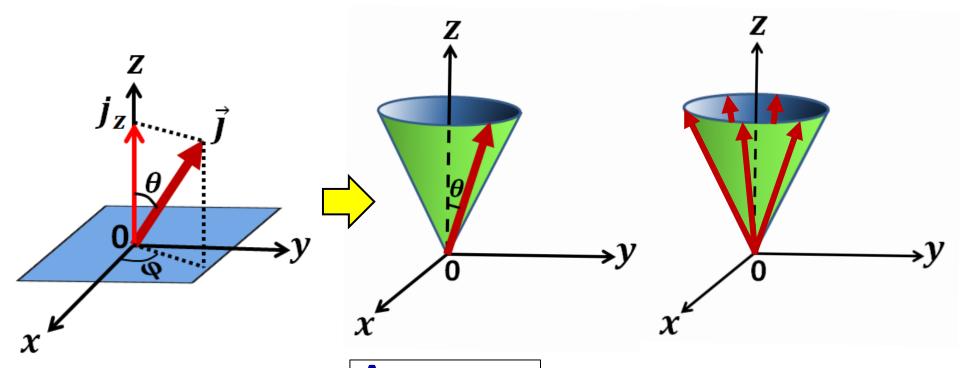
$$j=1$$
 $j=2$

СПИН ВВЕРХ $+\frac{1}{2}\hbar$ $+1\hbar$ $+2\hbar$ $+2\hbar$ $+2\hbar$ $+1\hbar$ $+1\hbar$ $+2\hbar$ $+2\hbar$

$$j_z = \pm j\hbar, \pm (j-1)\hbar, \pm (j-2)\hbar, ..., 0$$
 или $\pm \frac{1}{2}\hbar$

Неопределённость направления квантового вектора углового момента

$$j_z=\pm j\hbar, \pm (j-1)\hbar, \pm (j-2)\hbar, ..., 0$$
 или $\pm rac{1}{2}\hbar$



$$Cos\theta = \frac{j_z}{\hbar\sqrt{j(j+1)}}$$

Анимация на Лекции

$$\left|\vec{J}\right|=\hbar\sqrt{j(j+1)}$$

Характер неопределенности квантового вектора углового момента непосредственно следует из соотношения неопределенности, связывающего z-компоненту J_z проекции углового момента и угол φ поворота вектора J углового момента в плоскости xy:

$$\Delta J_z \cdot \Delta \varphi \geq \hbar$$
.

В свою очередь это соотношение неопределенности (как и соотношение неопределенности «энергия-время») легко получить из соотношения неопределенности «импульс-координата»:

$$\Delta p \cdot \Delta r \geq \hbar$$

$$\Delta E \cdot \Delta t \geq \hbar$$

$$\Delta J_z \cdot \Delta \varphi \geq \hbar$$

Сложение квантовых векторов угловых моментов на примере сложения орбитального и спинового моментов:

$$\vec{J} = \vec{l} + \vec{s}$$

$$j_z = l_z + s_z$$

$$\begin{array}{ccc}
\min & \max \\
\vec{l} \uparrow \downarrow \vec{s} & \vec{l} \uparrow \uparrow \vec{s} \\
|l - s| \leq \vec{J} \leq l + s
\end{array}$$

$$|j = |l - s|, |l - s| + 1, |l - s| + 2, ..., l + s - 1, l + s$$

Пример:

$$l = 2$$
, $s = 3/2$. $|l - s| = 1/2$, $l + s = 7/2$.

$$1/2 \le j \le 7/2$$
. $j = 1/2, 3/2, 5/2, 7/2$.

Покажем, что квантованность орбитального углового момента \boldsymbol{l} , которая имеет место для любого объекта, невозможно увидеть у макроскопического тела. Пусть имеется тело массой $\boldsymbol{m} = \mathbf{1} \, \mathbf{r}$,

двигающееся со скоростью v = 10 см/сек по орбите радиуса r = 1 см. Получаем:

$$\hbar\sqrt{l(l+1)} \approx l\hbar = mvr =$$

= 1 г·10 см/сек·1 см = 10 г·см²/сек = 10 эрг·сек.

Таким образом,

$$l = \frac{mvr}{\hbar} = \frac{.10 \text{ эрг·сек}}{1,05 \cdot 10^{-27} \text{ эрг·сек}} \approx 10^{28}.$$

Очевидно «почувствовать» квантовый шаг орбитального углового момента $\Delta l = 1$ на фоне столь гигантского числа ($\approx 10^{28}$) невозможно.

Приложение

Физический смысл постоянной Планка \hbar

Центральную роль в физике играет величина, называемая действием S

и для которой имеет место *Принцип Наименьшего Действия*. Этот принцип — основа лагранжевой и гамильтоновой формулировок механики и, как показал Фейнман, опираясь на этот принцип, может быть сформулирована и квантовая механика.

В простейшей формулировке для механики принцип наименьшего действия выглядит так:

«Свободное тело движется по траектории, реализующей минимум интеграла

$$S=\int mv\cdot dr$$
 или $S=\int dS=\int d(pr)$, где $p=mv$ ».

Таким образом, действие в данном случае имеет вид S = pr, т. е. совпадает с модулем момента количества движения, минимальный шаг изменения которого равен \hbar . Поэтому, приведённая константа Планка \hbar исполняет роль кванта действия (как и кванта углового момента).