

Темы лекции

- 1. Ядерные модели. История ядерной модели оболочек.
- 2. Обоснование ядерной модели оболочек. Магические числа.
- 3. Ядерная потенциальная яма.
- 4. Одночастичные нуклонные уровни в потенциальных ямах различного типа. Заполнение этих уровней.
- 5. Учёт спин-орбитального расщепления. Объяснение магических чисел.
- 6. Реалистическая диаграмма нуклонных одночастичных уровней.
- 7. Спин и чётность основных состояний ядер в одночастичной модели оболочек.
- 8. Учёт спаривания нуклонов в одночастичной модели оболочек.
- 9. Заключительные замечания о ядерной модели оболочек.

Модель ядерных оболочек

Модели ядра можно разбить на два больших класса: *микроскопические*,

рассматривающие поведение отдельных нуклонов в ядре, и коллективные,

рассматривающие согласованное движение больших групп нуклонов в ядре. Среди микроскопических моделей выделяется модель оболочек.

Она во многом аналогична модели атомных оболочек, но имеет от неё ряд принципиальных отличий.

Goeppert-Meyer

Модель ядерных оболочек была сформулирована в 1949 г. В 1953 г. за создание этой модели Мария Гепперт-Майер и Ханс Йенсен были удостоены Нобелевской премии.

Jensen

Основной факт,

подтверждающий оболочечное строение ядра, это «магические числа» нуклонов. Ядра, у которых число нейтронов или протонов равно этим числам, обладают повышенной устойчивостью и распространённостью.

> Магические числа нуклонов: 2, 8, 20, 28, 50, 82, 126

Магическим числам нуклонов отвечают ядра

с заполненными нуклонными оболочками, имеющие особую устойчивость, подобно атомам благородных газов с заполненными атомными оболочками.

Экспериментальные данные, подтверждающие наличие магических ядер:

Отклонение энергии отделения нейтрона от рассчитанной по формуле Вайцзеккера

 $\Delta \boldsymbol{B_n}$, МэВ

Данные, показывающие что магические ядра сферические

Модули параметров деформации ядер с A = 39÷241

Тараметр деформации
$$oldsymbol{eta}=rac{b-a}{\overline{R}}$$
,
где $\overline{R}=rac{1}{2}(b+a).$

Эксперимент доказывающий существование в ядре ${}_{3}^{6}$ Li двух нуклонных состояний (оболочек) с l = 0 и l = 1

Возможность введения модели оболочек для ядра означает, что многочастичная ядерная задача допускает такую переформулировку, при которой усреднение отдельных короткодействующих межнуклонных потенциалов внутри ядра приводит к возникновению почти одинакового для всех нуклонов потенциала притяжения (яме), причём нуклоны в этой яме можно приближённо рассматривать как независимые частицы.

Нуклоны считаются независимыми V(r)'в общем (одинаковом для всех нуклонов) Модельные потенциалы: сферическом потенциале и достаточно решить Гармонический Прямоугольная осциллятор стационарное яма уравнение Шредингера 0 R для одного нуклона. Многочастичная Потенциал задача превращается Вудса-Саксона в одночастичную. $-V_0$ Гармонический осциллятор: $V(r) = -V_0 + \frac{1}{2}M\omega^2 r^2$ Потенциал Вудса-Саксона: V(r) = М — масса частицы, ω — параметр, определяющий

расстояние между уровнями

V₀ ≈ 50 МэВ, *a* ≈ 0,55 Фм

Ядерные потенциальные ямы

Как возникает потенциал Вудса – Саксона? В силу короткодействия нуклон-нуклонного потенциала глубина ядерной потенциальной ямы в некотором месте ядра в 1-ом приближении пропорциональна плотности нуклонов в этом месте.

Стационарное уравнение Шредингера для одного нуклона в сферическом потенциале *V*(*r*):

$$\widehat{H}\psi(r) = \left[\frac{\widehat{p}^2}{2M} + V(r)\right]\psi(r) = E \cdot \psi(r),$$

где $\widehat{p}^2 = -\hbar^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)$ — оператор квадрата

импульса нуклона, *М* — его масса, а *Е* —энергия.

В сферическом потенциале состояние частицы (нуклона) характеризуется определённым орбитальным моментом – сохраняющимся квантовым числом *l*. С ростом энергии частицы одно и то же значение *l* встречается у неё вновь и вновь. Порядковый номер появления у частицы состояния с одним и тем же *l* с ростом энергии называют радиальным квантовым числом *n*. Таким образом, любое состояние частицы (и её волновая функция ψ в сферическом поле) характеризуется двумя целыми числами *n* и *l*: $\psi \equiv \psi_{nl}$.

Уровни гармонического осциллятора эквидистантны. Расстояние между ними для частицы с массой *M*, равной массе нуклона, при $V_0 = 30$ МэВ даётся выражением: $\hbar\omega = \left(\frac{2V_0\hbar^2}{MR^2}\right)^{1/2} \approx (41 \div 42)A^{-1/3}$ МэВ

Заполнение нуклонами одночастичных уровней (подоболочек) происходит в соответствии с принципом Паули. В основном состоянии заняты самые нижние уровни. При этом одночастичные уровни для протонов и нейтронов заселяются независимо. Число нуклонов одного типа на подоболочке даётся формулой $v_l = 2(2l+1),$ где (2l+1) — число ориентаций вектора \dot{l} , а 2 – число ориентаций спина нуклона \vec{s}

Роль спин-орбитальных сил в формировании ядерной модели оболочек

Для объяснения магических чисел необходимо учитывать спин-орбитальную составляющую нуклон-нуклонных сил. Нуклон сильнее взаимодействует с другими нуклонами, если его спин \vec{s} и орбитальный момент *l* направлены в одну сторону. С учётом *ls*-составляющей потенциал, в котором находится ядерный нуклон, имеет вид: $\boldsymbol{U}(\boldsymbol{r}) = \boldsymbol{V}(\boldsymbol{r}) + \boldsymbol{a} \cdot \vec{\boldsymbol{l}} \vec{\boldsymbol{s}}.$ Здесь V(r) – ядерный потенциал притяжения – потенциальная яма глубиной $\approx 50 \text{ МэВ}$, а a < 0 – константа, величина которой единицы МэВ.

Кулоновское отталкивание добавляется к потенциальной яме для протонов

Дважды магические ядра:

	⁴ ₂ He	¹⁶ ₈ 0	⁴⁰ 20Ca	⁴⁸ 20Ca	²⁰⁸ ₈₂ Pb
Число нейтронов	2	8	20	28	126
Число протонов	2	8	20	20	82

Спин и чётность основных состояний ядер в одночастичной модели оболочек

1. Ядро с заполненными подоболочками:

На них нуклонами заняты состояния со всеми возможными проекциями полного момента ј на выделенное направление (ось z). Каждому нуклону с проекцией $+j_z$ будет соответствовать нуклон с $-j_z$ и суммарный момент нуклонов на каждой подоболочке I = 0. Чётность замкнутой подоболочки положительна, так как она содержит чётное число (2j+1) нуклонов

одной чётности.

+3/2 j = 3/2+1/2 +1/2 -1/2 $j_z = -3/2$

Итак, для ядер с замкнутыми подоболочками $J^P = 0^+$

Один нуклон сверх заполненных подоболочек:

2.

Остов заполненных подоболочек имеет спин-чётность 0^+ . Поэтому J^P такого ядра определяется полным моментом j и чётностью $p = (-1)^l$ нуклона сверх замкнутых подоболочек, где l – орбитальный момент внешнего нуклона. Таким образом, в рассматриваемом случае :

$$J^P = j^p = j^{(-1)^l}$$

3. Не хватает одного нуклона до заполнения подоболочки:

Ядро с «дыркой» в заполненной подоболочке также имеет

$$J^P = j^P = j^{(-1)^l}$$

где *j, p* и *l* относятся к отсутствующему нуклону.

3. Ядро с «дыркой» в заполненной подоболочке

Пусть полный угловой момент нуклона на такой подоболочке и его чётность соответственно j и p. Обозначим момент и чётность подоболочки с «дыркой» J и P. Так как добавление нуклона в подоболочку замыкает её, имеем $\vec{J} + \vec{j} = \vec{0}$ и J = j, $P \cdot p = +1$ и P = p.

То-есть, для ядра с «дыркой» имеем те же правила нахождения спина и чётности основного состояния, что и для ядра с одним нуклоном сверх замкнутых подоболочек:

$$J^P = j^p = j^{(-1)^l}$$

Учёт

эффекта спаривания нуклонов в модели оболочек

Энергия спаривания <u>∆</u> ≈ 1 ÷ 3 МэВ. Глубина ядерного потенциала <u>V</u> ≈ 50 МэВ:

Анимация на Лекции

В основном (и низколежащих) состояних ядра нуклоны одного типа на подоболочке объединяются в пары с противоположными по знаку j_z . Полный момент количества движения каждой такой пары протонов или нейтронов равен **0**. Поэтому, если на подоболочке *nl*; находится чётное число нуклонов каждого сорта, то все они объединены в пары (спарены) и подоболочка имеет I = 0. Если на подоболочке нечётное число нуклонов одного типа, то один из них не связан в пару и / подоболочки равен / этого неспаренного нуклона, т. е. I = i. Итак, в основном состоянии ядра имеем:

- чётно-чётное ядро:
- нечётное ядро:
- нечётно-нечётное ядро:

$$J^{P} = 0^{+};$$

 $J = j, P = (-1)^{l};$
 $|j_{p} - j_{n}| \le J \le j_{p} + j_{n},$
 $P = (-1)^{l_{p}+l_{n}}.$

о ядерной модели оболочек Рассмотренный вариант ядерной модели оболочек называют одночастичной моделью оболочек (ОМО). Это самый простой вариант модели оболочек. Он относится к сферическим ядрам (ядрам с заполненными оболочками и близкими к ним, в частности к магическим ядрам) и предполагает, что между нуклонами на подоболочках нет взаимодействий кроме сил спаривания. Всё взаимодействие между нуклонами в ядре сведено к их общей потенциальной яме.

Заключительные замечания

2

Более сложный вариант модели оболочек, так называемая многочастичная модель оболочек (ММО), учитывает, что межнуклонные силы в ядре не исчерпываются общей для всех нуклонов потенциальной ямой. Есть некая добавка к этой одинаковой для всех нуклонов потенциальной яме, которая не может быть учтена этой ямой. Т.е. существует некое остаточное взаимодействие между нуклонами, принципиально не сводимое к общей потенциальной яме. В ММО делается попытка учесть это остаточное взаимодействие.

Большинство ядер несферические и к ним неприменима сферическая модель оболочек. Для несферических ядер разработана модель оболочек, учитывающая, что нуклоны в таких ядрах движутся в несферической потенциальной яме.