Обработка астрометрических наблюдений 8. Редукция I: Модели

кто: Семенцов В.Н.

когда: 2 апреля, 2021

дано два взаимно отождествленных набора точек
 знаем (примерно) достижимую точность наблюдений
 надо построение системы уравнений для вычисления кинематических параметров наблюдаемых объектов в системе опорного каталога

Общая схема редукции

- **х**_{*i*} вектор измеряемых величин (приборных координат) в точке *i*, $\varepsilon_{\mathbf{x}_i}$ вектор погрешностей измеряемых величин в точке *i*,
- ξ_i вектор идеальных координат в точке i,
 - **р** вектор параметров модели («параметров пластинки»),
- **А**(...;..) нелинейная зависимость:

$$\mathbf{x}_i = \mathbf{A}_i\left(\xi_i; \mathbf{p}\right). \tag{1}$$

Общая схема редукции

- **х**_{*i*} вектор измеряемых величин (приборных координат) в точке $i, \varepsilon_{\mathbf{x}_i}$ вектор погрешностей измеряемых величин в точке i,
- ξ_i вектор идеальных координат в точке i,
 - **р** вектор параметров модели («параметров пластинки»),
- A(...;...) нелинейная зависимость:

$$\mathbf{x}_{i} = \mathbf{A}_{i}\left(\xi_{i}; \mathbf{p}\right). \tag{1}$$

система условных уравнений (1) решается приближенными методами, обычно — ищется решение, минимизирующее норму вектора невязок; в случае нелинейной **A** полезно добавить условие минимальной нормы вектора решения.

Полная система полиномов

Полная система полиномов GSC, <u>astrometrica.at</u>

• Полная система полиномов

примеры: GSC, <u>astrometrica.at</u>

• Физически обоснованные зависимости

Полная система полиномов
 GSC, astrometrica.at
 Физически обоснованные зависимости
 Астрографический каталог (AC2000, AC SAI)

Полная система полиномов
 примеры: GSC, <u>astrometrica.at</u>
 Физически обоснованные зависимости
 примеры: Астрографический каталог (AC2000, AC SAI)

Ортогонализация

- процесс Грама-Шмидта
- Пусть имеются линейно независимые векторы $\mathbf{a}_1, \ldots, \mathbf{a}_n$
- **ргој**_b \mathbf{a} оператор проекции вектора \mathbf{a} на вектор \mathbf{b} , определённый как

$$\operatorname{proj}_{\mathbf{b}} \mathbf{a} = \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{\langle \mathbf{b}, \mathbf{b} \rangle} \mathbf{b},$$

где $\langle \mathbf{a}, \mathbf{b} \rangle$ — скалярное произведение векторов **a** и **b**.

 скалярное произведение вычислять следует не по всей области определения набора функций, а по ее подмножеству конкретных точек

Ортогонализация-2

 Классический процесс Грама – Шмидта выполняется следующим образом:

$$\mathbf{b}_1 = \mathbf{a}_1 \tag{2}$$

$$\mathbf{b}_2 = \mathbf{a}_2 - \mathbf{proj}_{\mathbf{b}_1} \mathbf{a}_2 \tag{3}$$

$$\mathbf{b}_3 = \mathbf{a}_3 - \mathbf{proj}_{\mathbf{b}_1} \mathbf{a}_3 - \mathbf{proj}_{\mathbf{b}_2} \mathbf{a}_3 \tag{4}$$

$$\mathbf{b}_n = \mathbf{a}_n - \mathbf{proj}_{\mathbf{b}_1} \mathbf{a}_n - \mathbf{proj}_{\mathbf{b}_2} \mathbf{a}_n - \cdots - \mathbf{proj}_{\mathbf{b}_{n-1}} \mathbf{a}_n$$

На основе каждого вектора \mathbf{b}_j $(j = 1 \dots n)$ может быть получен нормированный вектор \mathbf{e}_j единичной длины,

определённый как $\mathbf{e}_j = rac{\mathbf{b}_j}{\|\mathbf{b}_j\|}$

. . .

Ортогонализация-3

Результаты процесса Грама-Шмидта: $\mathbf{b}_1, \ldots, \mathbf{b}_n$ — система ортогональных векторов либо

 ${f e}_1, \, \ldots, \, {f e}_n -$ система ортонормированных векторов.

Ортогонализация-3

- Результаты процесса Грама-Шмидта: $\mathbf{b}_1, \ldots, \mathbf{b}_n$ система ортогональных векторов либо
 $\mathbf{e}_1, \ldots, \mathbf{e}_n$ система ортонормированных векторов.
- Если исходные вектора (в конкретном подпространстве) линейно зависимы, то процесс ортогонализации на каком-то шаге *j* может дать нулевой вектор **b**_j. Его следует отбросить и продолжить процесс ортогонализации. Количество векторов, выдаваемых алгоритмом, будет равно размерности исходного подпространства (то есть количеству линейно независимых векторов, которые можно выделить среди исходных векторов).

Классическая редукция

Проектирование небесной сферы на касательную плоскость-2

Вектор t называется тангенциальным координатным вектором направления \mathbf{p} относительно \mathbf{w} . Введя единичные ортогональные вектора \mathbf{u} и \mathbf{v} в плоскости, перпендикулярной вектору \mathbf{w} , можно представить тангенциальные координаты точки R относительно W в виде:

$$\mathbf{u}^T \mathbf{t} = \frac{\mathbf{u}^T \mathbf{p}}{\mathbf{w}^T \mathbf{p}}, \quad \mathbf{v}^T \mathbf{t} = \frac{\mathbf{v}^T \mathbf{p}}{\mathbf{w}^T \mathbf{p}}.$$
 (9)

Проектирование небесной сферы на Если центр проекции О совпадает с первой главной точкой объектива, то создаваемое в тангенциальной плоскости изображение является центральной проекцией с центром во второй главной точке O_l. Для расчета компонент вектора t надо будет примерно знать еще и фокусное расстояние f, определяющее масштаб. Небольшие повороты координатной триады приводят к

$$d\mathbf{W} = \varepsilon \times \mathbf{W},\tag{10}$$

например, $d\mathbf{w} = \varepsilon \times \mathbf{w}$, тогда изменения тангенциальных координат будут:

$$d(\mathbf{W}^T \mathbf{t}) = \mathbf{W}^T d\mathbf{t} + \mathbf{t}^T d\mathbf{W}$$
(11)

и если все расписать:

Проектирование небесной сферы на касательную плоскость-4

$$\begin{bmatrix} d(\mathbf{u}^T \mathbf{t}) \\ d(\mathbf{v}^T \mathbf{t}) \\ d(\mathbf{w}^T \mathbf{t}) \end{bmatrix} =$$

$$\mathbf{z}^T \mathbf{v} \mathbf{w}^T \varepsilon - \mathbf{t}^T \mathbf{u} \left(\mathbf{t}^T \mathbf{u} \mathbf{v}^T \varepsilon - \mathbf{t}^T \mathbf{u} \right)$$

$$\begin{bmatrix} -\mathbf{v}^{T}\varepsilon + \mathbf{t}^{T}\mathbf{v}\mathbf{w}^{T}\varepsilon - \mathbf{t}^{T}\mathbf{u}\left(\mathbf{t}^{T}\mathbf{u}\mathbf{v}^{T}\varepsilon - \mathbf{t}^{T}\mathbf{v}\mathbf{u}^{T}\varepsilon\right)\\ \mathbf{u}^{T}\varepsilon - \mathbf{t}^{T}\mathbf{u}\mathbf{w}^{T}\varepsilon - \mathbf{t}^{T}\mathbf{v}\left(\mathbf{t}^{T}\mathbf{u}\mathbf{v}^{T}\varepsilon - \mathbf{t}^{T}\mathbf{v}\mathbf{u}^{T}\varepsilon\right)\\ 0 \end{bmatrix}.$$
(12)

Первые слагаемые в правой части — смещение начала тангенциальных координат, вторые результат небольшого поворота осей, квадратичные члены связаны с наклоном.

Формулы Тёрнера

Оригинальные выглядят не очень хорошо:

4. The appropriateness of using rectilinear co-ordinates is thus suggested : for the transformation from any rectilinear co-ordinates on one plate to any rectilinear on another takes a simple form. Let $(x, y), (\xi, \eta)$ be any rectilinear co-ordinates of the same point on the two plates ; then the following general relations hold :

$$\boldsymbol{\xi} = \frac{\mathbf{A}x + \mathbf{B}y + \mathbf{C}}{\mathbf{K}x + \mathbf{L}y + \mathbf{M}}, \qquad \boldsymbol{\eta} = \frac{\mathbf{D}x + \mathbf{E}y + \mathbf{F}}{\mathbf{K}x + \mathbf{L}y + \mathbf{M}}.$$

It is readily seen that the denominator must be the same in the two cases, for the equation

 $\lambda \xi + \mu \eta + \nu = 0$

Это дробно-линейное преобразование, вызванное наклоном плоскости фотопластинки к картинной плоскости и переходящее в общепринятый вид при очень малых значениях угла наклона.

$$\begin{aligned} x &= A + B\xi + C\eta \\ y &= D + E\xi + F\eta \end{aligned} \tag{13}$$

Сейчас (13) чаще называют просто аффинным преобразованием, не поминая Тёрнера вообще.

Слагаемые в редукционную формулу

наклон рассмотрен ранее
дисторсия
$$x \cdot (x^2 + y^2)$$

кома $b \cdot x$

Выбор редукционной модели в зависимости от задачи исследования Общие формулы редукции измерений для каждого объекта можно записать следующим образом:

$$\begin{aligned} x &= f(\alpha, \delta, m, CI, c_1, ..., c_n) \\ y &= g(\alpha, \delta, m, CI, c_1, ..., c_n) \\ b &= h(\alpha, \delta, m, CI, c_1, ..., c_n) \end{aligned}$$
 (14)

где

- *x*, *y*, *b* измеренные на пластинке координаты и оценка блеска звезды;
- α, δ, m, CI сферические координаты, звездная величина и показатель цвета звезды;
- c₁, ... c_n постоянные пластинки, набор которых может различаться для разных телескопов.
 Индексы, соответствующие конкретной звезде, опущены.

Выбор редукционной модели в зависимости от задачи исследования. 2

При создании AC2000 применялась редукция в систему опорного каталога с использованием формул Тёрнера (коэффициенты a...f) с поправкой низкого порядка за наклон фотопластинки (коэффициенты p, q):

$$\xi = ax + by + c + ex + fy + px^2 + qxy,$$

$$\eta = ay - bx + d - ey + fx + pxy + qy^2.$$
(15)

Выбор редукционной модели в зависимости от задачи исследования. З При составлении AC SAI применялась дробно-линейная модель ($c_1...c_8$, дающая строгий учет наклона пластинки) с добавлением слагаемых, учитывающих дисторсию объектива (c_9), ошибки координатной сетки ($c_{10}...c_{13}$), а также кому и уравнение блеска ($c_{14}...c_{17}$):

$$f(x, y, b, \xi, \eta, c_1, \dots c_{17}) = \frac{c_1\xi_1 + c_2\eta_1 + c_3}{1 + c_7\xi_1 + c_8\eta_1} + + c_{10}x_1 + c_{11}y_1 + c_{14}bx + c_{15}b$$

$$\eta(x, y, b, \xi, \eta, c_1, \dots c_{17}) = \frac{c_4\xi_1 + c_5\eta_1 + c_6}{1 + c_7\xi_1 + c_8\eta_1} + + c_{12}x_1 + c_{13}y_1 + c_{16}by + c_{17}b$$

$$\xi_1 = \xi + c_9\xi(\xi^2 + \eta^2), \eta_1 = \eta + c_9\eta(\xi^2 + \eta^2) \\ x_1 = \mod(x + 70, p), y_1 = \mod(y + 70, p)$$

(16)

Выбор редукционной модели в зависимости от задачи исследования. 4

- где x, y, b измеренные координаты и оценка блеска;
- ξ, η тангенциальные (идеальные) координаты;
- ξ_1, η_1 идеальные координаты с учетом дисторсии объектива;
 - x_1, y_1 измеренные координаты с учетом "ошибки рена" (периодической ошибки, связанной со впечатанной на фотопластинки сеткой, шаг которой p = 5 мм для большинства обсерваторий).

Исходные и отредуцированные пластинки в каждой широтной зоне исследовались аналогично AC2000 и при необходимости принималось решение об изменении формул редукции для данной зоны.

Пример: погрешности редуцирования пластинок "Карты Неба"

a).

b).

c).

РИС. 1: Остаточные ошибки на сводных пластинках Пертской (вверху) и более качественной Потсдамской зон "Карты неба". а) и с): уклонения осреднены внутри квадратов размером 5 × 5 мм. b) и d): уклонения осреднены внутри квадратов 0.5 × 0.5 мм. Слева (a, b): после этапа редукции с каталогом ACRS. Справа (c, d): после заключительного этапа редукции с каталогом HIPPARCOS.

Два общих подхода к построению названия условные американский с использованием полного полинома максимальной степени от всех параметров русско-немецкий построение редукционного соотношения с минимальным числом параметров на основе использования физических моделей наблюдений (атмосферы, оптической системы, фотоприемника и т.д.)

 в обоих случаях полезно формальное изучение влияния включаемых в модель параметров на остаточную невязку

 для полиномиальных разложений и вообще разложений по полным системам функций следует проверить, насколько эти функции ортогональны друг другу на множестве, определяемом набором измерений Оценка точности редукционных вычислений

общая задача линейного MHK (LLSS)

$$A_{m \times n} \mathbf{x}_m \cong \mathbf{b}_n \tag{17}$$

A — матрица плана, **b** — вектор измерений, **x** — вектор оцениваемых параметров ("параметров пластинки")

$$C = (A^T A)^{-1}, rankA = n \tag{18}$$

ковариационная матрица решения $\sigma^2 C$ ошибку единицы веса обычно вычисляют

$$\sigma^2 = \frac{\|A\hat{\mathbf{x}} - \mathbf{b}\|}{m - n} \tag{19}$$

Статистические критерии для выбора редукционной модели погрешности по полю для фотопластинки Паломарского телескопа Шмидта и кубического (по координатам) редукционного полинома:

Fig. 1. Mean vector residual map using a standard third-degree-order polynomial plate model.

Статистические критерии для выбора редукционной модели-2 остаточные погрешности при редукции координат POSS полиномом 4-й степени (учтена основная деформация фотопластинки, но в качестве «бонуса»появились мелкомасштабные флуктуации в

центре)

Математические задачи МНК МНК с итерационным взвешиванием (IRLS) Iteratively reweighted least squares: Задача минимизации ℓ_p -нормы

$$\arg\min_{\boldsymbol{\beta}} \|\mathbf{y} - \boldsymbol{f}(\boldsymbol{\beta})\|_p = \arg\min_{\boldsymbol{\beta}} \sum_{i=1}^n |y_i - f_i(\boldsymbol{\beta})|^p \quad (20)$$

решается итерациями взвешенного МНК

$$\boldsymbol{\beta}^{(t+1)} = \arg\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} w_i(\boldsymbol{\beta}^{(t)}) |y_i - f_i(\boldsymbol{\beta})|^2 \qquad (21)$$

IRLS используется для получения оценок максимального правдоподобия в обобщенной линейной модели и для устойчивого (робастного) получения *M*-оценок, как способ смягчения влияния выбросов в «почти нормально»распределенном наборе данных. 1 ослабляет влияние выбросов на результат. Математические задачи МНК МНК с итерационным взвешиванием (IRLS)-2 В линейной модели регрессии с нормой ℓ_p , когда $f(\beta) = X\beta$, итерации (21) приобретают вид:

$$\boldsymbol{\beta}^{(t+1)} = \arg\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} w_i(\boldsymbol{\beta}^{(t)}) |y_i - X_i \boldsymbol{\beta}|^2 =$$

= $\left(X^T W^{(t)} X \right)^{-1} X^T W^{(t)} \mathbf{y}$ (22)

Где **диагональная** матрица весов вначале полагается единичной, а на каждой итерации пересчитывается:

$$w_i^{(t)} = \left| y_i - X_i \boldsymbol{\beta}^{(t)} \right|^{p-2}$$
 (23)

В случае использования метода наименьших модулей (p = 1) придется в (23) вводить регуляризацию. Проще и эффективнее решать задачу методами линейного программирования.

Математические задачи МНК-2 обобщенные наименьшие квадраты (GLS)

Generalized Least Squares (Эйткен, 1935): Известно, что симметрическую положительно определенную матрицу можно разложить как $W = P^T P$, где P — некоторая невырожденная квадратная матрица. Тогда обобщённая сумма квадратов может быть представлена как сумма квадратов преобразованных (с помощью P) остатков $(Pe)^T Pe$. Для линейной регрессии $y = Xb + \varepsilon$ это означает, что минимизируется величина:

$$[P(y - Xb)]^{T}[P(y - Xb)] = = (Py - PXb)^{T}(Py - PXb) = = (y^{*} - X^{*}b)^{T}(y^{*} - X^{*}b),$$
(24)

Математические задачи МНК-2 обобщенные наименьшие квадраты -2

где $y^* = Py$, $X^* = PX$, то есть фактически суть обобщённого МНК сводится к линейному преобразованию данных и применению к этим данным обычного МНК. Если в качестве весовой матрицы W используется обратная ковариационная матрица V то оценки ОМНК являются наиболее эффективными в классе линейных несмещенных оценок:

$$\hat{b}_{GLS} = (X^T V^{-1} X)^{-1} X^T V^{-1} y \tag{25}$$

Ковариационная матрица этих оценок равна: $V(\hat{b}_{GLS}) = (X^T V^{-1} X)^{-1}$

Выбор редукционной модели в зависимости от задачи исследования. 5

 при увеличении числа параметров модели остаточная погрешность всегда уменьшается (за исключением клинических случаев)

- 2 следует проверять значимость такого уменьшения (предположив для остаточной погрешности распределение, например, χ^2 с соответствующим числом степеней свободы)
- новые параметрические зависимости в модель редукции лучше выбирать «по-ортогональнее» (и корреляции все равно потом следует проверять)

Выбор редукционной модели в зависимости от задачи исследования. 6

чем больше параметров, тем ... (см. п.1), и тем менее надежно определяются величины параметров

(процесс усложнения модели имеет естественный предел, почувствовать его можно, зная реальную точность данных и см. п.2)

- использование вычисленных параметров для
 определения характеристик других объектов на изображении приведет к тому, что случайная
 погрешность параметров модели станет
 систематической ошибкой в координатах
 объектов
- б физичные модели низкого порядка надежнее формальных моделей высокого порядка (а иногда и точнее)

Литература по курсу

- Eichhorn H., Williams C. A., 1963, AJ, 68, 221. doi:10.1086/108943
- 2 Debehogne H., 1970, A&A,8, 189
- 3 Лоусон Ч., Хенсон Р., Численное решение задач метода наименьших квадратов, М.: Наука, 1986, 232 с.
- Isobe, T., Feigelson, E.D., Akritas, M.G. & Babu, G.J., *Linear regression in astronomy.*, ApJ, 1990, 364, pp. 104–113
- Kopeikin, Sergei M. and Makarov, Valeri V., 2008, Phys. Rev. D, 75, pp. 062002–062024

- Формулы Тернера. 1
- $\mathbf{2}$ Особенности применения для редукции «полного полинома» высокой степени.
- Варианты линейной регрессии при разном 3 соотношении ошибок
 - Анализ кода или поясняющих статей:

ESO Google IAP

4

4.1

- http://www.eso.org/sci/software/esomidas/ http://astrometry.net http://www.astromatic.net/about
- Редукционные формулы 4.2
 - Взвешивание условных уравнений или отбраковка выбросов

спасибо за внимание