Углубленный курс атомной физики

О.В. Тихонова

Содержание:

Лекция 1 Корпускулярно-волновой дуализм. Корпускулярные свойства излучения.

Система единиц СГС

Атомные масштабы

Равновесное электромагнитное излучение. Формула Планка. Закон смещения Вина.

Эффект Комптона. Рассеяние мягких квантов на релятивистских электронах.

Лекция 2 Корпускулярно-волновой дуализм. Волновые свойства частиц.

Гипотеза де Бройля. Дисперсионное соотношение для частицы с конечной массой покоя.

Волновой пакет, составленный из волн де Бройля, его расплывание.

Соотношение неопределенностей Гейзенберга «координата-импульс».

Дифракция электронных пучков на щелях. Дифракция пучков частиц на кристаллах.

Лекция 3 Атом водорода в модели Бора

Постулаты Бора. Квантование момента импульса, радиусов орбит, скорости и энергии электрона для круговых орбит.

Спектральные серии.

Релятивистское обобщение модели Бора.

Квантование Бора-Зоммерфельда для эллиптических орбит.

Соотношение неопределенностей Гейзенберга «энергия-время». Механизмы уширения спектральных линий.

Лекция 4 Собственные функции и собственные значения операторов физических величин

Формализм квантового описания.

Собственные функции и собственные значения операторов физических величин.

Коммутаторы операторов физических величин.

Стационарные состояния и квантование энергии свободного жесткого ротатора на плоскости.

Состояние свободной частицы в виде гауссова волнового пакета. Дисперсия координаты и импульса.

Лекция 5 Стационарные состояния в одномерных потенциальных ямах

Стационарные состояния в одномерной бесконечно глубокой симметричной потенциальной яме: волновые функции и плотность вероятности значений координаты аналитически и на графике, распределение по импульсам для частицы в основном состоянии

Стационарные состояния в одномерной симметричной потенциальной яме конечной глубины

Лекция 6 Потенциальная ступенька и барьер конечной ширины

Плотность потока вероятности

Нормировка плоской волны

Волновые функции стационарных состояний для потенциальной ступеньки при энергии ниже ступеньки. Ненулевая вероятность обнаружить частицу в классически запрещенной зоне, коэффициент отражения

Волновые функции стационарных состояний для потенциальной ступеньки при энергии выше ступеньки. Коэффициенты отражения и прохождения. Плотность вероятности распределения по координате.

Туннельный эффект. Прохождение частицы через барьер конечной ширины.

Прохождение частицы над барьером конечной ширины (Энергия больше высоты барьера).

Резонансы прозрачности при надбарьерном прохождении.

Коэффициент прохождения в случае туннелирования через плавный барьер произвольной формы

Лекция 7 Примеры проявления туннельного эффекта

Сканирующий туннельный микроскоп

Автоэлектронная эмиссия

Туннельная ионизация атомов постоянным электрическим полем

Туннельная ионизация лазерным электромагнитным полем

Альфа распад: сильное различие периодов полураспада ядер для разных энергий альфа-частицы Зонная структура твердых тел

Лекция 8 Временная динамика квантовых систем

Общее решение, описывающее динамику квантовой частицы

Динамика стационарного состояния в одномерной бесконечно глубокой потенциальной яме Динамика нестационарных состояний в одномерной бесконечно глубокой потенциальной яме: зависимость плотности вероятности распределения по координате, средней координаты и дисперсии координаты от времени

Свободный жесткий ротатор на плоскости: стационарные и нестационарные состояния Динамика плотности вероятности и изменение углового распределения свободного жесткого ротатора в зависимости от времени

Динамика свободной частицы: суперпозиция нескольких плоских волн; гауссов волновой пакет и его динамика во времени

Сопоставление динамики квантовой и классической частицы: теорема Эренфеста и условия, при которых динамика квантовой частицы близка к классической. Примеры: свободная частица, частица в одномерном гармоническом осцилляторе, влияние ангармонизма, случай сильного ангармонизма

Лекция 9 Одномерный гармонический осциллятор (координатное представление)

Волновые функции и энергии стационарных состояний частицы в одномерном гармоническом осцилляторе. Дисперсии координаты и импульса в стационарных состояниях. Суперпозиция двух стационарных состояний:

- анализ в рамках теоремы Эренфеста: динамика средних значений координаты и импульса
- анализ динамики в рамках нестационарного уравнения Шредингера: эволюция волновой функции, плотности вероятности и дисперсии координаты

Лекция 10 Когерентное и сжатое состояние гармонического осциллятора

Когерентное состояние частицы в гармоническом осцилляторе. Способы задания и распределение по Фоковским состояниям. Динамика когерентного состояния во времени.

Сравнение когерентного состояния и вакуумного на графике зависимости наиболее вероятных значений координаты от времени и в динамике на фазовой плоскости.

Состояние сжатого вакуума. Начальное состояние и распределение по Фоковским состояниям. Дисперсия числа фотонов и среднее число фотонов в состоянии сжатого вакуума. Временная динамика состояния сжатого вакуума и дисперсии координаты частицы. Зависимость наиболее вероятных значений координаты в состоянии сжатого вакуума от времени и динамика состояния на фазовой плоскости

Лекция 11 Представление Гейзенберга

Формализм представления Гейзенберга.

Динамика свободной частицы в одномерном случае в представлении Гейзенберга. Решение для операторов. Зависимость от времени средних значений и дисперсий координаты и импульса для гауссова волнового пакета.

Движение частицы в постоянном поле в представлении Гейзенберга. Решение для операторов. Зависимость от времени средних значений и дисперсий координаты и импульса частицы для гауссова волнового пакета.

Динамика частицы в потенциале гармонического осциллятора в представлении Гейзенберга. Эволюция операторов координаты и импульса в представлении Гейзенберга. Зависимость от времени средних значений и дисперсий координаты и импульса частицы в когерентном и сжатом состояниях осциллятора с использованием представления Гейзенберга.

Лекция 12 Гармонический осциллятор в представлении бозонных операторов.

Альтернативная запись гамильтониана осциллятора и введение бозонных операторов рождения/уничтожения возбуждений . Поиск основного состояния осциллятора с использованием оператора уничтожения. Оператор числа возбуждений. Лестничные соотношения для стационарных состояний в гармоническом осцилляторе. Действие операторов рождения/уничтожения на стационарные состояния. Когерентное состояние как собственное состояние оператора уничтожения. Расчет матричных элементов координаты в формализме бозонных операторов. Эволюция во времени бозонных операторов рождения/уничтожения в представлении Гейзенберга. Вычисление среднего значения и дисперсии координаты от времени для начального когерентного состояния гармонического осциллятора в представлении Гейзенберга в формализме бозонных операторов.

Лекция 13 Стационарные состояния в 2D и 3D системах.

Свободная частица в 2D случае

Бесконечно глубокая 2D потенциальная яма

Гармонический осциллятор в 2D и 3D случаях

Собственные функции оператора квадрата орбитального момента \hat{L}^2 и его z-проекции \hat{L}_z Свободный жесткий ротатор в 3D случае: стационарные состояния и их энергии Динамика свободного жесткого ротатора в 3D случае Свободная частица в 3D случае

Лекция 14 Атом водорода. Задача Кеплера.

Стационарное уравнение Шредингера для атома водорода в 3D случае Разделение переменных.

Угловая часть волновых функций стационарных состояний для электрона в водородоподобном ионе и угловые распределения

Радиальная часть волновых функций стационарных состояний для электрона в водородоподобном ионе. Энергии стационарных состояний.

Свойства радиальных функций и плотность вероятности радиального распределения электрона Наиболее вероятное и среднее удаление электрона от ядра

Лекция 15 Спин электрона.

Эффекты, которые не объяснялись без введения спина: дублетная структура ряда спектральных линий атома водорода, результаты опыта Штерна-Герлаха

Описание спина как собственного момента импульса электрона

Возможные значения z-проекции спина электрона, собственные функции оператора S_z .

Оператор спина электрона в представлении матриц Паули

Оператор квадрата спинового момента электрона \hat{S}^2 , его собственные функции и собственные значения

Собственные функции и собственные значения оператора \hat{S}_x .

Возможные значения x и z-проекций спина электрона S_x и S_z в произвольном спиновом состоянии

Правило сложения моментов в квантовом случае. Суммарный момент импульса электрона \vec{J} Базис состояний с конкретными значениями z-проекций орбитального и спинового моментов электрона и базис состояний с точно-определенным значением полного момента электрона $|\vec{J}|$

Физические причины возникновения *l-s* взаимодействия

Лекция 16 Стационарная теория возмущений.

Поправки к энергиям и волновым функциям стационарных состояний при наличии возмущения: первый и второй порядки теории возмущений для невырожденных уровней.

Лекция 17 (15 декабря 2023) Тонкая структура спектра водородоподобных ионов

Поправки к энергии стационарных состояний водородоподобных ионов, обусловленные l-s взаимодействием.

Поправки к энергии стационарных состояний водородоподобных ионов, обусловленные учетом релятивистских слагаемых в операторе кинетической энергии.

Формула Дирака и спектр уровней энергии водородоподобных ионов с учетом тонкой структуры. Тонкое расщепление спектральных линий.

Лекция 18 Сверхтонкая структура спектра атома водорода

Физические причины возникновения сверхтонкой структуры

Сверхтонкая структура для s-состояний в атоме водорода.

Сверхтонкое расщепление основного состояния, соответствующее длине волны 21.1 см (запрещенный переход)

Соотнесение теоретической и экспериментально измеренной величины. Аномальный магнитный момент электрона.

Сверхтонкая структура для состояний с ненулевым орбитальным моментом в атоме водорода. Общая схема сверхтонкого расщепления.

Лекция 19 Спектр уровней энергий щелочных металлов

Атом щелочного металла в одноэлектронном приближении, основные эффекты, влияющие на потенциальную энергию электрона, экранирование и поляризационный потенциал.

Модель сферически-симметричного потенциала в атоме щелочного металла с учетом поляризационной добавки.

Стационарные состояния и уровни энергий. Квантовый дефект. Кратность вырождения.

Сравнение с атомом водорода.

Схема уровней энергии лития с учетом тонкой структуры.

Спектральные серии щелочных металлов.

Лекция 20 Многоэлектронные атомы. Общие принципы описания.

Принцип тождественности.

Оператор перестановки тождественных частиц.

Бозоны и фермионы. Связь спина со статистикой.

Теория возмущений как один из методов анализа стационарных состояний многоэлектронных систем.

Гамильтониан многоэлектронного атома, L-S и j-j связь.

Не-подобный ион как простейшая многоэлектронная система. Структура волновой функции двух электронов в приближении L-S связи.

Основное состояние атома Не в рамках теории возмущений.

Неприменимость теории возмущений для описания основного состояния отрицательного иона водорода H^- .

Возбужденные состояния атома Не и Не-подобных ионов. Кулоновский и обменный интегралы. Синглетные и триплетные состояния. Спектр энергий.

Пространственная волновая функция двух электронов в приближении L-S связи. Коэффициенты векторного сложения Клебша-Гордана.

Лекция 21 Термы и основные состояния атомов элементов таблицы Менделеева

Электронная конфигурация. Атомные оболочки и подоболочки, их заполнение для невозбужденных атомов, правило Маделунга-Клечковского.

Нахождение основного терма и основного состояния для различных атомов, правила Хунда. Термы для двух эквивалентных электронов.

Лекция 22 Иерархия взаимодействий в многоэлектронном атоме. Тонкая и сверхтонкая структура спектра.

Иерархия взаимодействий в многоэлектронном атоме: конфигурация, терм, состояние. L-S и j-j связь.

Учет взаимодействия электронов друг с другом.

Учет *L-S* взаимодействия. Правило интервалов Ланде.

Схема тонкого расщепления уровней энергий стационарных состояний. Нормальный и обращенный мультиплеты.

Учет сверхтонкого взаимодействия. Схема сверхтонкого расщепления уровней энергий стационарных состояний

Конкретный пример для возбужденного Не-подобного иона.

Лекция 23 Приближение самосогласованного поля и вариационный метод

Получение уравнений самосогласованного поля выбором гамильтониана нулевого приближения с учетом взаимодействия каждого электрона с эффективной плотностью заряда, созданной всеми остальными электронами (уравнения Хартри). Волновая функция и энергия двухэлектронного состояния. Что учитывает, а что не учитывает приближение самосогласованного поля? Общая идея вариационного метода. Пример анализа основного состояния Не-подобного иона вариационным методом.

Вывод уравнений самосогласованного поля вариационным методом.

Выход за рамки факторизованного произведения одночастичных волновых функций.

Лекция 24 Матрица плотности

Существование состояний, которые не описываются волновой функцией

Матричное представление операторов

Представление матрицы в некотором базисе состояний

Среднее значение физической величины, характеризуемой оператором в матричном виде.

Чистые состояния. Матрица плотности чистого состояния и ее свойства.

Смешанные состояния. Матрица плотности смешанного состояния и ее свойства.

Критерий чистоты состояния.

Зачем нужно описание в терминах матрицы плотности в случае чистого состояния?

Матрица плотности в координатном представлении. Координатная плотность вероятности.

Перепутанность двухчастичного состояния.

Лекция 25 Атом в переменном электромагнитном поле

Гамильтониан взаимодействия одноэлектронного атома с электромагнитным полем.

Дипольное приближение. pA и dE калибровки.

Нестационарная теория возмущений. Вероятность перехода в единицу времени под действием поля. Золотое правило Ферми.

Вероятность перехода в единицу времени с учетом плотности конечных состояний.

Вероятность перехода в единицу времени с учетом ненулевой спектральной ширины излучения.

Коэффициент Эйнштейна для вынужденного поглощения и испускания.

Спонтанные и вынужденные переходы.

Коэффициент Эйнштейна для спонтанного испускания.

Лекция 26 Правила отбора

Матричный элемент дипольного момента.

Правила отбора для одноэлектронных водородоподобных систем.

Схема разрешенных в дипольном приближении переходов в атоме водорода.

Переходы, составляющие спектральные серии Лаймана и Бальмера.

Характерная величина скорости перехода, разрешенного в дипольном приближении. Характерное время жизни на уровне.

Скорость перехода и время жизни в состоянии 2р в атоме водорода.

Правила отбора для многоэлектронных систем.

Лекция 27 Запрещенные переходы

Взаимодействие атома с электромагнитной волной за рамками дипольного приближения.

Мультипольное разложение взаимодействия.

Электрические квадрупольные переходы. Правила отбора. Характерные времена жизни.

Магнито-дипольные переходы. Правила отбора. Характерные времена жизни.

Примеры электрических квадрупольных и магнито-дипольных переходов: небулярные и корональные переходы.

Запрещенный переход 2S-1S в атоме водорода.

Переходы между компонентами сверхтонкой структуры в атоме водорода.

Высокоточные «атомные часы» на основе сильно запрещенных переходов между компонентами сверхтонкой структуры в атомах.

Переходы между высоковозбужденными ридберговскими состояниями.

Лекция 28 Осцилляции Раби

Уравнения для амплитуд вероятностей двухуровневой системы в поле электромагнитной волны в дипольном приближении.

Решение задачи в случае точного резонанса и фиксированной амплитуды волны.

Осцилляции населенностей атомных уровней. Частота Раби.

Решение задачи в случае произвольной временной огибающей электромагнитного поля.

 $\pi/2$ и π –импульсы. Зависимость населенностей атомных уровней от времени.

Лекция 29 Атом в магнитном поле

Гамильтониан атома в магнитном поле. Иерархия взаимодействий, слабое и сильное магнитное поле. Оценка на величину критического магнитного поля.

Взаимодействие атома со слабым магнитным полем. Эффективный магнитный момент. Фактор Ланде. Расщепление энергетических уровней и спектральных линий в слабом магнитном поле.

Аномальный и нормальный эффект Зеемана. Картина уровней и разрешенных переходов.

Взаимодействие атома с сильным магнитным полем. Расщепление энергетических уровней и спектральных линий в сильном магнитном поле Эффект Пашена-Бака. Картина уровней и разрешенных переходов.

Опыт Штерна-Герлаха. Расщепление пучка атомов в опыте Штерна-Герлаха в слабом и сильном магнитном поле. Примеры.

Расщепление атомных пучков в скрещенных приборах Штерна-Герлаха.

Электронный парамагнитный резонанс.

Лекция 30 Эффект Штарка в атоме водорода

Физический смысл эффекта Штарка.

Эффект Штарка для невырожденных состояний в атомных системах со сферически-симметричным потенциалом.

Эффект Штарка для вырожденных состояний 2s и 2p в атоме водорода.

Иерархия взаимодействий в атоме водорода. Линейный и квадратичный эффект Штарка для вырожденных уровней в атоме водорода.

Лекция 31 Квантовое электромагнитное поле

Квантование свободного электромагнитного поля, электромагнитное поле как совокупность квантовых полевых осцилляторов.

Квантовое электромагнитное поле в одной отдельной моде, вакуумное состояние квантового поля, его свойства.

Когерентное состояние квантового поля.

Поле в состоянии сжатого вакуума.

Лекция 32 Взаимодействие атома с квантовым электромагнитным полем

Нестационарное уравнение Шредингера для взаимодействующей атомно-полевой системы.

Решение в рамках нестационарной теории возмущений.

Вероятность спонтанного перехода и время жизни состояний.

Вакуумные осцилляции Раби.

Лэмбовский сдвиг уровней в атоме водорода: опыт Лэмба и Ризерфорда.

Лэмбовский сдвиг уровней в атоме водорода: физические причины и теоретические оценки.

Эксперименты Хэнша по определению Лэмбовского сдвига основного состояния атома водорода.

Лекция 33 Разделение электронных и ядерных степеней свободы в молекулах

Гамильтониан молекулярного иона водорода. Отделение степеней свободы движения молекулярного иона как целого.

Разделение электронных и ядерных степеней свободы. Адиабатическое приближение (приближение Борна-Оппенгеймера).

Уравнение для ядерной подсистемы молекулы в адиабатическом приближении. Эффективный потенциал для ядер. Электронный терм молекулы.

Применимость адиабатического приближения. Оценка неадиабатических слагаемых.

Оценка характерных значений электронной энергии, вращательной и колебательной энергии ядер. Параметр малости адиабатического приближения.

Решение электронной задачи для молекулярного иона и для молекулы водорода.

Требования к электронной функции для реализации минимума энергии.

Лекция 34 Электронные и ядерные состояния двухатомной молекулы

Спаривание электронов в молекуле водорода как условие минимума энергии состояния. Типы электронной связи в молекуле.

Систематика электронных состояний. Электронный терм молекулы.

Молекулы метана и аммиака. Понятие гибридизации.

Стационарные состояния ядерной подсистемы. Разделение вращательных и колебательных степеней свободы. Волновые функции и энергии стационарных состояний ядерной подсистемы. Электромагнитные переходы в молекулах. Правила отбора и их отличие для гомоядерных и гетероядерных молекул. Фактор Франка-Кондона.

Лекция 35 Эффекты резонансного туннелирования

Резонансы прозрачности для потенциального барьера конечной ширины.

Коэффициент прохождения потенциального барьера в виде одной и двух дельта-функций.

Резонансное туннелирование и его связь с квазистационарными состояниями.

Резонансное туннелирование через N барьеров.

Периодический потенциал как предел N барьеров при N>>1. Запрещенные и разрешенные энергии. Зонная структура.