

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

Факультет «Машиностроительные технологии» Кафедра «Электронные технологии в машиностроении»

НОЦ «ФМНС»

Малеванная Елизавета Ильинична

Исследование и разработка систем экранирования в технологическом оборудовании для измерения параметров сверхпроводниковых структур

Сверхпроводниковые структуры в качестве вычислителей

Области применения вычислителей на основе сверхпроводниковых структур

Квантовая криптография и кибербезопасность

Симуляция работы квантовых систем и биологических процессов

Поиск новых лекарств

и химических

соединений

Обработка больших объемов данных

Искусственный

IBM, Rigetti, D-Wave – компании, предоставляющие доступ к своим сверхпроводниковым процессорам через облако

D-Wave 2000Q

IBM Q System One

Процессор Sycamore от Google – демонстрация квантового превосходства на сверхпроводниковой платформе

F. Arute [et al.], Nature, 574, 505-510, 2019

Актуальность

Глава 1

Глава 2

Глава 3

Глава 4

Заключение

Сверхпроводниковые вычислители и их инфраструктура

Источники декогеренции сверхпроводниковых структур

Квазичастицы в сверхпроводнике

Причины возникновения квазичастиц

- **•** Инфракрасное (ИК) излучение (5-60 пВт)
- ✤ γ-излучение (0,02 пВт)
- 💠 β-частицы (фоновая радиация) (~0,02 пВт)
- Электромагнитное излучение оборудования
- ✤ Управляющие сигналы

Способы уменьшения плотности квазичастиц в сверхпроводниковых структурах

Научные группы в области сверхпроводниковых технологий

Северная Америка

Европа и Азия

*	University of Waterloo	D-Wave Systems Inc.			
	MIT IBM	NIST Caltech			
	UC Berkeley	Yale University			
	UC Santa Barbara	Rigetti Computing			
	Google AI Quantum	Princeton University			
	Washington University	University of Maryland			
	University of Wisconsin-Madison				

Существующие проблемы

- Отсутствие систем экранирования с измеренной эффективностью
- Отсутствие рекомендаций по экранированию сверхпроводниковых структур
- Отсутствие методики для оценки эффективности систем экранирования

Глава 3

6

Цель

Научно обоснованный выбор материалов и конфигурации систем экранирования сверхпроводниковых структур и разработка методики оценки эффективности таких систем.

Задачи

Глава 2

Научная новизна

- 1. На основе теории теплопередачи излучением и законов магнитостатики определены зависимости между конструктивными элементами систем экранирования и эффективностью подавления внешнего ИК излучения и магнитного поля.
- 2. С помощью установленных зависимостей определены и обоснованы требования к конструкции и конфигурации систем экранирования, что позволяет проектировать систему экранов в технологическом оборудовании для измерения параметров сверхпроводниковых структур.
- Научно обосновано применение способа количественной оценки эффективности систем экранирования, где в качестве критериев используется три параметра, измеряемых в сверхпроводниковой структуре, чувствительной к зарядовым шумам: время жизни зарядовой четности, нормализованная плотность квазичастиц и эффективная температура сверхпроводниковой структуры.

Практическая значимость

- 1. Сформулированы рекомендации по проектированию систем экранирования в технологическом оборудовании для измерения параметров сверхпроводниковых структур.
- 2. Спроектирован и изготовлен опытный образец системы экранирования, состоящий из держателя с поглощающим покрытием, внутреннего сверхпроводящего экрана с герметичной крышкой и отверстиями под ввод СВЧ кабелей и внешнего мю-металлического экрана, обеспечивающий время жизни зарядовой четности и нормализованную плотность квазичастиц лучше на 2,5 порядка и эффективную температуру сверхпроводниковой структуры ниже на ~15% по сравнению с неэкранированным образцом.
- 3. Разработана методика оценки эффективности систем экранирования, основанная измерении переключений зарядовой четности, позволяющая определить комплексное влияние системы экранирования на сверхпроводниковую структуру.

Защита сверхпроводниковых структур от внешних воздействий

Схема многоступенчатого экранирования

Отсутствие критериев оценки эффективности систем экранирования

Система экранов в криостате

Актуальность

Глава 1

Глава 2

Глава 3

Системы экранирования ведущих научных групп

Анализ материалов для защиты от ИК излучения

Система ИК экранирования

Требования к свойствам поверхностей

- Излучающие поверхности с минимальным коэффициентом поглощения
- Внешняя поверхность экранов с минимальным коэффициентом поглощения
- ✤ Поглощающее покрытие неметаллическое, но с хорошей теплопроводностью (от 1 до 3 Вт/(м·К))
- ✤ Поглощающее покрытие оптически шероховатое для диапазона длин волн от 1·10⁻³ м и ниже
- Температура поглощающего покрытия должна быть ниже, чем у сверхпроводниковой структуры

Смолы и покрытия

- Stycast 2850 FT
- ***** Eccosorb CR-series (110, 124)
- Marconi LAO 5
- Herberts 1356H
- Thomas Keating Ltd. (TK RAM)

Дополнительные частицы на поверхности

- **SiC** (размером от 0,5 и 1 мм)
- * Уголь (мелкодисперсный, 0,15 мм)
- * Графитовая пыль

Определение коэффициента поглощения покрытий

Измерение среднего значения

Измерительный стенд

Вычисление коэффициента поглощения покрытий

$$A_{\text{pean}} = \frac{A_{\text{уст}} (T_{\text{изм}}^4 - T_{\text{окр}}^4)}{T_{\text{терм}}^4 - T_{\text{окp}}^4}$$

$$A_{\text{уст}} - \text{установленный}$$
коэффициент поглощения
$$T_{\text{изм}} - \text{температура на тепловизоре}$$

$$T_{\text{перм}} - \text{температура с термопары}$$

$$T_{\text{окр}} - \text{температура окружающей}$$
среды

Результаты измерений пяти лучших покрытий

№ п/п	Покрытие	Коэффициент поглощения	Фото поверхности	Изображение с тепловизора
1	Stycast → SiC 0,5 мм → Stycast → уголь активированный	0,952±0,026		
2	Stycast \rightarrow SiC 1 мм \rightarrow Stycast \rightarrow уголь активированный	0,948±0,026		
3	Stycast	0,943±0,026		
4	Stycast → уголь активированный	0,940±0,026		
5	Stycast \rightarrow SiC 1 мм \rightarrow Stycast \rightarrow SiC 0,5 мм \rightarrow Stycast \rightarrow уголь активированный	0,931±0,025		

Актуальность

Глава 1

Глава 2

Глава 3

Расчет и моделирование потока теплового излучения

Численное моделирование методом конечных элементов

Осесимметричная модель

Глава 4

14

Расчет и моделирование потока теплового излучения

Температура образца при внешнем источнике

Исполнение крышки держателя

Рекомендации по ИК экранированию

- Внутренняя поверхность держателя определяет эффективность охлаждения чипа, поэтому должна быть поглощающей.
- Зазоры между крышкой держателя и дном не должны превышать 0,1 мм.
- Наиболее простое, но эффективное экранирование, Д1ЧК0.

Актуальность

0.5

100

60

20

0

Глава 1

2

1.5

Время, с

2,5

x10⁵

Глава 2

Принципы экранирования от ЭМ поля

		Элек	тромагнитное (ЭМ) поле	•		
		Магнитное поле	Элек	ктрическое поле		
	DC (+HЧ до 1 кГц)		AC		DC	
Требования	Металлы с большой µ _г	1. 2. 3.	Сверхпроводники Металлы с малой б Экраны с РПМ	 Хо Тп На от, 	ороший проводник цательное заземление дежное соединение дельных частей экрана	
Материалы	Мю-металл (криоперм)	1. 2. 3.	Алюминий Медь / мю-металл Порошковые РПМ на меди	Медь		
Применение	ЭкранИндивидуальный экран	1. 2. 3.	Держатель или экран Держатель/индивид. экран Дополнительный экран	* Де * Ос	ржатель снова ИК экрана	
Актуальн	ость Глава 1	Глава 2	Глава 3	Глава 4	Заключение	16

Моделирование распределения индукции магнитного поля

Моделирование распределения индукции магнитного поля

Рекомендации по экранированию от магнитного поля

 Самый просто крышкой и от Отверстия под 	й вариант двухслойно верстиями под ввод С ц ввод кабелей необхо	ого экранирования: цилинд ВЧ кабелей – внутри. димо делать в виде волног	дрический мю-металличе вода длиной не менее 10	еский экран снаружи, алк мм.	миниевый экран с закрытой	Í
Актуальность	Глава 1	Глава 2	Глава 3	Глава 4	Заключение	18

Положение, выносимое на защиту

1. Установленные в результате моделирования зависимости позволяют количественно определить влияние конструктивных элементов систем экранирования на эффективность подавления внешнего ИК излучения и магнитного поля.

Системы экранирования для тестирования

Положение, выносимое на защиту

 Сформулированные рекомендации по проектированию систем экранирования сверхпроводниковых структур позволяют разработать систему экранирования с улучшенной эффективностью в технологическом оборудовании для измерения параметров сверхпроводниковых структур.

Оценка эффективности экранирования детекторами

Оценка эффективности экранирования детекторами

Требования к детектору

- Условия работы, приближенные к условиям работы сверхпроводниковых структур (0,01 К)
- Чувствительность к различным внешним воздействиям (ИК излучение, электрическое и магнитное поле)

Вариант реализации детектора

Использование детекторов ИК излучения, магнитного и электрического одновременно

Проблемы реализации

 Комбинирование устройств на одной подложке

Снижение точности

 Взаимное влияние Решение

Использование детектора на основе сверхпроводниковой структуры (кубит-детектор)

Актуальность

Глава 2

Глава 3

Анализ детекторов на основе сверхпроводниковой структуры

Критерий сравнения	Время релаксации	Штарковский сдвиг	Зарядовая четность
Разрешающая способность	Низкая (всего 1,8% для двух разных систем: с экраном и без)	Средняя (эксперименты опираются на расчетные значения из таблиц)	Высокая (можно наблюдать за отдельными случаями туннелирования квазичастиц)
Скорость измерений	Низкая (необходимо большое количество измерений для накопления статистики)	Низкая (требуется большой объем измерений для широкого диапазона излучения)	Высокая (при условии реализации «single shot» измерений)
Дополнительное оборудование и/или устройства	Калиброванный источник излучения	Широкодиапазонный источник излучения	Параметрический усилитель
Дополнительные расчеты и эксперименты	Облучение кубита калиброванным источником излучения для вычисления вклада других источников в скорость релаксации кубита	Расчет справочных таблиц на основе моделирования работы кубита	Не требуются
Особые требования к интегральной схеме	- Е _Ј /Е _С ~ 50 - Как можно большее число кубитов на чипе	Не предъявляются	E _J /E _C ~ 20
Конструктивные сложности при реализации измерений	Требуется подъемный механизм для экранов	Требуется установка источника излучений	Отсутствуют

Актуальность

Глава 2

Глава 3

24

Алгоритм оценки эффективности экранирования

Характеризация кубита-детектора

- Определение средней частоты кубита f_{01cped}
- Нахождение времени релаксации *T₁*
- Определение времени когерентности T_2

Измерение переключений зарядовой четности

- Проведение интерферометрии Рамзи, определение $\delta f_{01}(n_g)$
- Измерение переключений зарядовой четности
- Определение времени жизни зарядовой четности *T_P*

Расчет критериев оценки экранов и их сравнение

- Расчет нормализованной плотности квазичастиц в сверхпроводнике *x_{ap}*
- Нахождение эффективной температуры кубита T_{eff}
- Сравнение экранов по трем параметрам: T_{P}, x_{qp}, T_{eff}

Расчет электрических параметров кубита-детектора

Расчет электрических параметров кубита

Глава 4

Данные из литературы

Заключение

26

Расчет размеров элементов топологии кубита-детектора

Маршрут изготовления кубита-детектора в НОЦ «ФМНС» 🛛 🗧

Подготовка кремниевой пластины (SSP, *R* > 10³ Ом·см, толщина 525 мкм) к нанесению алюминиевой пленки Нанесение на подложку алюминиевой пленки 100 нм методом ЭЛИ Формирование земли, питающей линии, резонаторов и островов кубитов посредством лазерной литографии

Формирование джозефсоновских переходов посредством электронной литографии Изготовление бандажей с помощью электронной литографии

Экспериментальный стенд для тестирования экранов

Глава 1

Актуальность

Глава 3

Характеризация кубита-детектора

Измерение переключений зарядовой четности

Зависимость Тр от температуры нижней ступени криостата

Результаты измерений кубита-детектора без экранирования

№ п/п	Параметр	Значение
1	Время жизни зарядовой четности <i>T_P</i> , мкс	195±21
2	Нормализованная плотность квазичастиц x_{qp}	1,23.10-7
3	Эффективная температура кубита $T_{e\!f\!f},{f K}$	0,124

Заключение

Глава 4

31

Экспериментальная оценка эффективности систем экранирования

Положение, выносимое на защиту

3. Разработанная методика оценки эффективности систем экранирования, основанная на измерении переключений зарядовой четности, позволяет комплексно определить степень защиты от внешнего ИК излучения и магнитного поля с помощью систем экранирования: оценить изменение количества квазичастиц и частоты их туннелирования, а также величину эффективной температуры сверхпроводниковой структуры.

Дополнительные возможности применения методики

Основные результаты и выводы по работе

- На основании литературного обзора установлено, что для защиты сверхпроводниковых структур от внешних воздействий (электромагнитных полей и ИК излучения) используют многоступенчатые системы экранирования, которые различны по конфигурациям, конструктивному исполнению и применяемым материалам, при этом отсутствует расчетно-теоретическое обоснование по выбору материалов для экранов и их конструктивному исполнению, что не позволяет однозначным образом выбрать наиболее эффективную систему экранирования для заданного применения.
- Для оценки эффективности экранирования рекомендуется использовать свойства самих сверхпроводниковых структур, специально настроенных для восприятия внешних возмущений, поскольку потенциально они окажутся более точными в качестве детектора и более удобными с точки зрения проектирования, изготовления и эксплуатации, чем набор детекторов ИК излучения, электрической и магнитной составляющих поля
- 3. На основе теории теплопередачи излучением и с помощью уравнений магнитостатики установлены зависимости, позволяющие численно определить влияние конструктивного исполнения систем экранирования на эффективность защиты сверхпроводниковых структур от внешнего ИК излучения и магнитного поля Земли и разработать следующие рекомендации по проектированию систем экранирования:
 - наиболее значимой с точки зрения более эффективного охлаждения образца является самая близкая к нему поверхность крышка держателя образца, поэтому для достижения более низкой температуры образца вплоть до 25% рекомендуется эту поверхность делать поглощающей;
 - как для более эффективного охлаждения образца, так и для защиты от внешних источников излучения экранирования за счет держателя достаточно, поскольку дополнительные экраны вокруг держателя не повышают эффективность, т.е. являются избыточными;
 - крышку держателя следует изготавливать не в виде общей крышки, покрывающей образец, плату и разъемы, а в виде индивидуального поглощающего экрана, что позволяет снизить температуру образца со сверхпроводниковой структурой примерно в 2 раза;
 - для достижения минимальных температур сверхпроводниковой структуры конструкция держателя должна быть реализована таким образом, чтобы зазор между дном и крышкой был не более 0,1 мм;

Основные результаты и выводы по работе

- крышка экрана от магнитного поля не должна иметь зазоров с основной частью экрана, а отверстия в крышке должны быть выполнены в виде волноводов длиной не менее 10 мм, что позволяет улучшить равномерность индукции магнитного поля внутри экранов от 2 до 3 порядков;
- наиболее рациональным с точки зрения технологичности конструкции и высокой эффективности вариантом двухслойного экранирования для защиты от магнитного поля является сверхпроводящий экран с герметичной крышкой и отверстиями под ввод кабелей внутри, мюметаллический цилиндр без крышки снаружи. Такое экранирование обеспечивает индукцию магнитного поля внутри на среднем уровне 1,4·10⁻¹⁰ Тл, это соответствует эффективности экранирования ~55 дБ, что на порядок лучше приводимых в литературе данных.
- 3. Для оценки эффективности экранирования рекомендуется использовать свойства самих сверхпроводниковых структур, специально настроенных для восприятия внешних возмущений, поскольку потенциально они окажутся более точными в качестве детектора и более удобными с точки зрения проектирования, изготовления и эксплуатации, чем набор детекторов ИК излучения, электрической и магнитной составляющих поля.
- 4. Для оценки эффективности систем экранирования рекомендуется использовать сверхпроводниковую структуру, чувствительную к зарядовым шумам, поскольку в таком устройстве возможно регистрировать непосредственное туннелирование квазичастиц, что делает оценку экранов более точной и быстрой, а также с меньшим количеством дополнительных расчетов и приспособлений, чем через измерение времени релаксации или определение частоты и амплитуды внешнего электромагнитного поля через измерение Штарковского сдвига.
- 5. Для определения комплексного влияния системы экранирования на сверхпроводниковую структуру и сравнения систем между собой рекомендуется использовать методику оценки эффективности систем экранирования, основанную на измерении трех параметров (времени жизни зарядовой четности, нормализованной плотности квазичастиц и эффективной температуры кубита) в сверхпроводниковой структуре, чувствительной к зарядовым шумам, что достигается соблюдением условия, при котором отношение джозефсоновской энергии к зарядовой ЕЈ/ЕС ~ 20, которое необходимо обеспечить при проектировании детектора.
- 6. В результате экспериментальной оценки с помощью разработанной методики установлено, что спроектированная с использованием сформулированных рекомендаций система экранирования позволяет увеличить время жизни зарядовой четности и уменьшить нормализованную плотность квазичастиц на 2,5 порядка, а также снизить эффективную температуру сверхпроводниковой структуры на ~15% по сравнению с неэкранированным образцом, при этом содержит на 30% меньше деталей по сравнению с вариантом наиболее часто применяемой конфигурации экранирования.

Внедрение результатов работы

Методика оценки эффективности систем экранирования

- Характеризация кубитадетектора
- Измерение переключений зарядовой четности
- Определение времени жизни зарядовой четности *T_P*
- Расчет нормализованной плотности квазичастиц в сверхпроводнике x_{ap}
- Нахождение эффективной температуры кубита T_{eff}

```
• Сравнение экранов по трем параметрам: T_{P}, x_{qp}, T_{eff}
```

Внедрено в НИР проводимой МГТУ им. Н.Э. Баумана и ФГУП ВНИИА – «Лиман» и «ЦПЛ»

Актуальность

держателя

Глава 1

Глава 2

Глава 3

Список работ по теме диссертации

- 1. Toward Highly Efficient Multimode Superconducting Quantum Memory / A.R. Matanin, K.I. Gerasimov, E.S. Moiseev, N.S. Smirnov, A.I. Ivanov, **E.I. Malevannaya** [et al.] // Phys. Rev. Applied. 2023. Vol. 19. P. 034011. (Scopus).
- Broadband SNAIL parametric amplifier with microstrip impedance transformer / D.A. Ezenkova, D.O. Moskalev, N.S. Smirnov, A.I. Ivanov, A.R. Matanin, V.I. Polozov, V.V. Echeistov, E.I. Malevannaya [et al.] // Appl. Phys. Lett. 2022. Vol. 121. P. 232601. (Scopus).
- 3. Расчет и моделирование систем экранирования для защиты сверхпроводниковой электроники от ИК излучения / **Е.И. Малеванная**, А.Р. Матанин, В.И. Полозов [и др.] // Известия высших учебных заведений. Электроника. 2022. Т. 27, № 4. С. 517-529. (ВАК РФ).
- 4. Малеванная, Е. И. Электромагнитное экранирование сверхпроводниковых квантовых схем / **Е.И. Малеванная**, К.М. Моисеев, И.А. Родионов // Наноиндустрия. 2021. Т. 14, № 7-8. С. 446-458. (ВАК РФ).
- Cross Coupling of a Solid-State Qubit to an Input Signal due to Multiplexed Dispersive Readout / D. Pitsun, A. Sultanov, I. Novikov, E. Mutsenik, B. Ivanov, A. Matanin, V. Polozov, E. Malevannaya [et al.] // Phys. Rev. Applied. 2020. Vol. 14. P. 054059. (Scopus).
- 6. Light dressing of a diatomic superconducting artificial molecule / G.P. Fedorov, V.B. Yursa, A.E. Efimov, K.I. Shiianov, A.Yu. Dmitriev, I.A. Rodionov, A.A. Dobronosova, D.O. Moskalev, A.A. Pishchimova, **E.I. Malevannaya**, [et al.] // Phys. Rev. A. 2020. Vol. 102. P. 013707. (Scopus).
- Low-decoherence planar superconducting Josephson qubits for quantum integrated circuits / A.A. Dobronosova, A.I. Ivanov, A.R. Gabidullin, A.A. Pishchimova, D.O. Moskalev, L.A. Ganieva, N.S. Smirnov, V.I. Polozov, A.R. Matanin, V.V. Echeistov, A.V. Zverev, E.I. Malevannaya [et al.] // 3rd International School on Quantum Technologies.
- 8. Improved coherence of superconductive qubits by Josephson junction optimization / A.A. Pishchimova, D.O. Moskalev, A.A. Dobronosova, D.A. Ezenkova, A.R. Matanin, **E.I. Malevannaya** [et al.] // 3rd International School on Quantum Technologies.
- Over-100µs tunable planar transmons: epitaxial Josephson Junctions and design optimization / A.A. Pishchimova, D.O. Moskalev, A.R. Matanin, A.A. Dobronosova, D.A. Ezenkova, E.I. Malevannaya [et al.] // Bulletin of the American Physical Society. 2020. Vol. 65. No. 1
- Investigation of WSi and NbN superconducting single-photon detectors in mid-IR range / A.V. Antipov, V.A. Seleznev, Yu.B. Vakhtomin, P.V. Morozov, D.D. Vasilev, E.I. Malevannaya [et al.] // IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 781. P. 012011. (Scopus).
- Superconducting detector of IR single-photons based on thin WSi films / V.A. Seleznev, A.V. Divochiy, Yu.B. Vakhtomin, P.V. Morozov, P.I. Zolotov, D.D. Vasil'ev, K.M. Moiseev, E.I. Malevannaya [et al.] // J. Phys.: Conf. Ser. 2016. Vol. 737. P. 012032. (Scopus).

Актуальность	Глава 1	Глава 2	Глава 3	Глава 4	Заключение	38
--------------	---------	---------	---------	---------	------------	----

Спасибо за внимание!

Актуальность

Глава 1

Глава 2

Глава 3